
Expressing WSMO Mediators in OWL-S?

Massimo Paolucci, Naveen Srinivasan, and Katia Sycara

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

{paolucci,naveen,katia}@cs.cmu.edu

Abstract. The WSMO/WSML/WSMX initiative and the OWL-S ini-
tiative aim at similar goals: providing a support for Semantic Web ser-
vices. Despite the similarity of the ultimate goal, the two approaches are
very different. In this paper, we analyze one of such differences, namely
the concept of mediators in WSMO, and we show how those mediators
can be expressed in OWL-S. The result of this work shows that, given the
focus of OWL-S, mediators should not be first class citizens in OWL-S,
but that they can be expressed and discovered nevertheless.

1 Introduction

WSMO and OWL-S aim at representing Web services that make an essential
use of ontologies from the Semantic Web, and the objective of both efforts is to
support more effective discovery, composition and interoperation. Yet, the two
efforts take very different approaches. WSMO stresses the role of mediation in
order to support automatic interoperation between Web services, while OWL-S
stresses action representation to support planning processes that provide auto-
matic composition.

In WSMO’s vision, mediators address interoperability problems that emerge
when different Web services work together. But, while WSMO mediators rep-
resent a new concept in the field of Semantic Web services, the interoperability
problems that they solve are not new. Indeed these problems are pervasive of
every application and every aspect the Web services life cycle from discovery to
composition and enactment.

Despite the importance of mediators in the WSMO ontology, the concept
of mediator is still underspecified. As we shall show in the paper, virtually any
program can be described as a WSMO mediator. While this is not surpring given
that WSMO is in its early stages of development, it also makes very difficult to
make any claim on the features as well as on the use of WSMO mediators. The
first contribution of this paper is to provide a critical analysis of the WSMO

? We would like to thank Rubén Lara and the participants of the deri-wsmo-discussion
mailing list for their insights into WSMO’s concept of mediators. The research was
funded by the Defense Advanced Research Projects Agency as part of the DARPA
Agent Markup Language (DAML) program under Air Force Research Laboratory
contract F30601-00-2-0592 to Carnegie Mellon University.

2 Paolucci et al.

mediators, as we understand it, with the objective to further the community
understanding of this concept.

Nevertheless, the stress that WSMO poses on mediators provides a challenge
for OWL-S: if OWL-S aims at supporting automatic composition of Web services,
it needs to address the mediation problem. The second contribution of this paper
is to identify how mediators are realized in OWL-S, and, to the extent that
mediators are Web services, we also provide their description in OWL-S.

In the rest of the paper we assume some familiarity with the three modules
of OWL-S, and specifically with the OWL-S Service Profile and Process Model,
while in the following section 2 we will provide an introduction to the WSMO
mediators. In section 3 we will discuss what we see as shortcomings of the def-
inition of mediators in WSMO that are mostly due to the concept is still quite
underspecified. In section 4, we will analyze the role of mediators in OWL-S and
we will show how mediators can be represented in the language. In section 5
we will describe an example of broker, which can be represented as a stateful
mediator, that performs mediation among Web services and the challengies that
it poses to OWL-S. Finally, in section 6 we conclude.

2 WSMO Mediators

WSMO is an ontology for the description of Web services in the infosphere.
The definition of WSMO hinges on the following four concepts: Web services,

Goals, Ontologies and Mediators. The following list provide, to the best of our
understanding, a succinct explanation of the meaning of these four concepts.

Webservices expose the interface of businesses on the Internet. Each Web ser-
vice is characterized by a set of capabilities which specifies the functionalities
provided by the Web service, and a set of interfaces that specify how the ca-
pabilities are fulfilled.

Goals “A goal specifies the objectives that a client may have when he consults
a web service1”. Goals are characterized by a PostConditions that describe
the information state that the client desires, and Effects that describe the
state of the World that the client disires to achieve.

