
Towards a Foundational Framework
for Developing and Testing

Inter-organizational Business Processes

Philip Langer
Vienna University of Technology

Vienna, Austria
langer@big.tuwien.ac.at

Stefan Sobernig, Gustaf Neumann
Vienna University of Economics and Business

Vienna, Austria
stefan.sobernig@wu.ac.at
gustaf.neumann@wu.ac.at

Abstract: Modeling and analyzing inter-organizational business processes
(IOPs) is complicated substantially by heterogeneous process-modeling lan-
guages (e.g., surface vs. analysis languages) as well as by their inherent
properties of loose coupling and local control (views). On top, multiple con-
cerns must be addressed when modeling and analyzing IOPs, such as process
data, behavior, distribution, and resource management. Whereas significant
advances have been accomplished by the research community to model and
analyze IOPs within the boundaries of a subset of these concerns, a holistic
approach that enables a unified view across the strongly intermingled IOP
concerns is missing. We believe that more research effort is needed towards
establishing such a holistic, unified view based on a common language-oriented
foundation for modeling and analyzing IOPs. This paper lays out one direction
of language engineering towards this goal, collects generic and specific require-
ments on a language framework for inter-organizational business processes,
and discusses them tentatively.

1 Introduction
As a result of the specialization and globalization of businesses in a world in which
political boarders disappear gradually, cooperation among multiple organizations is
increasingly important. Certainly this trend has a major impact on the development,
implementation, and maintenance activities of business processes. It is often
insufficient to consider only the internal processes of an organization in isolation.
Instead, techniques for ensuring an efficient interplay of multiple processes across
organizational boundaries and for maintaining correctness and conformance of
the involved processes, while ensuring flexibility in adapting and replacing certain
services on the fly, are increasingly required.
The design, enactment, and analysis of inter-organizational business processes
(IOPs) has attracted substantial research, under the umbrella of inter-organizational

A. Baumgraß, N. Herzberg, G. Kappel, J. Mendling, A. Meyer, S. Rinderle-Ma (eds.): Proceedings on
Inter-Organizational Process Modeling and Event Processing in Business Process Management,
Vienna, Austria, 12-06-2014, published at http://ceur-ws.org

http://ceur-ws.org


workflows [vdAW01], inter-enterprise business processes [CDT06], and process-
driven SOA [HZ12]. The field, however, still poses major challenges [BDE+13]. As
different organizations may use different languages and even different paradigms
to specify processes [van13], we face the challenge of heterogeneity in the involved
process models hampering a uniform analysis of the processes’ interplay. In an inter-
organizational setting, with loose coupling and no control over partners, external
processes may change unnoticed and partners need to be replaced frequently. This
implies continuous checking of the correctness and the conformance of the IOP. To
enable the efficient development and maintenance of IOPs, as well as to ensure
interoperability among the involved processes, all concerns, ranging from data,
behavior, distribution through resources [BDE+13] should be treated as a conceptual
whole. It remains an open challenge to come up with a unified, holistic engineering
approach which takes all concerns of IOPs, as well as the interplay of concerns, into
account.
In this paper, we present our initial ideas about a unified, foundational modeling
framework for IOPs and about critical design requirements on such a framework
up for discussion. The proposed framework aims to address both the heterogeneity
of concepts, languages, and methods for designing, developing, and testing IOPs
and the integration of IOP concerns, while at the same time enabling the efficient
separated development of distinct concerns with tailored languages. It is evident
that such a framework cannot be established without the help and the feedback
of the broader research community, including the MinoPro committee and the
MinoPro participants. To this end, this paper should act as a stimulus for joint
research and critical discussion.
In Section 2, we first elaborate on the language-oriented engineering process that
we plan to apply in our work towards the foundational modeling framework. To
gather a first set of IOP-specific requirements on both the engineering process and
the resulting language artifacts, we provide a selective survey of existing work in
designing, developing, and testing IOPs in Section 3. This way, we outline how we
plan to aggregate the current state of the art in IOP languages, concepts, semantics,
and formal techniques by identifying commonalities and variations. Based on these
aggregated findings, we then briefly discuss cornerstones of a foundational IOP
modeling framework in Section 4.

