
An Agent-based e-Science Experiment Builder

Christopher D. Walton? and Adam D. Barker

Centre for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, Scotland, UK.

Email: cdw@inf.ed.ac.uk Tel: +44-(0)131-650-2718

Abstract. In this paper we demonstrate the use of agent technology to
assist in the construction and enactment of e-Science experiments. Our
approach is founded on the adaptation of an agent protocol language
to perform composition of web services. We present a definition of the
language, and show how it can be used to express e-Science experiments.
We also describe a tool, called MagentA, which allows experiments to be
rapidly constructed, verified, and enacted.

1 Introduction

e-Science may be defined as the use of distributed electronic resources, by sci-
entists, to solve scientific problems. There is a continuing programme of work
on the construction of an infrastructure, called the Grid [8], for supporting the
kind of wide-scale distributed computing required for e-Science. Similarly, there
is a concurrent programme of work on the construction of software technology
for the specification and execution of e-Science experiments. The specification of
e-Science experiments has evolved from early ad-hoc methods to the use of work-

flows [7]. At the same time, the execution of e-Science experiments has moved
from parallel programming techniques to the use of distributed web technology,
in particular web services [2]. Nonetheless, there remain significant challenges to
be addressed in the construction of e-Science experiments, particularly in rela-
tion to the composition and inter-operability of services, and a solution to many
of these is still far from clear.

The composition of services is fundamental to the way in which e-Science ex-
periments are constructed from distributed resources, i.e. services. It is intended
that a scientist will be able to simply and rapidly compose these services into
systems which define experiments. Composition works at two different concep-
tual levels; the workflow level, and the enactment level. Workflows, which are
experiment specifications, are constructed by the scientist through an appropri-
ate interface. At the workflow level, the composition is performed in terms of
black-box services which are assembled according to the experiment plan. For
example, the workflow illustrated in Figure 1 of this paper describes the Bright-
est Cluster Galaxy experiment, taken from the AstroGrid project [1]. It should

? This work is sponsored by the EPSRC Advanced Knowledge Technologies (AKT)
Interdisciplinary Research Collaboration (Grant GR/N15764/01).

be noted that there is currently little consensus on the kind of workflow model
which is most appropriate for the specification of e-Science experiments, and
there are many proposals including data-flows, business-process models (BPM),
and UML activity diagrams. In this paper we are primarily concerned with the
enactment level, and we simply adopt the UML activity diagram formalism for
workflow specification.

In order to enact an experiment, it is necessary to perform a workflow map-

ping from the abstract experiment workflow to an executable system, composed
of executable services. We note that there is not necessarily a one-to-one map
between services at the workflow level, and services at the enactment level. The
enactment of a single workflow service may result in a complex execution be-
haviour. Furthermore, there is a strong desire to conceal the mapping task from
the e-Scientist. However, we note that workflow mapping is a complex task and
remains an open problem. For this paper, we assume that mapping will be per-
formed by manual refinement of the experiment specification. At the enactment
level, we are interacting with physical services (e.g. telescopes), computation re-
sources (e.g. databases), and humans. For convenience, we make the standard
assumption that these kinds of services can all be represented and controlled
though a web service interface. For example, complex equipment can be con-
trolled though the invocation of web services, and interaction with humans can
be performed abstractly via web services by means of web pages and forms. Thus,
we reduce the complexity of the problem to one of web service composition.

The composition of web services into experiments that can be enacted, re-
quires a high degree of interoperability between services. It is necessary that ser-
vices built by different organisations, and using different software systems, are
able to communicate with one another in a common formalism with an agreed
semantics. To address the inter-operability issue, technology from the semantic
web is increasingly being used in the specification and execution of e-Science ex-
periments. For example, the use of semantic meta-data in the Grid is described
in [11]. This has lead to the promotion of the term Semantic Grid which envi-
sions a convergence between the Grid and the Semantic Web [4]. For the purpose
of this paper, we will assume that the services we use in our experiments are
known in advance. There are still many unsolved issues relating to automatic
discovery and invocation of web services that we do not address. These issues
are currently the focus of initiatives such as OWL-S [3], and WSMF [6].