Ontologies provide a shared conceptualization and a formal specification of
the domain. The use of ontologies achieves two objectives: first it provide a
formal semantics to information exchanged by Web services facilitating the
Web services interoperation; second, ontologies facilitate the interoperation
between humans and Web services by specifying the precise terminology
accepted by the Web services.

Mediators provide a general mechanism to reconcile the inevitable interoper-
ability issues that emerge when Web services need to work together. Media-
tors are the core of our attention in this paper and we will analyze them in
some detail.

1 Cited from: D2v01. Web Service Modeling Ontology (WSMO),
(http://www.wsmo.org/2004/d2/v01/20040214)

Representing WSMO Mediators in OWL-S 3

Mediators are defined to attack the alignment problems that inevitably emerge
when interoperability of Web services is attempted. For example, Web services
may use different ontologies, or different protocols or they may have been de-
signed with different goals in mind. Through the solution of the interoperability
problem, mediators are expected to tackle other two problems: namely reusabil-
ity and scalability. Reusability is facilitated by the use of mediators because the
same component may be used in very different context by defining a set of media-
tors that solve the interoperation problems generated in that particular context.
Scalability instead is the result because instead of providing n

2 direct mappings
between different components, only mappings between mediators will be needed,
and these mappings are expected to be far fewer reducing the interoperability
complexity when compared with the direct mappings.

Fig. 1. WSMO taxonomy of mediators

Four types of mediators have been defined that are specialized to handle
mediation between instances of the four basic concepts of WSML. The differ-
ent types of mediators that are organized in the taxonomy shown in figure 1.
There main classification of mediators distinguishes two main types: Refiners

and Bridges. Refiners specify “a new component as a refinement of an exist-
ing components. They support the reuse by minimizing the effort in generating
new components from existing ones2.” Bridges instead enable different compo-
nents to interoperate overcoming their interoperability problems. For instance
bridges, such as ww-mediator presented below, may transform the outputs of a
Web service into the inputs of another Web service.

Specifically, the oo-mediators and the gg-mediators described below are re-
finers, while the ww-mediators and the wg-mediators are bridges.

OO-Mediators provide translations and harmonization between different on-
tologies that are used by the Web services or any other WSMO component.

GG-Mediators provide a way to match goals at different levels of granularity.
For example a GG-Mediator may take the responsibility to refine the goal

2 Cited from “D2v02. Web Service Modeling Ontology - Standard”
(http://www.wsmo.org/2004/d2/v0.2/20040306/), section 5.

4 Paolucci et al.

buy a ticket to the goal buy a train ticket upon recognizing that there
is a subclass relation between the two concepts3.

WG-Mediators handle partial matches between goals of the clients and the
functionalities provided by Web services.

WW-Mediators resolves the interoperability issues between Web services at
all levels: data, process, and protocol. These interoperability problems are
resolved both at the level of the single Web service choreography, as well as
at the level of the orchestration of multiple Web services.

One common thread that characterizes all the WSMO mediators is that they
can call each other. Typically, OO-Mediators are used at all levels since ontology
mismatches are the most likely of all possible mismatches. But it is also possible
to imagine that a WG-Mediator will invoke a GG-Mediator to decompose the
goal and facilitate the matching with the capabilities of a Web service.

2.1 Expressing Mediators

WSMO provides a language to express the characteristics of Mediators. in the
following we show two examples of Mediators. The first one an oo-Mediator, the
second one a gg-Mediator.

ooMediator http://www.wsmo.org/.../owlCurrencyMediator.wsml

namespace [...]

non-functional-properties [...]

sourceComponent

ontology http://www.daml.ecs.soton.ac.uk/ont/currency.daml

targetComponent

ontology http://www.wsmo.org/.../resources/po.wsml

mediationService [...]