2 Language Engineering for Integrated IOP Modeling
A model of an IOP is a precise definition of the intended characteristics of multiple
interacting business processes. An IOP model is expressed in a formally defined
software language; that is, a language having a mathematical definition of both its
syntax and semantics. Therefore, the model becomes amenable to verification and
validation. In addition, an IOP model is executable [Fuc92] to allow for immediate
behavioral inspection (e.g., in a simulated environment) or to actually enact a process
(e.g., by instrumenting a process-driven, service-based software system). An IOP
model covers either one or even multiple process concerns at the same time (data,

60



behavior, distribution, resources; see also Section 3). To allow for concern-specific,
partial IOP models or for concern-specific viewpoints on an integrated IOP model,
a language-based IOP framework is realized as a family of modeling languages.
A software-language family [ZKD+10] is an infrastructure to create a number of
integrated, tailored software languages based on a number of shared language-
implementation assets. These can be used to define tailored abstract syntaxes,
tailored concrete syntaxes, as well as derived semantics specifications, based on a
common core of language abstractions and semantics. An IOP modeling language
can be tailored towards an IOP concern (concern-specific view, in short; [BDE+13])
and/or towards a domain-specific process view [CDT06].
We plan to follow documented procedural guidelines for domain-specific software-
language engineering ([Fra13, SZ09]; see also Figure 1). Early in the engineering
process, the scope for and the purpose of the IOP language framework must be
established. This involves systematic reviews and a systematic mapping of existing
IOP research, in particular language projects and language-driven development tasks
(process enactment, verification, validation). In addition, the availability of reusable
IOP language artifacts and profiles of IOP stakeholders should be investigated.
This step is particularly critical because the framework should incorporate and
integrate with existing IOP languages. Collecting and eliciting generic requirements
involves consulting collections of documented software-language design rationale
(e.g., architectural patterns, language-implementation patterns, workflow patterns)
as well as decisions on the subsequent engineering steps (e.g., extraction-based vs.
mockup-based language development; [SZ09]). The evaluation of different language-
implementation strategies (e.g., metamodeling, grammars, language embedding)
and of different concrete-syntax types (e.g., diagrammatic vs. textual) also fall into
this category. Realizing the semantics of modeling languages may either be specified
by mapping the language onto an existing semantic domain (such as petri nets) or by
weaving the semantics into the metamodel (operational semantics [MFJ05, MLW13])
using a language for which the semantics are already available [BGM+11]. Then,
there are IOP-specific requirements to be documented using a precise representation.
For example, usage scenarios, concrete-syntax mock-ups etc. can be extracted
from the systematic map of language projects drawn up in a previous step. In
addition, domain-specific sources are consulted, such as material on workflow
patterns [vdATHKB03]. Principles of view-based process modeling, referring to
concern-specific and stakeholder-specific process views, will be screened [TZD11,
Val10, THZD09].
Specifying language-implementation assets comprises the construction of a core
abstract syntax and semantics, as well as syntax and semantics extensions covering
the variable language parts. This is then complemented by realizing one or several
concrete syntaxes. Finally, repeated empirical evaluations, for instance, based on
the initially collected scenarios, are conducted and the results are fed back into re-
designing iterations. The present paper contributes to a first structuring of relevant
IOP sub-domains in preparation of the first three steps (scoping and requirements
gathering; see Figure 1).

61



1) Clarifying 
Scope and Purpose

2) Analyzing
Generic Requirements

3) Analyzing
Specific Requirements 4) Developing

Language Assets

5) Developing
Concrete Syntaxes

6) Developing Integrated
Development Tooling

7) Evaluationpaper focus

Figure 1: Overview of language-family engineering steps based on [Fra13, SZ09]

3 State of the Art in Developing and Testing IOPs
There is a large body of material on software languages for IOP development and on
corresponding techniques of verification and validation of business-process models.
In the following, we highlight selected contributions (e.g., by identifying a single
flagship publication per technique) to identify the underlying concepts and formal
techniques, rather than providing a comprehensive survey, within the page limits
set for this paper.

3.1 Data

The concern of data addresses the structural and semantical aspects of messages that
are exchanged among participants of the IOP. As IOPs might not have one party
serving as central control point, also the data can be distributed and heterogeneous
posing the challenge of transactions and semantic integration, respectively.
Languages. The approaches to modeling data structures have converged over past
decades. We can distinguish among relational approaches, such as the relational
model by Codd [Cod70] and the Entity-Relationship Model by Chen [Che76], tree-
oriented approaches, such as XML Schema, object-oriented approaches, such as
UML class diagrams, graph-oriented approaches, such as RDF and the introduc-
tion of ontologies with OWL, and document-oriented approaches [KD10], such as
UN/CEFACT Core Components. Although they are based on different paradigms,
there has been a consensus and a clear understanding about these paradigms and
how they can be translated among each other without loosing information (e.g.,
object-relational mapping and JAXB1).
Formal techniques. To address the challenges of data distribution and distributed
data integrity, transaction models of databases have been adapted to the workflow
context [AAE+96] and web services [SD05]. With respect to heterogeneity and
interoperability, for instance, Deutsch et al. [DHPV09] proposed a verification tech-
nique of exchanged data for data-centric processes. In case the exchanged artifacts
are incompatible—requiring data transformations—semantic annotations [VIK+10]
were applied successfully. To cope with evolution of data structures, semantic anno-

1https://jaxb.java.net

62

https://jaxb.java.net


tation paths were proposed for enriching WSDL interfaces [KE12]. Moreover, Weber
et al. [WHM10] combine the control-flow verification with checking pre-conditions
on data items expressed in semantic process descriptions (OWL-S and WSMO).

