Navigation Assistance Framework for Emergencies

Paul Ngo
Department of Computer Science
George Mason University
4400 University Drive, MS 4A4
Fairfax, Virginia 22030
Email: pngol @gmu.edu

Abstract—Emergencies occur every day at unexpected times
and impact our lives in unimaginable ways. In any emergency
situation, there are two type of victims: direct victims and indirect
victims. Both will have their current plans disrupted in order to
deal with the emergency. Federal, State, and Local governments
have established a 911 system to assist direct victims. However,
there is still lack of assistance provided to the indirect victims. In
this paper, we propose a Navigation Assistance Framework that
allows emergency organizations to provide emergency informa-
tion that can assist victims navigating out of the emergency area
and reaching their intended destinations in a reasonable amount
of time. We develop an emergency prototype ERSimMon to
simulate this capability in a small scale to show the effectiveness
of the proposed solution. In addition, we develop the Emergency
Response Application (ERApp) for a smart phone platform,
which intercepts the enhanced Commercial Mobile Alert System
(CMAS) broadcast message, displays the user’s location with
respect to the emergency location on the map and provides
navigational assistance and recommend actions to help the user
navigate out of ongoing emergencies.

I. INTRODUCTION

According to the Out-of-State and Long Commutes Survey
2011 [12], 8.1 percent of U.S. workers had commutes of 60
minutes or longer. In addition, 61.1 percent of the workers
drove to work alone. Americans spend significant amounts of
time, on the average of 25 minutes [13] in their vehicles on
the road to go from home to work on a normal working day.

Added to average commute time, local emergencies such as
car accidents, road construction, inclement weather, etc. may
add extra delays into the average commute time. Commuters
have to adjust to these unexpected delays on a case-by-case
basis. Consequently, they may have to shift their schedule or
rearrange appointments and meetings to accommodate for the
time lost sitting in traffic. Sometimes, cancellations and delays
are unavoidable. According to a poll conducted by ABCNews
on traffic in the United States [14], the average commute time
on a bad day for Americans is 46 minutes.

Clearly, dealing with unexpected delays is a major concern
for commuters. We address this concern with two approaches.
The first approach is to provide commuters with navigational
assistance that offers alternative routes to their destinations in
order to avoid an impending emergency and its affected area.
This may be a great help to commuters who are not familiar
with an area or who waste time sitting in traffic. The second

Duminda Wijesekera
Department of Computer Science
George Mason University
4400 University Drive, MS 4A4
Fairfax, Virginia 22030
Email: dwijesek@gmu.edu

approach is to provide commuters with relevant emergency
advice based on the type of the emergency.

In 2006, the Federal Government established a Worker
Adjustment and Retraining Notification (WARN) Act that
supported the research and development of Common Mobile
Alert System (CMAS) [15]. The proposed CMAS system
utilizes existing commercial telecommunication infrastructures
to broadcast emergency alerts and warnings to a specified
geographic area. We have extended the usability of CMAS
to broadcast alerts to small-scale local emergencies [2]. We
convey these local emergencies by sending the GPS location
of the emergency and the affected area measured by the
radius from the emergency GPS location to mobile users’
devices. We also enhanced the original CMAS limitation on
the message size of 90 readable characters [1]. Both of these
CMAS enhancements allow local emergency information to
be broadcast to mobile users more effectively.

To provide relevant navigational assistance to mobile users
in a variety of emergencies, from the most dynamic, like a
tornado or hurricane, to the least changing such as construc-
tion road blocks, we need the most up-to-date information
regarding the emergency. We propose a Navigation Assistance
Framework (NAF) to set a foundation for possible future
works. The NAF acts as a central hub, which collects rel-
evant emergency information and distributes it to registered
instances of our smart phone application, ERApp. This de-
velopment is aligned with the Dynamic Mobile Application
initiative from the US Department of Transportation [20],
which can be adapted to cars to alert drivers when approaching
work-zones or construction sites [21].

The rest of the paper is organized as follows: section II
discusses NAF requirements and some supporting use cases.
Section III discusses the NAF design and implementation.
Section IV discusses results of our experiments. Section V
describes related works and we conclude in section VI

II. NAVIGATION ASSISTANCE FRAMEWORK
REQUIREMENTS AND USE CASES

In this section, we specify some requirements and objectives
that organizations may implement in their processes and
operations in order to provide emergency information to other
trusted organizations. A requirement contains the word shall”
and is identified by the letters "R”. An Objective is a feature

STIDS 2013 Proceedings Page 149

or function that is desirable, but not mandatory. An Objective
contains the words ”it is desirable” and is identified by the
letters ”O”.