Fig. 2. An example of specification of an OO-Mediator

Figure 24 shows owlCurrencyMediator, an example of oo-Mediator. The namespace
and non-functional-properties have been abbreviated for readability rea-
sons, but they provide a namespace mechanism equivalent to what is provided by
XML and information on the authors of the mediator. Instead mediationService,
which is unspecified in the original listing, a full wsml-webservice description.
The properties sourceComponentand targetComponentwhich specify the source
DAML+OIL ontology5 and the target WSML ontology6. In this mapping the

3 The example is taken from “D3.2 v0.1. WSMO Use Case Modeling and Testing”
(http://www.wsmo.org/2004/d3/d3.2/v0.1/20040719/), section 3.1.2.

4 The example is taken from “D3.2 v0.1. WSMO Use Case Modeling and Testing”
(http://www.wsmo.org/2004/d3/d3.2/v0.1/20040719/), Listing 8

5 http://www.daml.ecs.soton.ac.uk/ont/currency.daml
6 http://www.wsmo.org/2004/d3/d3.2/v0.1/20040607/resources/po.wsml

Representing WSMO Mediators in OWL-S 5

source ontology specifies concept such as Country and Currency while the target
ontology specifies trading concepts such as Buyer, Seller and price. Consid-
ered the distance between the two ontologies, it is natural to expect that the
resulting mapping is partial. But to the best of our knowledge such partiality is
not specified anywhere in the definition and we can only speculate that it will
be specified in the definition of the mediationService.

ggMediator

http://www.wsmo.org/2004/d3/d3.2/v0.1/20040607/resources/ggm1.wsml

namespace [...]

non-functional-properties [...]

sourceComponent

goal http://www.wsmo.org/.../goal1.wsml

targetComponent

goal http://www.wsmo.org.../goal.wsml

mediationService

axiom GGReduction

logical-expression

"trainItinerary memberOf tc:itinerary[

trip hasValue someTrip memberOf tc:trainTrip[

start hasvalue LOC,end hasvalue LOC,],

passenger hasValue _# memberOf loc:person

] and

(LOC..locatedIn = austria or

LOC..locatedIn = germany)."

Fig. 3. An example of specification of an GG-Mediator

A GG-Mediator is provided in figure 37 which specifies the mapping be-
tween goal1 which corresponds to buy a ticket to a more specific goal which
corresponds to "buy a train ticket". In this example the mediationService
provides a restriction on the location that can be either in Austria or in Germany.

Other types of mediators are specified in a similar way, but since we could not
find neither an example, nor a specification of the language, we do not venture
to provide our own examples.

3 Problems with the WSMO Concepts of Mediator

Despite its importance, the concept of mediator in WSMO is still underspeci-
fied. Virtually any program can be re-casted as a mediator, or as composed of
mediators, since any program produces a mapping from a data-type to another
or a mapping from a functionality to another. Any attempt to define mediators

7 The example is taken from “D3.2 v0.1. WSMO Use Case Modeling and Testing”
(http://www.wsmo.org/2004/d3/d3.2/v0.1/20040719/), Listing 11

6 Paolucci et al.

only on the bases of generality or reusability does not quite hold. For example,
the OO-Mediator in figure 2 is very specialized and do not generalize to any
other mediation problem, though it may be argued that such a mediator may
take advantage of more reusable mediators that map DAML+OIL to WSML.
In general though, mediators that are generated with the WSMX tools8 seem to
generate very specific sets of rules that depend on the ontologies from which they
are constructed. Part of the problem with the concept of mediator in WSMO is
that the role of semantics and the Semantic Web have not been exploited. For
example, it would be nice to see a way to derive OO-Mediators automatically
as has been proposed by the C-OWL project [2]. Indeed, profound questions on
what is the contribution of the Semantic Web provide to the interoperability
problem remain unanswered.

Another aspect that is still unclear is whether mediators are client side com-
ponents, or server side components or whether they are services that reside
somewhere between the client and the server. Furthermore, it is universally rec-
ognized that the interaction between Web services is separated in three different
problems: discovery, composition and invocation, but it is still unclear, where
each type of Mediator plays a role. In this section we will try to address these
problems.