3.2 Behavior

IOP behavior refers to control- and data-flow aspects (at design time), as well as
possible runtime states during process execution. Key properties are correctness
(e.g., soundness, liveness), as well as process conformance with business rules.
Languages. When it comes to modeling the behavior of business processes, the
landscape of paradigms and languages is more diverse and little consensus exists
on fundamental concepts [van13]; especially when looking at language adoption in
industry. The applied languages in modeling of business processes mainly depend
on the underlying purpose of the IOP model. Modeling processes with the aim
of conceptually defining them is mainly done using semi-formal languages, such
as BPMN, EPCs, and UML activities. Recently, declarative approaches such as
DECLARE [vdAPS09], gained momentum for specifying loosely structured processes.
Rather than defining the control flow explicitly, declarative process models specify
a list of activities and constraints regarding the execution order of those activities,
usually captured using linear temporal logic (LTL) expressions. If the purpose
of an IOP model concerns analysis and verification, rather than modeling them
conceptually only, formal languages are employed, such as petri nets, finite state
automata, and process calculi. Whereas both conceptual and formal process models
abstract from implementation detail, execution languages, such as BPEL, aim at
capturing enough detail to enable the deployment and the enactment of the modeled
processes. Note that formalizations of conceptual modeling languages and execution
languages exist [ODv+09], however, these formalizations are often incomplete and
ignore ambiguities in the source languages.
Formal techniques. The verification of business processes correctness has been
intensively studied for well-defined correctness properties [WVvdA+09]. Most of
this work focuses on control-flow analysis based on process models conforming
to a clear token-flow semantics, such as petri nets and workflow nets. These
formal concepts and verification methods have also been applied successfully to
execution languages, such as BPEL, and more conceptual languages, such as UML
activities. This, however, implies limiting the support to a subset of the languages’
concepts or abstracting from ambiguities stemming from the informally defined
semantics of conceptual languages. Design-time verification methods have also been
developed for declarative process models to check whether, for instance, a so-defined
process contains dead activities (i.e., there is no valid execution order containing
the respective activity) or conflicting constraints (i.e., there is no valid execution
order at all; [vdAPS09]). These methods have later been adopted also for run-time
verification [MWMvdA12].
Besides existing work on process verification, several researchers also addressed the
validation of business processes according to certain functional requirements. Func-
tional requirements are mostly specified using expected execution orders [ZPW12]

63



or conformance relationships to reference models, which are checked based on graph
comparisons [DDVD+11], on execution traces [GCC09], on causal dependencies of
activities [WPMW11], and on equivalence notions using model checking [LKRM+11].
Besides, there is a unit-testing framework for UML activities [MLMK13], which
considers alongside execution orders, also the object states. Similarly, a unit-testing
framework for BPEL processes [ML06] enables to specify and to check assertions
on messages. Furthermore, methods from the domain of program analysis have
been adopted to process models, such as symbolic execution [BPZ09] and test-case
generation [YLY+06].

3.3 Distribution

One of the most obvious and, at the same time, urging concerns of IOPs is dis-
tribution, which includes the coordination and choreography of organizations par-
ticipating in IOPs, as well as testing of the interoperability and conformance of
interacting processes.
Languages. For modeling the distribution of control, two approaches are applied
predominantly [DKB08]. Using interaction models, the choreography of processes
is defined in terms of a workflow containing activities that represent the message
exchange among participating partners (e.g., BPMN 2). As the interaction is
specified in terms of a process, choreographies may be specified using the same
formalisms as used for specifying the behavior of the processes themselves. In
contrast, with interconnected interfaces modeling, the control flow is defined per
participant, i.e., the individual interface behavior models are stitched together
using message links. Approaches to bridge between the two schemes have been
proposed [MH08].

Formal techniques. From the perspective of distribution of IOPs, most of the
work is concerned with validating the functional conformance and interoperability
with respect to the behavior of the interacting processes. The conformance require-
ments can be specified using reference models, contracts [vdALM+10] or, more
generally, conformance rules turning into assertion checks on the execution order
and, potentially, on the system state. Therefore, validation methods for checking the
conformance of intra-organizational processes have been adopted and extended also
for validating conformance and interoperability of IOPs, such as checking structural
and semantic conformance [LRMGD12], using the notion of causal dependencies of
activities [WPMW11], or applying model checking to verify certain conformance
rules or correctness properties [KRFRM13].

