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Abstract. Manufacturers of 3D tracking systems use a wide variety
of statistical measures, assessment protocols and measurement volumes
when stating their systems’ accuracies. These factors typically differ ac-
cording to the underlying technologies and the manufacturers’ personal
preferences and experience, but because of competitive pressures, man-
ufacturers tend to use protocols and statistical measures that empha-
size their systems’ strengths and provide the best numerical values for
comparisons. In addition, since 3D tracking systems generally have er-
rors whose spatial distributions are nonuniform and which seldom follow
known analytic distributions, the common practice of using a small num-
ber of statistical measures to represent “typical” accuracies for these sys-
tems is usually inadequate, and occasionally misleading. This can lead
to a form of specmanship that can confuse potential users attempting
to select the tracking systems best suited for their specific needs. We
discuss some of the key accuracy factors often used to compare tracking
systems, and we demonstrate some of the subtleties involved in accuracy
specifications that potential customers should be aware of. The example
systems cited are all manufactured by NDI.

1 Introduction

Spatial tracking systems provide the core technology for many sophisticated
image-guided systems that are used by physicians for various procedures such
as tool navigation, patient positioning, and treatment planning. The critical
performance criterion of these systems is their spatial accuracy, but accuracy as-
sessments of such systems are inherently statistical and typically complicated by
their non-uniform error distributions over their operational volumes. Manufac-
turers of these systems typically provide specifications to potential customers,
which they claim fairly represent the performance of their systems. To prop-
erly assess the accuracy of a given measurement system, though, at least two
items are required: (1) a proper set of characteristic statistics that define its
trueness and precision and (2) the specific protocol on which the assessment is
based. Unfortunately, manufacturers often present the statistical results only.
Occasionally, manufacturers will indicate which standard they have followed,
but the results are not useful unless the specific protocol parameters are also
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provided. In addition, since marketing literature generally strives to simplify
performance related information and to reduce the assessment data to a few
“representative” measures, users invoking commonly held statistical assumptions
can easily over-interpret or even misunderstand the stated accuracy measures.
For example, two common statistical measures often used are the root mean
square (RMS) error and the mean (average) error. In general, the RMS value
is the preferred statistic, since it incorporates both the mean and the standard
deviation (RMS? & p? 4 %) [1], but some manufacturers prefer to quote mean
values, as they are substantially lower for 3D distance errors. Since the measure
actually specified by different manufacturers is typically identified in the fine
print of a footnote or endnote, users casually comparing specifications for differ-
ent systems can easily compare numbers directly without realizing that they are
fundamentally different statistical measures. We outline in this paper how the
condensed “marketing numbers” are typically derived from a particular valida-
tion protocol, and how much of the important information required for users to
properly assess a system’s performance is lacking.

2  Volumetric Calibration Protocols

Tracking systems are generally characterized by comparing the 3D positions gen-
erated from their underlying sensor measurements to the corresponding positions
obtained from some appropriate reference. Since the characterization data typi-
cally cover much of the operational volume, they can also be used to calibrate the
systems and assess their accuracy. The resulting spatial error distributions from
such a volumetric protocol provide a detailed assessment over the characteriza-
tion volume, from which statistical quantities such as the mean error, the RMS
accuracy, the percentile confidence intervals (CI), the repeatabilities, and vari-
ous other measures can be derived. For ideal cases where the errors are spatially
distributed in a uniform manner and are subject to a known analytic distribu-
tion such as a normal distribution, one or two key statistical measures can be
used to represent the entire distribution, and so provide typical accuracies. For
most 3D tracking systems, though, errors are not uniformly distributed spatially
and seldom follow known analytic distributions, which implies that such a small
number of statistical measures cannot adequately represent typical system ac-
curacies. Fig. 1 illustrates this by examining the measured errors obtained from
a volumetric calibration of a damaged Polaris optical position sensor. (We have
chosen this example because the systematic errors dominate the random errors,
making the error patterns especially apparent, but the discussion is fully general
and applies to systems within specification as well.) The data were obtained by
tracking a single marker throughout the operational volume using a coordinate
measuring machine (CMM) as a reference. The overall volume RMS 3D distance
error is a statistical measure that is commonly used to specify such a system’s
typical accuracy, but as can be seen in the plots, the range of errors is too large
to represent by a single value in any meaningful way. Including the median and
95% CI values would provide a better indication of the distribution, but even
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Fig. 1. Inherent data reduction in common statistical measures for a damaged optical
position sensor that has a large systematic scale error. For the sequence of plots from the
full data set a) to the histogram and final statistical summary d), increasing simplicity
and clarity come at the expense of continued loss of information. Plot a) shows the
spatial dependence of the 3D error vectors, with the error magnitudes represented by
the arrow lengths (the position sensor was located to the right of the grid). In plot b),
the 3D errors have been reduced to 1D distance errors, with the error magnitudes now
represented by the circle areas. In plot c), the spatial information has been reduced
to a measurement index, but the sequential information has been maintained. In plot
d), the sequential information is lost, but the nature of the underlying distribution is
made evident. The distribution is then reduced to the three statistical measures listed
in the box, which is typically all the user gets.
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the measured distribution has reduced most of the underlying information, some
of which directly affects the resultant statistics. For example, since volumetric
calibrations generally require the measured grid positions to be aligned with the
reference grid, there is usually a small grid alignment error that is incorporated
into the overall calibration error, which is often overlooked. The alignment error
in this case is evident in the vector plot, since the error distribution for this scale
error when properly aligned actually has the vectors pointing predominately to
the right, and their magnitude increasing roughly linearly from the front of the
volume (on the right) to the back.