3.1 Where do Mediators Reside?

It is still underspecified is whether mediators reside in the client, in the server or
somewhere in between acting like a Middle Agents [14]. WSMO seems to collapse
two different concepts in the same mediator concept. The first one is Mediators
as internal modules or translation rules. The second is a view of Mediators as
services which provide translation services to other Web services.

Architecturally speaking, these two models of mediation are very different:
rules describe private knowledge of the Web service, and of its clients, as such
they specify an internal module of the Web service infrastructure. On the other
hand, if mediators are interpreted as Web services, they specify components of
the Web services infrastructure; they are components of the overall infrastruc-
ture as UDDI servers are.

If Mediators are Web services, important issues need to be specified such as
how are Mediators discovered; and how are mediators used. WSMO is still silent
on these issues. The representations in figures 2 and 3 suggests that one possible
way to perform the discovery of mediators is to exploit the sourceComponent

and targetComponent in a way that is similar to the inputs and outputs in the
OWL-S Profiles. The discovery algorithms that have been developed for OWL-S
may be used in the context of WSMO.

As for the interaction, the problem is much deeper, and it depends on the
WSMO choreography and orchestration languages that are still undefined. The
simpler case here is to define stateless mediators that take a message from the
client and send it to the server and vice versa. Such stateless mediator would

8 “D13.3v0.1 Mediation” available at http://www.wsmo.org/2004/d13/d13.3/v0.1/20040628

Representing WSMO Mediators in OWL-S 7

not keep track of the interaction between the two parties. For example, the
owlCurrencyMediator above seems to be of this type. A more complex case is
when the mediator needs to maintain an history of the interaction. For example,
an OWL-S to WSML mediator would have to satisfy this requirement since it
will have to present to act as an OWL-S Web service on one side, and as a
WSML web service on the other, which in turn means that it has to maintain
the two services synchronized consistently with their process models.

We believe that in its evolution, the specification of WSMO will have to
recognize the distinction between defining mediators as rule sets, and defining
mediators as services in order to define a discovery mechanism and provide
support for complex interaction protocols.

3.2 Mapping Mediators to Web services Problems

The mapping of Mediators to the problems of Web services is still quite under-
specified. The use of Web services is accompanied by three problems: discovery,
composition and invocation, but there is no clear specification of how the medi-
ators help the solution of them. In this section we attempt to define a mapping
between the Web Services problems and the WSMO mediators.

Composition and invocation of Web services seems to be addressed princi-
pally by WW-mediators who “are applied to resolve heterogeneities on the data,
process, and protocol level between the Choreographies of Web Services that are
ought to interact in a global interaction model”9.

The discovery problem presents a more complex picture, since GG-mediation
and WG-mediation seem to be relevant during discovery when the goals of the
requester need to be mapped to the goals of a Web service. Nevertheless, there
seems to be a difference between the type of discovery that is supported by OWL-
S matchmakers [13, 7, 3] and the functionality that is provided by mediations.
Matchmakers attempt to check whether the goal of the requester matches the
goal of one or more providers. When a match is not recognized the matchmaker
fails. Similarly given two goals the mediators attempts to find map between them.
But it is not quite clear what happens if such a mapping does not succeed. One
solution would be to fail, in which case mediators behave similarly to a match
in the OWL-S discovery. Alternatively, mediators could be used to reconcile the
differences between goals, in which case the use of mediators during discovery
may be disputable since every service would be discoverable. Essentially, the role
of gg-mediators is still quite unclear, if they can be used for selection, then their
use in discovery is quite straightforward; alternatively, if instead they are used
for reconciliation, then their role may be more important in composition and
discovery in WSMO would be still completely undefined.

While WW-mediation seems to be principally about composition and invoca-
tion, while WG and GG-mediation may be applied to discovery, OO-mediation

9 Cited from D3.2 v0.1. WSMO Use Case Modeling and Testing
(http://www.wsmo.org/2004/d3/d3.2/v0.1/20040719), discussion on WW-
Mediators in section 3.1.2

8 Paolucci et al.

is pervasive in WSMO since differences between ontologies may emerge during
discovery, composition and invocation.