3.4 Resources

Key to IOPs are means of adaptive resources management. Resources include com-
putational, network, storage, and human resources required to carry out technical
and non-technical tasks set by a business process. From a resources perspective, a
business process translates into a set of precedence-related activities, which are to

64



be executed on a set of resources. In an inter-organizational setting, however, pro-
cesses are required to run under a variable, unbounded set of resources. Therefore,
achieving on-demand (elastic) re- and de-allocation of resources to tasks has been
identified as a key challenge [BDE+13, DGST11].
Languages. The notions of different types of resources (e.g., network, computation,
human) and different types of elementary resource management activities, such as
monitoring, scheduling, allocating, must be made explicit in IOP models. Attempts
to integrate business-process modeling with resources modeling at the language
level are still rare and in an early stage. Tai et al. [TLD12] put forth the conceptual
notion of infrastructure units which extends to human process resources (a.k.a.
social compute units as in [DB11]). More recently, Janiesch et al. [JWKM14]
have proposed a set-theoretic metamodel to model key deployment abstractions
of business processes (e.g., entities such as services, virtual machines, processes,
and tasks as well as their relations in terms of service or task dependencies) on
distributed resources infrastructures. Previous approaches on adaptive resource
management build on similar conceptual metamodels, e.g., to express their reactive
algorithms and their predictive statistical heuristics [HSD13]. Alternatives are formal
metamodeling techniques, such as an EMOF metamodel and auxiliary semantics
expressed in OCL [CEM+10]. For predictive scheduling, colored petri nets have
also been proposed to model dependency structures between tasks [AMT13].
Resources modeling borrows many abstractions from languages for modeling software-
system policies [DDLS01], including service-level agreements [HSD13], and for mod-
eling (business) rules and rules interchange [MVG11]. Languages for defining the
various deployment descriptors in business-process execution as well as for software
services, distributed software components, and distributed computation containers
(e.g., cloud nodes, virtual machines) are the second point of reference. The latter
include extensions to description languages such as OVF [CEM+10, CMTD13]. To
this end, the resources concern strongly relates to the IOP distribution concern
(see above). A second linkage between the two concerns are automated resource
management approaches building, for instance, on distributed service-based QoS
monitors [HSD13] and on agent-based resources (re-) negotiation [WB13].
Formal techniques. In the business-process context, work on adaptive resources
management and formal resources modeling addresses primarily optimality proper-
ties of resource-aware business processes (e.g., cost and/or time optimality [BYO+12])
from the perspective of different process stakeholders (e.g., customer, process partic-
ipant, IaaS provider) and for different scopes (e.g., for a single and across multiple
processes or process instances). Second, identifying service level agreement (SLA)
violations ahead of time is an open research issue. A first set of works relies mainly
on constructing, evaluating, and calibrating statistical prediction systems based
on monitoring data. Leitner et al. [LFHD13], for example, devise an approach
to create and to train statistical prediction models (e.g., decision trees, neural
networks, and auto-regression models) based on process monitoring data to de-
liver forecasts on service level objectives (SLOs), such as delivery time, service
availability, etc. in service-based systems. Another family of approaches employs

65



online-testing techniques to establish whether SLA/SLOs are expected to be violated
and to trigger adequate resources adaptations. Online testing involves auxiliary,
model-based test-case generation and selection techniques [DMK10]. Ivanović et
al. [ICH11], on the contrary, apply an analytical approach based on deriving and
solving constraint sets over atomic QoS probes (e.g., available for single services)
and orchestration structure to predict upper and lower bounds for the expected,
orchestrated QoS. A third challenge is correctness checking of adaptation (elasticity)
operations [DGST11]. Amziani et al. [AMT13] employ an equivalence method on
condensed state spaces of colored petri nets to proof that the adaptation operations
proposed (resource duplication and removal) do not have unwanted side effects
during process enactment (e.g., an increase in invocations). In addition, the authors
propose model checking on reachability graphs, derived from colored petri nets
representing resource-aware processes, to establish whether important properties
hold under certain adaptation operations, including QoS violation by exceeding
maximum capacities, deadlocks during call transfers, and adaptation loops.

4 Sketching Language Foundations for IOPs
Ensuing from the body of existing concepts, languages, and methods across all four
crucial IOP concerns, we aim to clarify the scope of the foundational framework,
elicit important generic and specific requirements (see Section 2), and discuss initial
ideas towards the foundational core for IOPs.
Generic Requirements. The language-oriented, foundational IOP framework
must balance between two opposing but closely related forces. To provide effective
modeling support, on the one hand, the framework must enable the development for
distinct IOP concerns using tailored languages at different levels of abstraction (e.g.,
design vs. analysis languages). On the other hand, to allow for global IOP testing,
partial concern-specific view models of an IOP must be integrated at some point and
must be kept consistent during model co-evolution. Due to the magnitude of existing
concepts, languages, and methods, another highly critical generic requirements is
to accomplish a minimal foundational core language that enables a convenient
integration of existing work and that provides an inherent extension mechanism to
meet future requirements in IOP research. Therefore, this mechanism should allow
for building syntactic and semantic extensions by instantiating and reassembling
concepts and semantics of the foundational core language.
IOP-specific requirements. In Section 3, we highlighted flagship contributions
on fundamental concepts and formal techniques from the otherwise extensive body
of existing work on IOPs. Key findings are that relevant structural concepts include
document-oriented or object-oriented data structures, constraints on data structures,
through to concepts from knowledge representation, such as description logics.
Based on these structural formalisms, conformance checking between messages
and process/service interfaces or contracts is performed. Additionally, inference
mechanisms for semantic alignment of heterogeneous data structures in messages
becomes available.