R#1: There shall be a way to provide current information
about any impending emergency.

R#2: There shall be a way to provide directions to avoid
the impending emergency.

O#1: It is desirable that users provide daily events in their
calendars and expose them to the trusted entity in order
to provide relevant and immediate actions during time of
crisis.

A. Use Cases

In this subsection, we describe use cases that are derived
from the above requirements.

Use Case 1: A driver with an ERApp running on his hand-
held device drives to work as a part of his regular routine.

The following two use cases occur when the driver receives
a CMAS message informing him that there is an emergency
in the area. ERApp appears on his hand-held device, showing
the location of the ongoing tornado, his location and the work
location. He then determines that:

Use Case 2: his route to work has not been impacted by the
ongoing tornado.

Use Case 3: his route to work is impacted by the ongoing
tornado.

The first use case illustrates a sunny day scenario where
drivers don’t encounter any problems on the road that pre-
vent them from arriving at work on time. However, traffic
accidents and natural emergencies such as tornados, heavy
rains, blizzards, snow storms, hail, or other severe weather
conditions would prevent drivers from arriving at work on
time. Delays caused by these emergencies can be up to hours.
The second and third use cases illustrate that an emergency
has occurred in the area. In this case, we illustrate with an
impending tornado because the tornado is a medium scale
emergency and its movement can be tracked by the National
Weather Center (NWC) [19]. The NWC then can provide the
Navigation Assistance Framework crucial data such as the
direction and the speed of the tornado. We can then use these
data to calculate and estimate the impact further.

IIT. NAVIGATION ASSISTANCE FRAMEWORK
ARCHITECTURE AND IMPLEMENTATION

We describe major components and the functionality of the
Navigation Assistance Framework (NAF) in this section. First,
we provide a high-level description of each component and its
function in the overall architecture.

A. Architecture Components

Figure 1 shows the high-level architectural components
for the Navigation Assistance Framework. It consists of

Navigation Framework for Emergency
CMAS |« Emergency
Sources
A 4
.| Navigation
ERAPP < »| Framework
F 3
r
Google Map | .
Web Service [ERSimMon

Fig. 1. Navigation Assistance Framework High-Level Components

Emergency Sources, Commercial Mobile Alert System
(CMAS) [15], Navigation Assistance Framework, Emergency
Response Application (ERApp), Emergency Response Simu-
lation Monitor, and Google Map Services.

Emergency Sources are emergency systems that have the
capability to monitor the progression of an emergency and to
provide updates if needed by other systems. These emergency
systems can expose their emergency information as a service.
We provide a set of interfaces in table II that can be im-
plemented by Emergency Sources. For example, the National
Hurricane Center [18] is considered one of the Sources for
emergency information. The Emergency Sources push the
most up-to-date emergency data to the CMAS through a
web service connection as indicated by the arrow going
from the Emergency Sources to CMAS in Figure 1. The
CMAS operator will generate the broadcast message based
on the emergency data and broadcast it. We have proposed
a few enhancements [1], [2] to improve the content of the
broadcast message and the area effected by an emergency. The
CMAS broadcasts 90-character text messages of emergencies
to all mobile devices through ERApp, a mobile emergency
application installed on the users’ mobile devices (how the
ERApp is certified and installed on mobile devices is beyond
the scope of this paper). In addition, the CMAS pushes the
emergency data to the NAF as indicated by the arrow going
from the CMAS to the NAF through a web service connection
in Figure 1.