It should be noted that the semantic web itself is closely related to the field
of agency, and many ideas from the semantic web are derived from multi-agent
systems. Indeed, the semantic web itself is predicated on the notion of agents

as the key consumers of semantic web information. We continue this theme in
our paper by showing how agents can address the issues of composition and
interoperability among web services in experiments. If we consider the scenario
in Figure 1 we can observe that there is a significant degree of coupling between
the services in the workflow. Consequently, in any reasonable mapping from this
workflow to web services, there will also be a degree of interaction between the
different web services in the resulting system. We must therefore consider how

we can represent this interaction in our system. At this point we encounter the
limitations of current semantic web and web service technology.

Interaction between web services is currently accomplished by a remote pro-
cedure call (RPC) mechanism, by the exchange of SOAP messages between web
service clients and containers. The SOAP specification defines a one-way state-
less communication mechanism, but this is too restrictive for our purposes. In
order to define experiments, we need to define complex communication patterns
between services, for example, broadcast or multi-cast communication. An ad-
ditional problem concerns how we compose the web services which comprise an
experiment. It is possible to construct such a system through a static compo-
sition of services, where the composition is encoded directly into the services.
However, this approach is error-prone and inflexible as it does not allow us to
easily change the kind of experiment we define. Ideally, we would like a separate
representation which can express complex patterns of interaction between web
services, such as we describe. We are aware of the activities of the W3C Web
Services Choreography group on defining a suitable representation for perform-
ing choreography (i.e. composition) between web services, but we are unaware
of any implementation of their proposals.

The focus of this paper is on the definition of a formalism for the realisation
of interaction between web services, taking our previous work on multi-agent
protocol languages as our inspiration [10]. Our script-based representation for
representing multi-agent protocols can be readily adapted to express coordina-
tion between web services [9], and therefore provide a suitable model of com-
position. We designed our protocol language to be independent of the rational
processes of the agents, and therefore we require only minimal changes to the
language to make it applicable to web services. Our language appears to be a
good complement to SOAP, as both are independent of the message content or
implementation. We also describe a platform which we have built, based upon
our protocol language, for defining and enacting e-Science experiments.

Our presentation in this paper is structured as follows. In section 2 we de-
scribe the Brightest Cluster Galaxy scenario which we use as a motivating ex-
ample for our technique. Subsequently, in section 3 we define a composition
framework for specifying and enacting e-Science experiments. Our framework
comprises both the MAP language (Section 3.1), and the MagentA tool (Sec-
tion 3.2) which we define in detail. Finally, we conclude in Section 4 with a
discussion of our future work.

2 AstroGrid Example Scenario

Our example scenario is based around the location and comprehension of the
properties of “Brightest Cluster Galaxies”. If one observes clusters of galaxies
with a range of sizes/luminosities, it is often apparent that there is one galaxy
which is much brighter than all the others. This galaxy, called the Brightest
Cluster Galaxy (BCG) is frequently positioned in the centre of the cluster. Sta-
tistically, it can be shown that the BCG is something more than just the brightest

galaxy in the cluster: galaxies in clusters follow a fairly general distribution of
luminosities, and BCGs occur far too often and are far too bright to be simply
the upper end of that distribution. They are real outliers, pointing to some dif-
ferent process of formation and/or evolution. The scientific background to this
scenario is that there is some evidence for correlations between the properties of
the BCG and of the cluster of galaxies in which it resides. This indicates that the
cluster is affecting the way that the BCG is formed or has evolved, but scientists
don’t yet know how this works. Our example scenario, expressed in Figure 1,
envisages an astronomer trying to discover how BCG are formed.