4 Representing WSMO Mediators in OWL-S

If our hypothesis on the role of the different mediators in addressing the fun-
damental problems of Web services is correct, then it also provides an initial
mapping between infrastructure that is assumed by OWL-S Web services and
the mediators stipulated by WSMO. For instance, above we showed that gg-
mediators and wg-mediators may provide the basic step toward a discovery
mechanism. In such a case, the matching algorithms that have been defined
to support discovery in OWL-S may also be used to define those WSMO medi-
ators. Similarly, while OWL-S does not mandate the existence of ww-mediators
or wg-mediators, it assumes the existence of composition mechanisms, such as
planning [15, 10, 12, 9] that perform essentially the same role of the mediators.

We believe that mediators can be represented within OWL-S, and that such
a representation can be used to support discovery and composition of mediators
and Web services during orchestration. As an initial test of this hypothesis, in
this section we provide an OWL-S description of three different mediators. The
first one is a detailed description of an oo-mediator that translates F-Logics
into OWL10; the second one is the gg-mediator in figure 3; the last one is a
ww-mediator that has been described in [6].

4.1 OO Mediators

The first mediator translates from OWL ontologies [4] to F-Logic ontologies [8].
Although such a translation may be extremely complicated, an algorithm for
such a mapping can be derived from [1]. Since we take the OWL-S point of
view, we describe the inputs and outputs required by that algorithm ignoring,
for explanation purposes, issues such as performance and completeness of the
mapping. A scenario in which this mediator may be used in the following one.
An agent which uses OWL as ontology description language may want to com-
municate with a Web service that instead of OWL uses F-Logic. At discovery
time the agent would use a profile that specifies the transformation that it ex-
pects from the Web service, namely the translation from OWL to F-Logic. A
profile describing that transformation is described in figure 411.

10 We thank Rubén Lara for proposing this example as a challenge for OWL-S.
11 Note that our representation assumes the existance of a concept FLogic in an OWL

ontology. In principle one may wonder how to discover a Web service that translates
between a given OWL ontology and a given F-Logic ontology, or between statements
derived from ontologies. OWL-S approach to this problem is the following: first the
client identifies the logics used to represent the ontologies or the statements, in
our examples OWL and F-Logic; second, the profile shown in figure 4 is used for
discovery, then the found service is used for the translation.

Representing WSMO Mediators in OWL-S 9

<profileHierarchy:oo_mediator rdf:ID="Owl2FLogic_Translator">

[...]

<profile:hasInput>

<process:Input rdf:ID="OWL_Input">

<process:parameterType rdf:datatype="&xsd;#anyURI">

http://www.w3.org/2002/07/owl#Thing

</process:parameterType>

</process:Input>

<profile:hasInput>

<profile:hasOutput>

<process:Output rdf:ID="FLogic_Output">

<process:parameterType rdf:datatype="&xsd;#anyURI">

http://www.wsmo.org/2004/d16/d16.2/v0.1/fLogic

</process:parameterType>

</process:Output>

<profile:hasOutput>

[...]

</profileHierarchy:oo_mediator>

Fig. 4. The profile of an oo-mediator

This profile specifies that the input of the Web service is an OWL concept,
while the output is an F-Logic statement formatted consistently with the WSMO
serialization. Additional constraints could be defined in the preconditions and
effects to specify additional features such as partial mapping and restrictions
that guarantee that the object represented in the output is indeed the same
thing of the input.

Assuming for sake of simplicity that the oo-mediator found is stateless, the
process model for this Web service is quite trivial and it requires just an OWL
object as input to be sent to it, and it returns F-Logic statements as output. The
Web service described in figure 5 simply computes the mapping and sends it back
to the client, who then takes the responsibility to send it to the F-Logic service.
Alternatively, the OO-mediator may interact directly with the server providing
a real translation service. The process model in the latter case is shown in figure
6. Here the mediator takes as input the message to translate and a recipient, and
it returns as output an acknowledgment, and provides as effect the guarantee
that the recipient will receive a message in F-Logic that is the translation of the
input. Of course the condition in the effects will have to be expressed in SWRL
or some other rule language.