The Navigation Assistance Framework provides a set of
interfaces that Emergency Sources need to implement and
acts as a listener to the emergency data and advice policies.
Whenever needed, the Navigation Assistance Framework pulls
the most up-to-date emergency data and advice policies from
the Emergency Sources as indicated by the arrow going from
the Navigation Framework to Emergency Sources in Figure 1.
The ERApp can make an advice policy update request to
the NAF when the ERApp detects that the user is in motion
during an ongoing emergency as indicated by the arrow going
both directions from the ERApp to the NAF in Figure 1. The
ERApp uses the Google Map Web Services to display a user’s

STIDS 2013 Proceedings Page 150

position with respect to the occurring emergency as indicated
by the arrow going from the ERApp to Google Map Web
Services in Figure 1. The ERApp applies the advice policies
to see if the current status of users’ behaviors satisfy the
conditions on the policy and displays the emergency advice
recommended by the policy. For example, the advice policy
can say that if the user at rest is 3000 meters away from the
center of an emergency, the user needs to consider teleworking
for the day. Figure 2 shows such a sample policy written
in XACML [17]. XACML policy language answers yes or
no to the access control request based on some conditions
stated in a policy. Consequently, XACML is not capable
of providing emergency advice. Therefore, the NAF uses
XACML to evaluate conditions in emergency advice policies
given by Emergency Sources before advising users.

In general, these arrows presented in the figure 1 are defined
by either push, pull or both push and pull web services.
Implementation and the hosting of these web services are
beyond the scope of this paper.

1 <7xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <Policy xmlns="urn:oasisinames; tc:xacml:2.8:policy:schema:os”
3 xmlns:xsi="http://i 0rg/2001/XMLSchema- instance”
4 xsiischemalocation //docs . casis-open . org/xacml/2.0/access_control-xacril-2.8-policy-schena-os.xsd"
5 RuleCombiningAlgTd: 051s:names: tc:xacml : 1.0: rule-combining-algorithn: deny-overrides”
6 Version="1.0" Policyld="EmergencyAdvicePolicy2">
7 <Target>
<Resourcess.
9 <Resource>
10 <ResourceMatch MatchId="urn:oasis:names: tc:xacnl :1.0: function:string-equal”>
1 <AttributeValue DataType="http://wm.n3.0rg/2001/XMLSchema#string">Consider teleworking today.</AttributeValue>
12 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource: resource-id"
13 DataType="http://ww.w3.0rg/2001/XMLSchenastring"/>
14 </ResourceMatch>
15 </Resource>
16 </Resources>
17 <Actions>
18 <Actions
19 <ActionMatch MatchId="urn:0asis :names: tc:xacml:1.0: function:string-equal ">
20 <AttributeValue DataType="http://wm.n3.0rg/2001/XMLSchema#string"~access</AttributeValue>
21 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacnl:1.@:action:action~id"
22 DataType="http://ww.w3.0rg/2001/XMLSchenastring"/>
23 </ActionMatch>
24 </Actions

25 </Actions>

26 </Target>

27 <Rule Effect="Deny" Ruleld-"comparing_utoedistance">

28 <Condition>

29 <Apply Functiond="urn:ioasis:inames:tcixacmli1.0:function: integer-less-than">

30 <Apply FunctionId="urn:oasis:names:tc:xacml:1.8:function: integer-one-and-only">
31 <SubjectAttributeDesignator DataType="http://w.w3.0rg/2081/XMLSchematinteger”
32 Attributeld="utoedistance” />

33 Apply>
34 <AttributeValue DataType="http://ww.w3.0rg/2001/XMLSchema#integer">3000m</AttributeValue>
35 </Apply>
36 </Condition>
37 </Rule>
38 <Rule Effect="Deny" Ruleld="matching_ertype">
39 <Condition>
40 <Apply FunctionId="urn:oasis:names:te:xacml:1.@:function: string-equal”>
41 <SubjectAttributeDesignator DataTypes="http://ww.w3.0rg/2001/XMLSchema#string”
42 Attributeld="ertype" />
43 <AttributeValue DataType="http://ww.w3.0rg/2081/XMLSchema#string">Tornado</AttributeValue>
44 </Apply>
45 </Condition>
46 </Rule>
47 <Rule Effect="Deny" Ruleld="is_moving">
48 <Condition>
49 <Apply Functionld="urn:easis:names:tc:xacml:1.@:function:beolean-equal ">
50 <SubjectAttributeDesignator DataType="http://ww.w3.0rg/2001/XMLSchema#boolean™
51 Attributeld="isIrMotion" />
52 <Attributevalue DataType="http://www.w3.0rg/2081/XMLSchenakboolean">true</AttributeValue>
53 </Applys
54 </Condition>
55 </Rule>
56 <Rule Effect="Permit" Ruleld="rule_permit_all"/>
57 </Policy>
Fig. 2. Emergency Advice XACML Policy

The Emergency Simulation Monitor (ERSimMon) uses the
Navigation Assistance Framework to simulate an emergency
and the people who are trying to navigate through it. The
ERSimMon uses the Google Maps API web services to
query the list of emergency constraints and road congestion
information in order to suggest the best routes that the user
can take to reach his destinations. This pulling connection
is indicated by the arrow going from the ERSimMon to the
Google Map Web Services in Figure 1.