Query VO
Registry Service

Statistics
Algorithm

Data Extraction

Deposit Data
BCG Analysis

Routine

Visualisation

[All Data]

[Suitable Working Data Set][More Data Required]

[Data Still to be Extracted]

Fig. 1. Brightest Cluster Galaxy Workflow

We suppose that our astronomer has a hypothesis about connections between
the properties of BCGs and those of their host clusters. In the first step of our
experimental workflow, the astronomer performs a query on the Virtual Obser-
vatory (VO) to construct a sample of cluster/BCG pairs which have been well
observed in a number of pass bands. To achieve this, the astronomer queries
the VO Registry web service and obtains a list of VO data sources which are
classified as being catalogues of clusters of galaxies. This yields a list of cluster
catalogues; some based on optical/near-IR observations, some on X-ray obser-
vations, and some on sub-millimetre observations. Examples of real astronomy
data sources include: the XMM-Newton Science Archive (X-Ray), the Sloan Dig-
ital Sky Survey (SDSS) and the UK Infrared Deep Sky Survey (UKIDISS). In
the second step of the workflow, the VO data sources are individually contacted
in order to extract the positions of all of the clusters included in each catalogue.
The web service for each of these data sources is accessed in order to extract

all the attributes of all sources contained in a search radius of a certain size
around the position of each of the clusters. In the third step of the workflow, the
collected data is deposited in the AstroGrid MySpace storage facility. The VO
Registry Service may be repeatedly referenced (as indicated by the loop in the
workflow), for data sources which are classified as catalogues of optical, X-ray,
near-infrared or radio sources (and therefore may include relevant observations
of BCGs).

In the next stage of the workflow, an analysis routine is performed on the
data which has been deposited in MySpace. The analysis routine has to work
out which galaxies in the galaxy catalogue data are the BCGs in each of the
host clusters and generate a combined set of all the data known about each
Cluster/BCG pair. Not every BCG/cluster pair has a value for each attribute,
but most have values for the great majority of them, so this is deemed to be
a good working data set. So for each cluster in the catalogue there is likely
to be a number of properties recorded; obvious things like position, brightness,
size, etc. There will also be another set of attributes recording properties of the
sources in some optical or near infrared catalogue. At this point the scientist may
determine that more data is required, and so the workflow includes a link back
to the beginning. Alternatively, the astronomer may run a statistics algorithm,
which seeks the attributes with the highest information content on the deposited
lump of data. The outputs are then fed into a graphics package which generates
a grid of scatter plots for pairs of attributes, arranged in order by the strength
of correlation between them. If there are N attributes for M BCG/Cluster pairs
then the Grid of Scatter plots represents N ∗(N−1)/2 plots, each with M points
plotted. In other words each attribute is plotted against each other attribute for
the set of BCG/Cluster pairs. In the final stage of the workflow, a visualisation
allows further investigation into the correlations.

We will now consider the mapping between the workflow that we have defined
and the actual services which will be used during enactment. Figure 2 shows the
different services that are used, and the interactions between them. It is clear that
there are significant similarities between the services and the workflow, though
we note that this will not always be the case. A surprising feature of the mapping,
is that the scientist is explicitly represented by a service during enactment. This
is necessary as we must define precisely how the scientist interacts with the
services, and it is necessary for this service to supply an appropriate interaction
mechanism with the human scientist, e.g. web forms.

There are four main services that are used during enactment, which loosely
correspond to the tasks defined in the workflow. In the workflow, the BCG
analysis and statistics algorithm were defined separately, as we wished to indicate
a decision between them. However, both activities are enacted by the same BCG
Analysis service. Similarly, the Data Deposit task is performed as part of the
Extraction service. The key difference between the workflow and the enactment
is that we must also consider the interactions with the scientist, the external
data sources, and the MySpace data storage facility.

Extraction

Registry
VO

Infrared

X−Ray

Radio

Optical BCG

Analysis

MySpace

Scientist

Visualisation

Data Sources

Data Storage

Fig. 2. BCG Service Composition

The pattern of interaction between services in our example experiment is
indicated by the connections between services in Figure 2. We note that this is
just one possible way of composing the services, and alternative compositions
are also possible. Furthermore, we do not define the actual interaction sequence,
which will be complex and non-deterministic. We note that a static composition
of services, where the pattern of interaction is directly encoded into each of the
services, is certainly possible. However, this approach is inflexible, and restricts
the services to a single kind of interaction, or a single experiment. In this pa-
per, we adopt a dynamic approach, which affords considerable flexibility in the
composition of services.