66



Behavioral concepts of IOPs are described at different abstraction levels. This
includes the notions of opaque or precisely specified activities and their execution
dependencies, either using an explicit control-flow specification or temporal logics.
Regarding their semantic expressiveness, for many analytical applications, both can
be seen as equivalent. For instance, in both approaches a labeled transition system
(cf. reachability graph of petri nets) can be computed to represent the state space.
However, in temporal logics there is no explicit notion of concurrency, although
nondeterminism can be modeled. Nevertheless, explicit concurrency modeling—such
as enabled by petri nets, actor models, and process calculi—can be paramount.
Besides, modeling synchronous and asynchronous message passing through channels
is crucial, especially for choreographies using interconnected interfaces modeling.
Other behavioral paradigms being used are event-driven process design, building
on event-condition-action (ECA) rules, and state charts.
As for formal techniques, petri nets and declarative workflow models are subjected
to control- and data-flow analyses extensively. By computing a concrete or symbolic
state space from IOP models, e.g., in terms of a labeled transition system, also
model checking techniques have been proven useful to verify business rules and
IOP conformance rules. Since process enactment can be simulated, based on paths
and path conditions, another line of research applies techniques from program
analysis to business processes, such as symbolic execution and test-case generation.
Besides these behavioral formalisms, we also identified stochastic and non-functional
concepts being introduced to process models, such as time and computing resources.
These formalisms allow to run predictive analyses and simulations regarding SLAs,
quality of service, and resources management.
Towards a Foundational Core for IOPs. In next steps, the specific and generic
requirements identified above will guide us towards condensing existing languages,
concepts, and semantics into a common foundational core for IOPs. The objectives
are that existing formal verification techniques and validation techniques should be
supported as is, while also allowing for combining these techniques in novel ways
and across IOP concerns. Please also note that the foundational core must not
necessarily correspond to popular surface languages (i.e., the languages currently
adopted IOP stakeholders). More importantly, the core should focus on key concepts
and semantics, capable of reflecting and realizing the semantics of several surface
languages across IOP concerns (e.g., ECA semantics in the distribution and resources
concern). To accommodate changing requirements, a minimal but extensible subset
of language abstractions is clearly preferable over a union of all available concepts
and languages, which is why we envision to adopt principles and techniques from
(model-driven) language engineering for providing built-in extension points regarding
abstract syntax, semantics, and concrete syntax to address different IOP concerns.
In a model-driven approach, the foundational core of IOPs could build on a small
object-oriented structure modeling language, such as EMOF or a subset of the
UML class metamodel. For behavioral concerns, given the large body of research
on verification and correctness of workflow nets, we plan to evaluate the adoption
of compatible control-flow and object-flow semantics. This way, deriving labeled

67



transition systems from process models as a basis for model checking becomes
possible. In addition, modeling facilities for synchronous and asynchronous message
flows will be considered. Interactions modeling between different process partners
(and partner-specific process views) across organizational boundaries will require
particular structuring concepts in behavioral models. At the same time, the manip-
ulation of objects expressed in the structural language core should be supported
(e.g., to allow for representing and for reasoning about state changes in precisely
specified processes). For simulation-based analyses, IOP models should have the
ability to represent runtime information; therefore, the foundational core should
be capable of capturing execution states, events, and traces, which in turn would
enable symbolic execution and test-case generation.
A potential candidate for adoption as a languages in the IOP core is the recently
standardized foundational UML2 (fUML), which consists of a subset of activities
and classes with formally specified execution semantics. fUML adopts the token-flow
semantics of petri nets and supports—besides object manipulation—also concurrency
and signals for asynchronous message passing.
For providing syntactic extensions of languages (e.g., to add stochastic distribu-
tions to edges), the foundational core should provide lightweight extension mech-
anisms [LWWC12], as known from UML profiles [FFVM04]. The extensibility of
core semantics in modeling languages is still an open research topic [BGM+11].
One idea is to introduce semantic profiles; that is, profiles for which an operational
or translational semantics, again based on the foundational core for IOPs, can be
specified. With such semantic profiles (e.g., one for event-driven behaviors), they
can be applied on top of the core semantics by injection.