For these components to work seamlessly, we need to make
a couple of enhancements to the Google Maps API web service
and Emergency Source web service. These enhancements

allow the Navigation Assistance Framework to be used in the
most effective way and expose its full capabilities. Here is the
list of enhancements:

First, we propose an enhancement to the Google Maps
API web services [7] to include a list of constraints and
road blocks. The original URL to get directions from
Google is: http://maps.googleapis.com/maps/api/directions/
xml?origin=[]&destination=[]&sensor=[true|false] where the
origin parameter specifies the origination address. The desti-
nation parameter specifies the destination address. The sensor
parameter indicates that the directions request comes from a
device with a location sensor. There are a few optional param-
eters such as mode= [driving|walking|bicycling|transit], way-
points, alternatives= [true|false], avoid= [tolls|highways], lan-
guage, units, region, departure_time, and arrival_time. None
of these parameters provide the directions to avoid emergency
road blocks or help navigate around pending emergencies.
At best alternative parameters provide several routes to the
destination, without any guarantee that these routes will avoid
emergency road blocks or the pending emergency.

Therefore, our enhancement adds one parameter eblocks
into the Google Maps API web service, which gives the GPS
location and the radius of the blocking area. The parameter
has three values: latitude, longitude, and radius. For example:
eblocks=38.8462236,-77.3063733,500m. In this example, we
indicate that the emergency occurs in Fairfax, VA which
has the GPS location of 38.8462236,-77.3063733 and we
should avoid all the roads within 500 meters of that particular
location.

The NAF doesn’t depend on the Google Map enhancement
to provide alternative routes in order to avoid the area affected
by an emergency. But in this paper, we show how Google
could implement this enhancement as we describe below. The
NAF can use major routes and intersections as preexisting
points and build a directed path using the Shortest Path (in
time and distance) algorithm [25] to determine the path to the
destination. For every connecting point as a new temporary
destination, the NAF uses the algorithm 2 to determine that
the route to new temporary destination is out of the affected
area.

Second, we enhance the emergency source services to pro-
vide the most up-to-date emergency information. We provide
emergency sources with a set of APIs so that they can connect
with our framework via web services.

B. NAF Functionality

We describe the functions built into the Navigation Assis-
tance Framework to support the use cases given above. In the
sunny day scenario, users can get the navigation assistance
from the regular GPS or the ERApp. Without any emergency
occurrences during rush hours, users can anticipate their on-
time arrivals at their desired destinations. However, emergency
incidents do occur at unexpected times and have the potential
to create a long delay in travel time. With the ERApp installed
on handheld devices, users are able to receive an enhanced
CMAS broadcast emergency message [1], [2] that provides

STIDS 2013 Proceedings Page 151

more details about the impending emergency incident. In addi-
tion, ERApp is equipped to receive frequent updates about the
impending emergency status including tracking information
such as GPS location, time, intensity, effected area, etc. This
information is necessary for the ERApp to better advise and
direct users to their destinations. The goal is to avoid possible
road blocks and dangerous areas that are being affected by
emergency incidents. We can achieve this goal if we have
updated emergency information.

1) Emergency Data: Depending on the type of emergency,
information may come from different sources. For example,
tornado data may come from the National Weather Center.
Hurricane data may be retrieved from the National Hurricane
Center. Road closures in the local area may come from the
local police department or the Department of Transportation.
Therefore, we need to establish a method of retrieving these
emergency data from various sources and determine if the
connection is either push, pull, or both.

The Navigation Assistance Framework acts as a centralized
emergency assistance process which dispatches emergency
information to all devices and receives regular updates from
emergency sources. With this, the Navigation Assistance
Framework needs to subscribe to all of the emergency sources
to pull and push emergency data. In addition, the NAF needs
to allow ERApp to subscribe in order to receive emergency
updates. Depending on users’ circumstances, the NAF supports
either pull or push subscriptions from ERApp.