3 A Composition Framework

In order to construct a framework for dynamically composing web services into
experiments, we consider how composition can be applied to an arbitrary collec-
tion of web services. We present a language for expressing composition later in
this section. However, we first consider such a language will be disseminated and
enacted. A bit of though leads us to the approach shown in Figure 3. In order
to coordinate a group of web services, we can equip each web service with some
extra functionality, which we term the agent stub. This stub is responsible for
enacting the coordination protocol expressed in our language. We can dissemi-
nate the protocol to the individual web services at the start of an experiment,
and then the enactment of the protocol by the agent stub on each service will
supply the required coordination. However, while this approach is plausible, we
adopt an alternative which we believe is better suited to heterogeneous systems.
In particular, there are two significant issues which relate to the use of stubs.

Web Service

Agent Stub

Web Service

Agent Stub

Web Service

Agent Stub

Web Service

Agent Stub

Agent Stub

Web Service

Fig. 3. Coordinating Web Services with Agent Protocols

The first issue is a direct result of the modification of the web services. We
are in essence converting web services into a kind of agent and thereby breaking
compatibility with existing web services and web service architectures. Any web
service participating in an experiment must be modified. However, we do not
necessarily have control over all of the services which we utilise in an experiment.
Therefore, it appears infeasible for any approach to require the modification of
all services before coordination between services can be performed. Ideally, we
would like an approach to coordination which does not require modification of
the web services involved.

The second issue concerns the implementation of the agent stubs which pro-
vide the coordination. In the general case, these stubs would provide a common
set of functionality to the web services and be essentially identical in functional-
ity. However, web services may be implemented in a variety of different languages
and this would require the agent stub to be reimplemented in the language of the
web service. Ensuring that the agent stubs implemented in different languages
provide the same functionality and are completely compatible is a non-trivial
task. Again, it is clear that the modification of the web services will create sig-
nificant issues in this approach.

Our chosen approach, illustrated in Figure 4, does not break compatibility
with the existing web service architecture as the only kinds of components we
define are web services. The agents (labelled A) in the diagram are analogous to
the agent stubs in the previous method. However, the agents are composed into
a close-coupled system, which itself resides within a web service. Each agent A
acts on behalf of a single external web service. In effect, we define a coordination
mechanism which is entirely external to the web services which are coordinated,
and the web services do not need any knowledge that they are participating
in a coordination. This has significant advantages in that the web services do
not need to be modified, and the protocol does not need to be disseminated
between services. An additional advantage is that this technique reduces the
communication cost of the coordination. A significant amount of communication

Web Service

Web Service

Web Service

Web Service

MAS

A

AA

A AWeb Service
Web Service

Fig. 4. Alternative Coordination Method

now occurs within a single web service, rather than between distributed web
services. External communication is only performed when an agent needs to
invoke a method on a particular web service.

Having now defined an appropriate method of coordination, we will turn
our attention to the definition of the language for performing coordination. We
return to the implementation details at the end of the section. As stated in the
introduction, we adopt a coordination technique which we previously defined for
coordinating web services in multi-agent systems. This technique is expressed
by our Multi-Agent Protocol (MAP) language, which is formally defined in [10].
The adaptation of the language to the coordination of web services requires very
few changes. In our chosen technique, the language is in essence still defining a
coordination among agents (labelled A in Figure 4). The agents are now acting as
proxies for external web services, rather than having behaviours of their own. The
only real change to the language is a mechanism for expressing the invocation
of web services. Given the straightforward nature of the changes, we retain the
MAP name for our language.

3.1 MAP Language Definition

MAP is a lightweight dialogue protocol language derived from process calculus.
We note that MAP is only intended to express protocols, and is not intended
to be a general-purpose language. Therefore, the relative sparsity of features in
the language, e.g. no user-defined data-types, is appropriate. Furthermore, MAP
is designed to be a lightweight language and only a minimal set of operations
have been included. It is intended that MAP protocols will be automatically
generated, e.g. from a planning system or a workflow enactment engine, rather
than being constructed by hand. Thus, although MAP protocols appear complex,
an e-Scientist would not be required to understand them in detail. MAP can be
viewed as a replacement for the state-chart representation of protocols found
in Electronic Institutions (EI) [5]. MAP provides an executable specification of
agent protocols, while retaining the concepts of scenes, and roles found in EI.