5 Concluding Remarks
With this paper, we present initial ideas on a language-engineering approach to
construct a foundational modeling framework for designing, analysing, and testing
inter-organizational processes. A resulting framework is foundational in the sense
of enabling designing, developing, and testing IOPs in a unified manner, across the
boundaries of interdependent IOP concerns. In addition, following this language-
engineering procedure, we set the scope and identified first requirements for such
a framework based on a mapping of existing concepts and methods available for
BPM.
We see this paper as a first step towards building and establishing such a framework.
A key challenge is designing the framework at the sweet spot of expressiveness, of
facilitating IOP analyzability, and of equipping the framework with extensibility to
meet future requirements in IOP research. We kindly invite the readers and the
wider research communities on modeling inter-organizational processes to provide
feedback and to join forces on a community-driven effort to tackle this challenge.

2fUML; http://www.omg.org/spec/FUML/1.0

68

http://www.omg.org/spec/FUML/1.0


References
[AAE+96] Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, Mohan Kamath,

Roger Günthör, and C. Mohan. Advanced Transaction Models in Workflow
Contexts. In Proc. ICDE, pages 574–581. IEEE, 1996.

[AMT13] Mourad Amziani, Tarek Melliti, and Samir Tata. Formal Modeling and
Evaluation of Stateful Service-Based Business Process Elasticity in the
Cloud. In Proc. OTM, volume 8185 of LNCS, pages 21–38. Springer, 2013.

[BDE+13] Ruth Breu, Schahram Dustdar, Johann Eder, Christian Huemer, Gerti
Kappel, Julius Köpke, Philip Langer, Jürgen Mangler, Jan Mendling,
Gustaf Neumann, Stefanie Rinderle-Ma, Stefan Schulte, Stefan Sobernig,
and Barbara Weber. Towards Living Inter-Organizational Processes. In
Proc. CBI. IEEE, 2013.

[BGM+11] Barrett R Bryant, Jeff Gray, Marjan Mernik, Peter J Clarke, Robert B
France, and Gabor Karsai. Challenges and directions in formalizing the
semantics of modeling languages. Computer Science and Information
Systems, 8(2):225–253, 2011.

[BPZ09] Lina Bentakouk, Pascal Poizat, and Fatiha Zaïdi. A formal framework
for service orchestration testing based on symbolic transition systems. In
Proc. TESTCOM, volume 5826 of LNCS, pages 16–32. Springer, 2009.

[BYO+12] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan. Resources
allocation and scheduling approaches for business process applications in
Cloud contexts. In Proc. CloudCom, pages 496–503. IEEE, 2012.

[CDT06] Issam Chebbi, Schahram Dustdar, and Samir Tata. The view-based
approach to dynamic inter-organizational workflow cooperation. Data &
Knowledge Engineering, 56(2):139–173, 2006.

[CEM+10] C. Chapman, W. Emmerich, F.G. Marquez, S. Clayman, and A. Galis.
Elastic service definition in computational clouds. In Workshop Proc.
NOMS, pages 327–334. IEEE, 2010.

[Che76] Peter Pin-Shan Chen. The entity-relationship model—toward a unified
view of data. ACM Transactions on Database Systems, 1(1):9–36, 1976.

[CMTD13] Georgiana Copil, Daniel Moldovan, Hong Linh Truong, and Schahram
Dustdar. SYBL: An Extensible Language for Controlling Elasticity in
Cloud Applications. In Proc. CCGrid, pages 112–119. IEEE, 2013.

[Cod70] Edgar F Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[DB11] Schahram Dustdar and Kamal Bhattacharya. The Social Compute Unit.
IEEE Internet Computing, 15(3):64–69, 2011.

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.
The Ponder Policy Specification Language. In Workshop Proc. POLICY,
volume 1995 of LNCS, pages 18–38. Springer, 2001.

[DDVD+11] Remco Dijkman, Marlon Dumas, Boudewijn Van Dongen, Reina Käärik,
and Jan Mendling. Similarity of business process models: Metrics and
evaluation. Information Systems, 36(2):498–516, 2011.

[DGST11] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong.
Principles of Elastic Processes. IEEE Internet Computing, 15(5):66–71,
2011.

[DHPV09] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic
verification of data-centric business processes. In Proc. ICDT, pages 252–
267. ACM, 2009.

69



[DKB08] Gero Decker, Oliver Kopp, and Alistair Barros. An Introduction to Service
Choreographies. Information Technology, 50(2):122–127, 2008.

[DMK10] Dimitris Dranidis, Andreas Metzger, and Dimitrios Kourtesis. Enabling
Proactive Adaptation through Just-in-Time Testing of Conversational
Services. In Proc. ServiceWave, volume 6481 of LNCS, pages 63–75.
Springer, 2010.