Each emergency has its own data set relevant to our frame-
work. For a tornado, we collect the following emergency data:
time when the tornado touched down, its track including the
GPS location of the tornado, wind speed and direction, and
the storm intensity measured in Fujita Scale (F-Scale) [8].

For road closures such as a car accident, road construction,
water main break, etc., we collect the following emergency
data: starting date and time of the closure, the anticipated date
and time of the re-opening of the road, GPS location, and the
radius of the affected area. The purpose of getting this data
is to provide the magnitude of the emergency, GPS location,
and its severity. This allows the framework to approximate the
danger area and to provide frequent updates to ERApp so that
ERApp can assist users to navigate around the danger area.

2) Updating the Directions: After the Navigation Assis-
tance Framework receives the emergency data from the Emer-
gency Source, it sends the updated data using text messaging
to all the devices that have installed ERApp and registered
with the NAF. The ERApp determines the next step. ERApp
will formulate a new query to get the updated routes to the
destination, if the impending emergency is going to be in
the forecast path. We make a general assumption that users
will manually enter into their event calendars the location
addresses of where they will be and from what time to
what time they are going to be there. These calendar fields
such as location, time start and time end are in the Internet
Calendar Specification [11]. The ERApp will use this location
address as the destination or allow users to enter their current
destinations. The ERApp will send the GPS location and the

radius of the affected area to Google Maps, which in turn
provides the updated directions to the destination.

The format of the updated text message sent from the NAF
to ERApps must be agreed upon and interpreted. The format
is a list of name-value pairs. The name must be abbreviated
by 2 capitalized characters, where character is one byte, and
the value must be a primitive type. These names and and
associated types must be accessible by the NAF and the
ERApp. Table I provides these names, associated types and
short descriptions of each attribute.

TABLE I
TEXT MESSAGE VALUES

Parameter | Type Description

ID Integer | Emergency Identification

ET Integer | Emergency Type

LT Long Latitude

LN Long Longitude

RD Integer | Radius

DR Byte Emergency Direction

SP Integer | Speed of moving emergency
AP String Advice policies in XML format

According to the SMS Specification [9], an SMS Message
has a limitation of 160 readable characters. If we represent this
SMS message as readable characters, there may not be enough
readable characters to hold values of all these attributes.
Therefore, we represent these values as binary values and
encode them using the Base 64 Encoding [10] in order to
fit within 90 character as described in our previous work [1].

C. Implementation

This subsection will detail the implementation of the Navi-
gation Assistance Framework. We also suggest some interfaces
that Emergency Sources and Google Maps Web Services need
to implement to make this framework. However, we provide a
prototype implementation of these interfaces working together.

1) Emergency Data Collection: Figure 1 shows that the
NAF receives emergency data from two sources such as
CMAS and Emergency Sources (including periodic updates).
CMAS sends the CMAS message [1] to the NAF in its broad-
cast. Two important pieces of data are the GPS location of
the impending emergency and the radius of the affected area.
NAF uses this information to load the impending emergency
details onto the map as shown in Figure 3. The Emergency
Sources can push it to the NAF directly. Table II shows NAF
interfaces with the Emergency Sources.

Method Return Type | Parameters Description

sendUpdate | int (int iEID, HashMap mapNVP) | Send update values for the impending emer-

gency.

pullUpdate HashMap (int iEID) Return the update name-value pair hashmap

for the impending emergency.

TABLE 11
INTERFACE FOR IESOURCE IMPLEMENTATION

STIDS 2013 Proceedings Page 152

00
File Tools Help

Emergency Simulation Moniter

e —v

«\\\) \ @ ., SSS N ‘1’&% L KN bt AN
Fig. 3. Impending Tornado
Emergency Data Name Space | Data Type | Description
TND_Longitude Long GPS longitude location.
TND_Latitute Long GPS location latitude location.
Tornado TND_Direction String Current Direction: East, West, North, South,
North-East, South-West, etc.
TND_Wind_Speed | Integer Wind Speed measured in miles/hour.
TND_Radius Integer Radius of the affected area measured in mi
(miles), m (meters), km (kilometers).
RB_Longitude Long GPS longitude location.
Road Blocks | RB_Latitute Long GPS location latitude location.
RB_Radius Integer Radius of the affected area measured in mi
(miles), m (meters), km (kilometers).
TABLE III

DATA NAME SPACE

In order for NAF to interpret data, we use the following
naming conventions. Table III suggested names and types are
the binding agreements between the NAF and Emergency
Sources, that we use to retrieve associated values and convert
them.