The division of agent dialogues into scenes is a key concept in MAP. A scene
can be thought of as a bounded space in which a group agents interact on a single
task. The use of scenes divides a large protocol into manageable parts. Scenes
also add a measure of security to a protocol, in that agents which are not relevant
to the protocol are excluded from the scene. This can prevent interference with
the protocol and limits the number of exceptions and special cases that must be
considered in the design of the protocol. We assume that a scene places a barrier
on the agents, such that a scene cannot begin until all the agents have been
instantiated, and the agents cannot leave until protocol enactment is complete.

The concept of an agent role is also central to our definition. In MAP, each
agent is identified by both a name and a role. Agents are uniquely named, but
must be assigned a role which is specified in the protocol. The role of an agent
is fixed until the end of a scene, and determines which parts of the protocol the
agent will follow. Agents can share the same role, which defines the agents as
having the same capabilities, i.e. the same web service interface. Roles are useful
for grouping similar agents together, as we do not have to specify a completely
separate protocol for each individual agent. For example, we may wish to interact
with a large number of different database services, all with the same interface.
We can simply define a single role (and associated protocol) which corresponds
to a generic database access service, rather than defining a separate protocol for
each service. Roles also allow us to specify multi-cast communication in MAP.
For example, we can broadcast messages to all agents of a specific role.

P ∈ Protocol ::= n(r{M})+ (Scene)

M ∈ Method ::= method(φ(k)) = op (Method)

op ∈ Operation ::= α (Action)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| op1 par op2 (Parallel)
| waitfor op1 timeout op2 (Iteration)

| invoke(φ(k)) (Recursion)

α ∈ Action ::= ε (No Action)

| φk = p(φl) fault φm (Procedure)

| ρ(φ(k)) => agent(φ1, φ2) (Send)

| ρ(φ(k)) <= agent(φ1, φ2) (Receive)

φ ∈ Term ::= _ | a | r | c | v

Fig. 5. MAP Abstract Syntax.

We will now define the abstract syntax of MAP, which is presented in Fig-
ure 5. We have also defined a corresponding concrete XML-based syntax for
MAP which is used in our implementation. However, we restrict our attention

in this paper to the abstract syntax for readability. A protocol P is uniquely
named n and defined as a set of agent roles A, each of which defines a set of
methods M. A single method M takes a list of terms φ(k) as arguments (the
initial method is specified by an empty list of arguments). Agents have a fixed
role r for the duration of the protocol, and are individually identified by unique
names a. Protocols are constructed from operations op which control the flow
of the protocol, and actions α which have side-effects and can fail. Failure of
actions causes backtracking in the protocol.

The interface between the protocol and the external web service, is achieved
through the invocation of procedures p. A procedure is parameterised by three
sequences of terms. The input terms φl are the input parameters to the pro-
cedure, and the output terms φk are the output parameters, i.e. results, from
the procedure. A procedure may also raise an exception in which case the fault
terms φm are bound to the exception parameters, and backtracking occurs in the
protocol. Interaction between agents is performed by the exchange of messages
which are defined by performatives ρ, i.e. message types. The parameters to pro-
cedures and performatives are terms φ, which are either variables v, agent names
a, role names r, constants c, or wild-cards _. Variables are bound to terms by
unification which occurs in the invocation of procedures, the receipt of messages,
or through recursive method invocations.

It is helpful to consider an example protocol in order to obtain an under-
standing of the protocol language. We therefore present a MAP protocol for the
data extraction phase of our BCG example in Figure 6. For brevity, we do not
present the protocol for the other services in this paper. We distinguish between
the different types of terms by prefixing variables names with $, and role names
with %, and we write e for an empty (ε) action. We use type abbreviations A for
agent, R for role, S for string, and L for list. We define a single %extraction role
which expresses the extraction protocol. The role will be enacted by an agent
which is a proxy for an external extraction web service. The procedure calls in
the protocol, e.g. extractNext, are mapped to the associated web service.