[FFVM04] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. An introduction
to UML profiles. UPGRADE, V(2):6–13, 2004.

[Fra13] Ulrich Frank. Domain-Specific Modeling Languages: Requirements Analy-
sis and Design Guidelines. In Domain Engineering, pages 133–157. Springer,
2013.

[Fuc92] N.E. Fuchs. Specifications are (preferably) executable. Software Engineer-
ing Journal, 7(5):323–334, 1992.

[GCC09] Kerstin Gerke, Jorge Cardoso, and Alexander Claus. Measuring the
compliance of processes with reference models. In Proc. OTM, volume
5870 of LNCS, pages 76–93. Springer, 2009.

[HSD13] P. Hoenisch, S. Schulte, and S. Dustdar. Workflow Scheduling and Resource
Allocation for Cloud-Based Execution of Elastic Processes. In Proc. SOCA,
pages 1–8. IEEE, 2013.

[HZ12] Carsten Hentrich and Uwe Zdun. Process-Driven SOA: Patterns for
Aligning Business and IT. Infosys Press, 2012.

[ICH11] Dragan Ivanović, Manuel Carro, and Manuel Hermenegildo. Constraint-
Based Runtime Prediction of SLA Violations in Service Orchestrations. In
ICSOC, volume 7084 of LNCS, pages 62–76. Springer, 2011.

[JWKM14] Christian Janiesch, Ingo Weber, JÃűrn Kuhlenkamp, and Michael Menzel.
Optimizing the Performance of Automated Business Processes Executed
on Virtualized Infrastructure. In HICSS, pages 3818–3826, 2014.

[KD10] Yildiray Kabak and Asuman Dogac. A Survey and Analysis of Electronic
Business Document Standards. ACM Computing Surveys, 42(3):11:1–11:31,
2010.

[KE12] Julius Köpke and Johann Eder. Logical invalidations of semantic annota-
tions. In Proc. CAiSE, volume 7328 of LNCS, pages 144–159. Springer,
2012.

[KRFRM13] David Knuplesch, Manfred Reichert, Walid Fdhila, and Stefanie Rinderle-
Ma. On Enabling Compliance of Cross-organizational Business Processes.
In Proc. BPM, volume 8094 of LNCS. Springer, 2013.

[LFHD13] Philipp Leitner, Johannes Ferner, Waldemar Hummer, and Schahram
Dustdar. Data-driven and automated prediction of service level agreement
violations in service compositions. Distributed and Parallel Databases,
31(3):447–470, 2013.

[LKRM+11] Linh Thao Ly, David Knuplesch, Stefanie Rinderle-Ma, Kevin Göser,
Holger Pfeifer, Manfred Reichert, and Peter Dadam. SeaFlows Toolset–
compliance verification made easy for process-aware information systems.
In Proc. CAiSE Forum IST, volume 72 of LNBIP, pages 76–91. Springer,
2011.

[LRMGD12] Linh Thao Ly, Stefanie Rinderle-Ma, Kevin Göser, and Peter Dadam. On
enabling integrated process compliance with semantic constraints in process
management systems. Information Systems Frontiers, 14(2):195–219, 2012.

70



[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. EMF
Profiles: A Lightweight Extension Approach for EMF Models. Journal of
Object Technology, 11(1), 2012.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving
Executability into Object-Oriented Meta-languages. In Proc. MoDELS,
volume 3713 of LNCS, pages 264–278. Springer, 2005.

[MH08] Jan Mendling and Michael Hafner. From WS-CDL choreography to BPEL
process orchestration. J. Enterprise Inf. Management, 21(5):525–542, 2008.

[ML06] Philip Mayer and Daniel Lübke. Towards a BPEL unit testing framework.
In Workshop Proc. TAVWEB, pages 33–42. ACM, 2006.

[MLMK13] Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel. A
Framework for Testing UML Activities Based on fUML. In Workshop Proc.
MoDeVVa, volume 1069, pages 1–10. CEUR-WS.org, 2013.

[MLW13] Tanja Mayerhofer, Philip Langer, and Manuel Wimmer. xMOF: A Seman-
tics Specification Language for Metamodeling. In Yan Liu, Steffen Zschaler,
Benoit Baudry, Sudipto Ghosh, Davide Di Ruscio, Ethan K. Jackson, and
Manuel Wimmer, editors, Demos/Posters/StudentResearch@MoDELS, vol-
ume 1115 of CEUR Workshop Proceedings, pages 46–50. CEUR-WS.org,
2013.

[MVG11] D. Moran, L.M. Vaquero, and F. Galan. Elastically Ruling the Cloud:
Specifying Application’s Behavior in Federated Clouds. In Proc. CLOUD,
pages 89–96. IEEE, 2011.