While users are mostly concerned with the performance of their own specific
system, manufacturers generally provide specifications for their systems collec-
tively, and this adds another layer of ambiguity. We illustrate this in Fig. 2, where
we have presented the overall volume RMS and 95% CI results for a number of
Aurora electromagnetic tracking systems [2,3]. We have described the volumet-
ric calibration protocol for the Aurora in detail in a previous article [4], and so
here we focus on the variation between systems. As can be seen in Fig. 2, both
the overall volume RMS and 95% CI values have substantial variation, which is
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Fig. 2. Variation in Aurora accuracy for recently manufactured beta systems. The up-
per plots show the series variation and corresponding histogram for the overall volume
RMS distance errors (open circles and bars) and the overall volume distance error 95%
confidence intervals (filled circles and bars), while the lower plots show the analogous
results for the orientation errors.
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typical of most tracking systems. How should the system accuracy be specified
in such cases? Some manufacturers would just quote the mean values as their
representative accuracies, which would be acceptable if the relative variation is
small, but is disingenuous if the variation is substantial. Other manufacturers
would include the standard deviations as uncertainty estimates (e.g., the overall
volume RMS accuracy is 1.21 4+ 0.05 mm), which would be acceptable if the dis-
tribution is approximately normal, but is seldom the case since the distributions
generally tend to be skewed to higher errors. The most conservative approach
would be to select a threshold value on the high end of the distribution and pass
only those systems having lower errors. Another complication arises when sev-
eral statistical measures are presented, since the distributions for each measure
are treated independently, masking the correlations between them.

2.1 Tsunami

Even when manufacturers determine their systems’ accuracy performance prop-
erly within stated protocols, the results can still differ much from the system’s
“real world” or application performance. Manufacturers typically select assess-
ment protocols for their specific needs, and these assessments are usually under-
taken under laboratory conditions to ensure proper repeatability. Such assess-
ments are not likely to be as relevant for most users’ intended uses of the system.
It is therefore important for manufacturers to also develop accuracy assessment
protocols that are more tailored towards the particular applications most users
envisage.
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Fig. 3. Results for an in-field calibration of a damaged Polaris optical tracking system.
The errors represent the differences between the measured length of a bar and the bar’s
known length. The data reduction depicted is analogous to the one shown in Fig. 1.
The fundamental differences in the error distributions are clear in the plots, but not
obvious in the final statistics.
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NDI has developed an Accuracy Assessment Kit, which is a tool designed to
test the accuracy of Polaris position sensors in the field. This protocol measures
the distance between two rigidly attached reference tools and compares their
measured length to a pre-determined reference length that was characterized at
the factory. The tool software guides the movement of the bar throughout pre-
determined regions of the volume to ensure repeatable and reproducible data
collections. At the end of each collection, the bar errors are analyzed. Fig. 3
shows a typical collection for a damaged position sensor, and analogous to Fig. 1,
crucial information is lost when the data are reduced to the final few statistical
values. In particular, the non-uniform spatial dependence is clear in plot a), with
the largest errors at the back of the volume, and the fundamentally different
types of error in the two protocols are evident in their histograms, where the
bar-length errors can take on negative or positive values, while the volumetric
distance errors are restricted to positive values.
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