The extraction protocol shown in Figure 6 proceeds as follows. An extraction
request is received by an extraction agent from a scientist agent (line 4). The
request contains a list of queries to be evaluated by the extraction agent. The
agent recursively traverses the list of queries (line 9), sending each query to the
appropriate service (line 11). In our scenario, the queries correspond to requests
for galaxy data, and the services correspond to astronomy data sources. The
agent retrieves the result (line 17) and stores it in MySpace (line 18). Finally,
the extraction agent publishes the results (line 24) and returns a URL for the
published data to the scientist agent that initiated the request (line 25).

The extraction protocol expressed in MAP is clearly a straightforward imple-
mentation of the required functionality. However, there are some subtle issues in
the protocol that require explanation. When exchanging messages through send
and receive actions, a unification of terms against the definition agent(φ1, φ2)
is performed, where φ1 is matched against the agent name, and φ2 is matched
against the agent role. For example, the receipt of the query list in line 4 of the

1 %extraction{

2 method() =

3 waitfor

4 (extract($qlist) <= agent($scientist, %scientist)

5 then invoke(eloop, $qlist, $scientist)

6 then invoke())

7 timeout (invoke())

8 method(eloop, $qlist, $scientist) =

9 (($head, $tail) = extractNext($qlist)

10 then ($q, $qtype) = makeQuery($head)

11 then query($q) => agent(_, $qtype)

12 then invoke(ewait)

13 then invoke(eloop, $tail, $scientist))

14 or invoke(eend, $scientist)

15 method(ewait) =

16 waitfor

17 ((result($res) <= agent($name, $qtype)

18 then store($name, $res) => agent(_, %myspace)

19 then invoke(ewait))

20 or (noresult() <= agent($name, $qtype)

21 then invoke(ewait))

22 timeout (e)

23 method(eend, $scientist)

24 $resulturl = publishResults()

25 result($resulturl) => agent($scientist, %scientist)}

Fig. 6. Data Extraction Protocol

protocol will match any agent whose role is %scientist, and the name of this
agent will be bound to the variable $scientist. This unification is particularly
useful when we do not know the exact name of the agent in question. For ex-
ample, in line 11 of the protocol we use a wild-card _ to send the message to all
agents that match the role given by $qtype.

The semantics of message passing corresponds to non-blocking, reliable, and
buffered communication. Sending a message will succeed immediately if an agent
matches the definition, and the message will be stored in a buffer on the recip-
ient. Receiving a message involves an additional unification step. The message
supplied in the definition is treated as a template to be matched against any
message in the buffer. For example, in line 17 of the protocol, a message must
match result($res), and the variable $res will be bound to the content of
the message if the match is successful. Sending will fail if no agent matches the
supplied terms, and receiving will fail if no message matches the template.

The send and receive actions complete immediately (i.e. non-blocking) and do
not delay the agent. Race conditions are avoided by wrapping all receive actions
by waitfor loops. For example, in line 16 the agent will loop until a message
is received. If this loop was not present the agent may fail to receive the reply,

and the protocol would terminate prematurely. The advantage of non-blocking
communication is that we can check for a number of different messages. For
example, in lines 17 and 20 of the protocol, the agent waits for either a result

message or an noresult message. A waitfor loop includes a timeout condition
which is triggered after a certain interval has elapsed. In our example, we do not
know how many agents match the $qtype role in line 11, so we need to wait until
no further replies have been returned. This is achieved by the timeout in line
22, although we note that it would be perfectly possible to define an alternative
protocol which avoids the need for the timeout.

The operations in the protocol are sequenced by the then operator which
evaluates op1 followed by op2, unless op1 involved an action which failed. The
failure of actions is handled by the or operator. This operator is defined such
that if op1 fails, then op2 is evaluated, otherwise op2 is ignored. The language
includes backtracking, such that the execution will backtrack to the nearest or
operator when a failure occurs. Similarly, the body of a waitfor loop will be
repeatedly executed upon failure, and the loop will terminate when the body
succeeds (or a timeout occurs). Our language also includes a par operator which
evaluates op1 and op2 in parallel. This is useful when we wish to perform more
than one action simultaneously, though we do not use this in our example.

Literal data is represented by constants c in our language, which can be com-
plex data-types, e.g. currency, flat-file data, multimedia, or XML documents.
MAP does not perform any computation directly on the constants. The inter-
pretation of the data is performed entirely by the external web services.