The pattern described in this section can be used for other type of mediators.
For instance the gg-mediator in figure 3 is represented by substituting the in-
puts and outputs of the Profile with concepts that correspond to WSMO goals.
Additional restrictions may be added to represent additional information such
as the restriction to travel in Austria or Germany.

10 Paolucci et al.

<process:AtomicProcess rdf:ID="Owl2FLogic_Translator_Process">

<process:hasInput>

<process:Input rdf:ID="OWL_Input">

<process:parameterType rdf:datatype="&xsd;#anyURI">

http://www.w3.org/2002/07/owl#Thing

</process:parameterType>

</process:Input>

<process:hasInput>

<process:hasOutput>

<process:Output rdf:ID="FLogic_Output">

<process:parameterType rdf:datatype="&xsd;#anyURI">

http://www.wsmo.org/2004/d16/d16.2/v0.1/fLogic

</process:parameterType>

</process:Output>

<process:hasOutput>

</process:AtomicProcess>

Fig. 5. The process model of an oo-mediator

4.2 WW Mediator

In this second example we describe a mediation task that has been proposed in
([6] section 3.4.1). The scenario for this mediator is the following: two business
parties P and R need to exchange purchase orders, yet P intends to send each
line item in a separate message, while R expects the complete purchase order.
The role of the mediator M in this case is to assemble the line items coming
from P in a complete purchase order and send it to R.

This mediator can be expressed in OWL-S in two different ways. The first
solution can be achieved internally to P. Specifically, P may have some knowledge
of how to take line items coming from its purchase department and fuse them in
a complete purchase order. Typically, these capabilities are described as planning
operators, therefore the mediator would be automatically constructed through
P’s internal planning process. This solution does not use OWL-S directly, yet
the goal of composing one purchase order would come from R’s requirements
expressed in the process model.

The second solution, which seems to be entailed by the example, requires the
use of a ww-mediator12. In this case the discovery of the mediator is again driven
by the requirements of the R’s process model (to receive a single purchase order)
and P’s requirement to send all the line items separately. During the discovery,
a Profile can be generated expressing the request for the mediator. Such Profile

12 We assume that the type of mediator required here is a ww-mediator because it
mediates between the Web service of P (or at least P as a Web service client) and
the Web service of R. Nevertheless, an argument could be made that really the
mediator needed is a wg-mediator which harmonizes the the goals of P (send each
line item separately) with the goals of R (receive a single purchase order).

Representing WSMO Mediators in OWL-S 11

<process:AtomicProcess rdf:ID="Owl2FLogic_Translator_Process">

<process:hasInput>

<process:Input rdf:ID="OWL_Input">

<process:parameterType rdf:datatype="&xsd;#anyURI">

http://www.w3.org/2002/07/owl#Thing

</process:parameterType>

</process:Input>

<process:hasInput>

<process:hasInput>

<process:Input rdf:ID="F-LogicWS">

<process:parameterType rdf:datatype="&xsd;#anyURI">

http://www.daml.org/services/owl-s/1.1B/Service.owl#Service

</process:parameterType>

</process:Input>

<process:hasInput>

<process:hasOutput>

<process:Output rdf:ID="Acknowledgement">

<process:parameterType rdf:datatype="&xsd;#String">

</process:parameterType>

</process:Output>

<process:hasEffect>

receive(#F-LogicWS,msg) & F-Logic(msg) & translation(#OWL_Input,msg)

</process:hasEffect>

</process:AtomicProcess>

Fig. 6. The process model of an oo-mediator revised

will specify that the expected inputs of the desired mediator are the line items,
and the expected output is a complete purchase order.