[MWMvdA12] Fabrizio Maria Maggi, Michael Westergaard, Marco Montali, and Wil
van der Aalst. Runtime verification of LTL-based declarative process
models. In Proc. RV, volume 7186 of LNCS, pages 131–146. Springer,
2012.

[ODv+09] Chun Ouyang, Marlon Dumas, Wil van der Aalst, Arthur HM Ter Hofstede,
and Jan Mendling. From business process models to process-oriented soft-
ware systems. ACM transactions on software engineering and methodology,
19(1):2, 2009.

[SD05] Benjamin A. Schmit and Schahram Dustdar. Systematic Design of Web Ser-
vice Transactions. In Workshop Proc. TES, LNCS, pages 23–33. Springer,
2005.

[SZ09] M. Strembeck and U. Zdun. An Approach for the Systematic Develop-
ment of Domain-Specific Languages. Software: Practice and Experience,
39(15):1253–1292, 2009.

[THZD09] Huy Tran, Ta’id Holmes, Uwe Zdun, and Schahram Dustdar. Handbook of
Research on Business Process Modeling, chapter Modeling Process-Driven
SOAs, pages 27–48. IGI Global Hershey, 2009.

[TLD12] Stefan Tai, Philipp Leitner, and Schahram Dustdar. Design by Units:
Abstractions for Human and Compute Resources for Elastic Systems.
IEEE Internet Computing, 16(4):84–88, 2012.

[TZD11] Huy Tran, Uwe Zdun, and Schahram Dustdar. VbTrace: using view-based
and model-driven development to support traceability in process-driven
SOAs. Software and System Modeling, 10(1):5–29, 2011.

[Val10] Antonio Vallecillo. On the Combination of Domain Specific Modeling
Languages. In Proc. ECMFA, volume 6138 of LNCS, pages 305–320.
Springer, 2010.

71



[van13] Wil van der Aalst. Business Process Management: A Comprehensive
Survey. ISRN Software Engineering, 2013, 2013.

[vdALM+10] Wil van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl,
and Karsten Wolf. Multiparty contracts: Agreeing and implementing
interorganizational processes. The Computer Journal, 53(1):90–106, 2010.

[vdAPS09] Wil van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative
workflows: Balancing between flexibility and support. Computer Science-
Research and Development, 23(2):99–113, 2009.

[vdATHKB03] Wil van der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and
Alistair P Barros. Workflow patterns. Distributed and parallel databases,
14(1):5–51, 2003.

[vdAW01] Wil van der Aalst and Mathias Weske. The P2P Approach to Interorgani-
zational Workflows. In Proc. CAiSE, volume 2068 of LNCS, pages 140–156.
Springer, 2001.

[VIK+10] Marko Vujasinovic, Nenad Ivezic, Boonserm Kulvatunyou, Edward Bark-
meyer, Michele Missikoff, Francesco Taglino, Zoran Marjanovic, and Igor
Miletic. Semantic mediation for standard-based B2B interoperability. IEEE
Internet Computing, 14(1):52–63, 2010.

[WB13] Yi Wei and M.B. Blake. Decentralized Resource Coordination across
Service Workflows in a Cloud Environment. In Workshop Proc. WETICE,
pages 15–20. IEEE, 2013.

[WHM10] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond soundness: on the
verification of semantic business process models. Distributed and Parallel
Databases, 27(3):271–343, 2010.

[WPMW11] Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and Mathias Weske.
Causal behavioural profiles–efficient computation, applications, and evalu-
ation. Fundamenta Informaticae, 113(3):399–435, 2011.

[WVvdA+09] Moe Thandar Wynn, HMW Verbeek, Wil van der Aalst, Arthur HM
ter Hofstede, and David Edmond. Business process verification–finally a
reality! Business Process Management Journal, 15(1):74–92, 2009.

[YLY+06] Jun Yan, Zhongjie Li, Yuan Yuan, Wei Sun, and Jian Zhang. BPEL4WS
unit testing: Test case generation using a concurrent path analysis approach.
In Proc. ISSRE, pages 75–84. IEEE, 2006.

[ZKD+10] Steffen Zschaler, DimitriosS. Kolovos, Nikolaos Drivalos, RichardF. Paige,
and Awais Rashid. Domain-Specific Metamodelling Languages for Software
Language Engineering. In Proc. SLE, volume 5969 of LNCS, pages 334–353.
Springer, 2010.

[ZPW12] Stefan Zugal, Jakob Pinggera, and Barbara Weber. Creating declarative
process models using test driven modeling suite. In CAiSE Forum IS
Olympics, volume 107 of LNBIP, pages 16–32. Springer, 2012.

72


	Introduction
	Language Engineering for Integrated IOP Modeling
	State of the Art in Developing and Testing IOPs
	Sketching Language Foundations for IOPs
	Concluding Remarks