3.2 The MagentA Platform

We have implemented a platform for coordinating web services founded on
our MAP language. Figure 7 illustrates the four main tasks performed by the
platform. The platform closely follows the close-coupled coordination technique
which we have discussed previously. At the core of the platform is the MagentA
(Multi-agent Architecture) service which performs the task of the coordination
service at the centre of Figure 4. The platform has been implemented in Java,
and utilises the XML representation of MAP.

A screen capture of the web front-end to the MagentA service is also shown in
Figure 7. The upper section of the screen displays all of the roles which are found
in the protocol. There are links in this section for generating WSDL documents
for each of the roles, and for verifying the protocol. The middle section of the
screen is used for registering web services against the roles in the protocol. To
register a service, the role, agent name, and WSDL URL are entered into the
form. A port and service name within the web service can also be optionally
entered. The lower section of the screen is used to initiate and terminate the
enactment process. Our tool enables experiments to be rapidly constructed and
configured.

The MagentA service must be instantiated with a MAP protocol before co-
ordination can be performed. Therefore, the first task (labelled 1 on the LHS of
Figure 7) in the construction of an experiment on the platform is the definition

INSTANTIATION

VERIFICATION ENACTMENT

REGISTRATION

SERVICESPROTOCOL
MAP

EXPERIMENT
RESULTS

COORDINATION
SERVICE

SERVICE
VERIFICATION

MagentA

WEB

1 2

4 3

Fig. 7. MagentA Platform Architecture & Web Front-End

of the protocol in MAP. The MagentA service is fully generic, in that it can
perform coordination for any protocol, though only one such coordination at a
time. Therefore, the instantiation process configures the MagentA service for a
single protocol, which persists until enactment is complete.

A MAP specification is constructed with respect to a collection of web ser-
vices that will be utilised in the experiment. In particular, each role in the
protocol corresponds to one or more web services. For example, the extraction
role defined in Figure 6 corresponds to a web service which supplies an imple-
mentation of the extractNext, makeQuery, and publishResults procedures. It
is also possible to define protocols for which no actual web service exists. In this
case, the MagentA service can provide an appropriate WSDL specification for a
role, which can then be refined into an actual web service. Before enactment can
be performed, it is necessary to register each of the web services in the experi-
ment with the MagentA service. Registration is performed by supplying a URL
to the WSDL document associated with each service, together with the role that
it implements. At least one web service must be registered for each role before
enactment can take place. We intend to support the discovery of services in the
future, but at present the registration process is performed manually.

The registration of a web service causes an agent to be generated within the
MagentA service to act as a proxy for the web service. It is important to note that
the agents are generated automatically during registration. The only components
that need to be supplied are the protocol, and a mapping from web services to

roles. Furthermore, it is not necessary to understand the use of agents to be
able to define an experiment. The third task provided by the MagentA service
is the enactment of the experiment. This is where the protocol is enacted by
the agents which have been defined during registration. The agents follow the
protocol as a script, and invoke the external web services when necessary. The
experiment terminates when all the protocol steps have been enacted, or if the
protocol fails. An experiment will typically include a service that outputs the
experiment data in a suitable form. The MagentA service itself does not provide
any data visualisation, other than supplying a trace of the enactment.

We have noted that enactment can terminate if the protocol encounters a
failure. By this, we mean either a failure internal to the protocol, or an exter-
nal failure relating to web service invocation. We can avoid external failures by
defining appropriate fault and timeout conditions in our protocols. Internal fail-
ures occur when a protocol backtracks to the beginning, or fails to terminate.
Usually these kinds of failures will occur as a result of unexpected interactions
between the agents. Ideally we would like to avoid internal failures as they can
be costly, for example, if they occur during a long-lived or non-repeatable exper-
iment. Therefore, the final task provided by MagentA is a protocol verification
service, which can detect a range of protocol failures statically before enactment.

4 Conclusion

The purpose of this paper was to demonstrate that we can use existing agent
technology to assist in the construction and enactment of e-Science experiments.
Specifically, our previous research on agent protocols can be readily adapted to
the composition of web services. Our technique is founded on the MAP language,
which is a formally-defined agent coordination language. We have constructed
a tool based on this language, called MagentA, which allows experiments to be
rapidly constructed, verified, and enacted. Finally, we have sketched how our
MAP protocols can be used to define the Brightest Cluster Galaxy experiment.