The Process Model of such mediator is schematically13 shown in figure 7. It
consists of a sequence of two processes of which the first one Convert LineItem

to PurchaseOrder is a loop that collects all the line items (exploiting the process
Get Line Item) and compiles the purchase order. The second process, Send To

Server is responsible to send the constructed purchase order to R. Although not
shown, Send To Server may produce an acknowledgment of success or failure,
but more importantly it specifies that the effect of the sending is that R receives
the purchase order.

5 OWL-S Broker

The ww-mediator discussed in the previous section mediates between the Web
service protocol of the seller, namely R, that expects one single message and
the Web service protocol of the buyer, namely P, that expects to send multiple

13 We skip the complete listing for both space and explanation clarity reasons.

12 Paolucci et al.

Fig. 7. The Process Model the WW Mediator

messages. This is a specific case of a broker middle agent [5] that mediates
between two different Web services.

The basic protocol of the broker is shown in figure 8. The broker collects the
advertisements of providers available in the infosphere and store them for future
discovery. Upon receiving a request of service (1) from a requester, the broker
selects the best provider to address that request and (2) the broker passes the
request to the selected provider. Upon receiving the request from the selected
provider (3), the broker relays the information back to the requester.

The apparent simplicity of the broker’s protocol is quite deceiving. The in-
teraction between the provider and the requester may not be restricted to one
single loop, but it may involve many exchanges. For instance, the requester may
have asked for a ticket from Innsbruck to Frankfurt, but the provider, presum-
ably the railway station, may want to know which train the requester intends
to use. The request for additional information sparks a new loop through the
protocol since rather than answering the requester, at step (4) the broker ask
the requester for some additional information to send to the provider.

The second level of complexity stems from the fact that protocol used by the
requester may not agree with the protocol used by the provider. For example
the requester may have asked for a ticket on the 4:30 train from Innsbruck to
Frankfurt, but the first asks for the departure and arrival stations and only later
for the time of departure. This time around, the broker would have to recognize
that the requester already provided the information and that it is useless to ask
for the information again. Rather the broker can shortcut the protocol directly
answer the provider.

The quick glimpse in the broker protocol shows that it summarizes all four
WSMO mediators. The broker provides a ww-mediation to harmonize the pro-

Representing WSMO Mediators in OWL-S 13

Fig. 8. The Broker’s Protocol

tocol of the provider with the protocol of the requester; furthermore, it performs
oo-mediation to abstract the incoming query from the requester to the corre-
sponding goal to be used select the best provider. Also, gg and wg-mediation are
performed to link the selected goal to the provider’s web service that actually
interacts with the broker. Potentially, there are additional uses of mediators, for
instance the oo-mediator may be used to reconcile different ontologies used by
the provider and the requester.

Since the broker summarizes the all the WSMO mediators it becomes an
interesting test case for OWL-S. An implementation of the broker is provided
in [11] where details of the mediation processes are provided. Brokers challenge
OWL-S’ assumption that process model of the provider should be provided in
advance since the requester cannot query the broker until a process model is
provided, and the broker cannot provide a process model until the query is
issued and a provider is selected. The solution of this dilemma is to support
dynamic process modeling that allow the interaction protocol of a Web service
to change mid-stream. Crucially, the limitation of OWL-S does not come from
the representation of WSMO style mediators, but on the assumption that the
Process Model of Web services is always prespecified. The experience of the
broker suggests that OWL-S can represent the mediators that WSMO specifies,
but it also shows that the flexibility to change interaction protocol mid stream
will also be required for WSMO mediators.

14 Paolucci et al.

6 Conclusions

In this paper we tackle the problem of representing WSMO mediators in OWL-S.
Since the problems the mediators attempt to solve in the Web services infrastruc-
ture are not new, the issue of representing mediators has been decomposed into
two problems: first finding which other components of the Web service infras-
tructure that is assumed by OWL-S provide the desired mediation mechanism,
and second, to the extent that mediators can be casted into Web services, how
they can be represent in OWL-S.

The contributions of this work are twofold. First we show that some compo-
nents and algorithms that have been developed for OWL-S may provide different
types of mediation. For instance, to the extent that gg-mediators can act as selec-
tors among goals, the discovery algorithms that have been generated for OWL-S
indeed specify how to do gg-mediation. Similarly, the planning algorithms used
for automatic composition provide means for ww-mediation and wg-mediation.
While, oo-mediation has not been the focus of any research in OWL-S Web ser-
vices, its scope is more general since it relates to every aspect of reasoning with
and exploiting the Semantic Web. Any contribution toward the solution of oo-
mediation will be immediately reflected in OWL-S Web service representation.

The second contribution of this paper is the representation of WSMO media-
tors as OWL-S Web service descriptions. As we discussed, it is still quite unclear
how WSMO mediators are reflected in the architecture of Web services. Specif-
ically, there is still an ambiguity of whether WSMO mediators are a component
of the client, of the server or they act as middle agents that mediate between the
client and the server. Nevertheless, we show that to the extent that mediators
can act as Web services they can also be represented in OWL-S.

Finally, we describe how to represent a broker in OWL-S, which can be
considered as a stateful mediator. On the opposite of other mediators that con-
centrate on the translation task that they have to produce, stateful mediators
should also manage the interaction protocol between the client and the server and
provide a translation that is contextualized and the internal reasoning becomes
more complex. Nevertheless, we show that stateful mediators can be represented
in OWL-S, as long as contingencies for the dynamic loading of Process Models
are provided.

References

1. M. Balaban. The F-Logic Approach for Description Languages. Annals of Mathe-
matics and Artificial Intelligence, 15(1):19–60, 1995.

2. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-owl: Contextualizing ontologies. In Second International Semantic Web Confer-
ence, Sanibel Island, Florida, USA, 2003.

3. J. Colgrave, R. Akkiraju, and R. Goodwin. External matching in UDDI. In 2nd
International Conference of Web Services (ICWS 2004), pages 226–233, San Diego,
CA, USA, 2004.

Representing WSMO Mediators in OWL-S 15

4. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology
Language Reference, 2004.

5. K. Decker, K. Sycara, and M. Williamson. Matchmaking and brokering. In Proceed-
ings of the Second International Conference on Multi-Agent Systems (ICMAS-96).
The AAAI Press, 1996.

6. D. Fensel and C. Bussler. The web service modeling framework (WSMF). Elec-
tronic Commerce: Research and Applications, (1):113–137, 2002.

7. T. Kawamura, J.-A. D. Blasio, T. Hasegawa, M. Paolucci, and K. Sycara. A pre-
liminary report of a public experiment of a semantic service matchmaker combined
with a UDDI business registry. In 1st International Conference on Service Oriented
Computing (ICSOC 2003), Trento, Italy, 2003.

8. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object oriented and frame-
based languages. Journal of the ACM, 42, 1995.

9. D. McDermott. Estimated-regression planning for interactions with web services.
In AI Planning Systems Conference (AIPS 2002), 2002.

10. S. McIlraith, T. C. Son, and H. Zeng. Semantic web service. IEEE Intelligent
Systems, 16(2):46–53, 2001.

11. M. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara. Untangling the broker
paradox in owl-s. In Proceedings of AAAI 2004 Spring Symposium, 2004.

12. M. Paolucci, K. Sycara, and T. Kawamura. Delivering semantic web services. In
Proceeding of the Twelfth International Conference on World Wide Web, Budapest,
Hungary, 2003.

13. N. Srinivasan, M. Paolucci, and K. Sycara. Adding OWL-S to UDDI, implementa-
tion and throughput. In First International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), San Diego, CA, USA, 2004.

14. H.-C. Wong and K. Sycara. A Taxonomy of Middle-agents for the Internet. In
ICMAS’2000, 2000.

15. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating daml-s web services
composition using shop2. In Proceedings of the Second International Semantic Web
Conference (ISWC2003), Sanibel Island, Florida, USA, 2003.