The MAP language is a lightweight formalism, providing only a minimal set
of operations. This was a deliberate choice as it allowed us to define the lan-
guage and the type system without unnecessary complication. However, we are
now considering many enhancements to the language that would make it more
suited to e-Science computation. These enhancements include: support for large
datasets through an extension of the type language; support for long-lived com-
putation, e.g. by allowing break-points in the protocols; database integration for
better handling of experiment data; and support for the composition of protocols
into larger experiments at the scene level.

The MAP language can be used to encode a wide range of protocols, as previ-
ously demonstrated in our work on agent protocols. However, the hand-encoding
of protocols into the MAP formalism remains a time-consuming process. We
are therefore currently considering a number of approaches which will permit
protocols to be constructed in a more efficient manner. The simplest approach
is the provision of a graphical tool for constructing protocols. Beyond this, we

would like to support the automatic generation of protocols. We have made some
progress into the construction of protocols as an outcome of a planning process.
However, from an e-Science perspective we would ideally like protocols to be
generated as a result of workflow mapping. Nonetheless, there remain significant
issues in this approach, particularly as there is no real consensus on the most
appropriate workflow formalism for e-Science.

A further issue that we intend to address, concerns the discovery of web ser-
vices. At present, the web services that we use to define an experiment must be
known in advance, and must be explicitly registered before enactment. Further-
more, the protocol must be defined to precisely match the WSDL definition of
the web service. We would like to relax these restrictions, and allow a more flexi-
ble kind of coordination, which allows for (semi-)automatic web service discovery
and invocation. For this, we will need semantically annotated web services, on
which we can reason about the behaviour of the services. This is currently an
active area of research in the Semantic Web community.

References

1. P. Allan, B. Bentley, C. Davenhall, S. Garrington, D. Giaretta, L. Harra, M. Irwin,
A. Lawrence, M. Lockwood, B. Mann, R. McMahon, F. Murtagh, J. Osborne,
C. Page, C. Perry, D. Pike, A. Richards, G. Rixon, J. Sherman, R. Stamper, and
M. Watson. AstroGrid. Available at: www.astrogrid.org, April 2001.

2. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web Services Architecture. World-Wide-Web Consortium (W3C), August
2003. Available at: www.w3.org/TR/ws-arch/.

3. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. Avail-
able at: www.daml.org/services/, November 2004.

4. D. de Roure, N. R. Jennings, and N. Shadbolt. The Semantic Grid: A future
e-Science infrastructure. In F. Berman, G. Fox, and A.J.G. Hey, editors, Grid
Computing - Making the Global Infrastructure a Reality, pages 437–470. John Wiley
and Sons Ltd., 2002.

5. M. Esteva, J. A. Rodŕıguez, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal
Specification of Electronic Institutions. In Agent-mediated Electronic Commerce
(The European AgentLink Perspective), number 1991 in Lecture Notes in Artificial
Intelligence, pages 126–147, 2001.

6. D. Fensel and C. Bussler. The Web Service Modeling Framework (WSMF). Elec-
tronic Commerce Research and Applications, 1(2), 2002.

7. Layna Fischer, editor. The Workflow Handbook 2004. Future Strategies Inc., 2004.
8. I. Foster and C. Kesselman, editors. The Grid 2. Morgan Kaufmann, 2004.
9. C. Walton. Model Checking Multi-Agent Web Services. In Proceedings of the 2004

AAAI Spring Symposium on Semantic Web Services, Stanford, California, March
2004. AAAI.

10. C. Walton and D. Robertson. Flexible Multi-Agent Protocols. In Proceedings of
UKMAS 2002. Also published as Informatics Technical Report EDI-INF-RR-0164,
University of Edinburgh, November 2002.

11. C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papey, T. Payne, and
L. Moreau. Automating Experiments Using Semantic Data on a BioInformatics
Grid. IEEE Intelligent Systems, 19(1):48–55, 2004.