2) Navigation Update: The NAF sends an updated text
message to all the registered ERApps installed on mobile de-
vices. ERApps decode the message and extract the emergency
information. The ERApp then uses this information to query
the Google Maps web services for updated directions. In the
prototype implementation, we use Google Calendar to retrieve
users’ calendar event information such as the location and the
time.

Algorithm 1 computes driving directions that avoid the
affected area of the impending emergency and helps users
navigate to their destinations. The algorithm takes three param-
eters. The first parameter mapNVP is the hash map containing
name-value pairs. The second parameter up is the user profile,
which contains the email credentials to access the calendar.
The third parameter calURL is the Google Calendar web
service URL. On lines 1 and 2, the algorithm initializes
two temporary variables xmlDirDoc and calEvent to null
respectively. The xmlIDirDoc is the updated direction in XML
format, which is the return value for this algorithm. On line
3, the calendar service is created for the ERApp client cCal.
On line 4, client calendar is set with the credentials including
the email address and the email passcode, which are used to
authenticate the calendar service. The calendar query is created
from the calendar URL on line 5. We begin to query calendar
events from the calendar service on line 6. We check if there
is any entry in the return result on line 7. We then sort all
the events based on time from the earliest to the latest on line

Algorithm 1 :getUpdatedDirections Algorithm (Input:
HashMap mapNVP, UserProfile up, String calURL)
Require: mapNV P # null
Require: up # null
Require: calURL # null
1. xmlDir Doc < null
. calBvent < null
» ¢Cal + newCalendarService()
. c¢Cal.setCreds(up.getW Email(), up.getW Email PC())
s calQuery «+ newCalendarQuery(calURL)
& resultEvents < cCal.query(calQuery)
7. if result Events.get Entries().size() > 0 then
s resultEvents < sortEvents(result Events)
o iterEvents < result Events.get Entries().iterator())
. while iter Events.hasNext() do
i cal Entry < iter Events.next()

)

2 if cal Entry.getTimeStart() > now() then
13 cal Event <+ cal Entry

14 break

15: end if

i end while

7. end if

i if cal Event is NOT null then

. dest < cal Event.get Location()

. erLat < mapNV P.get(”LT")

2. erLon <— mapNV P.get(”LN”)

2 erR < mapNV P.get(”RD")

xn urlDir + formURL(erLat,erLon, erR, dest)

» url « URL(urlDir)

s inputStream < url.openstream()

w dbf < DocumentBuilder Factory.newlInstance()
z db <+ dbf.newDocumentBuilder()

s amlDirDoc < db.parse(inputStream)

». xmlDir Doc.get DocumentElement().normalize()
s0. end if

s return xmlDirDoc

8. We create the event iterator on line 9 and go through all
the calendar events on line 10. We retrieve the calendar event
entry calEntry on line 11. If the event time is greater than the
current time on line 12, we set the calendar event calEvent to
calEntry on line 13 and exit out of the while loop on line 14.

On line 18, the calEvent is tested for null value. If it is null,
then the algorithm ends there and return the null xmlIDirDoc on
line 31. If calEvent is not null, the destination will be retrieved
from the calendar event on line 19. The algorithm retrieves
the emergency latitude, longitude, radius of the affected area
from the hash map name-value pairs mapNVP on lines 20,
21, and 22 respectively. The Algorithm then forms the Google
map URL urlDir with parameters such as the current location,
destination, affected area radius, and the emergency GPS
location on line 23. The URL object is created from the
urlDir on line 24. The input stream inputStream is created
from the URL object on line 25. On line 26, the document
builder factory dbf instance is created, which in turn creates

STIDS 2013 Proceedings Page 153

the document builder db on line 27. The algorithm parses
the input stream to create the XML document xmIDirDoc on
line 28. The document element is then normalized on line
29. The algorithm returns the xmlDirDoc on line 31. The
ERApp can invoke any generic built-in application such as
Maps, Navigation, etc. with the xmlDirDoc updated direction
to provide assistance to the users.

In this algorithm, we only address the immediate event
that requires a user’s attention and participation during the
emergency time. Any calendar events occurring thereafter are
not addressed in this paper.

3) Determine the Need for Alternative Routes: This section
discusses the algorithm to determine if commuters need to get
an alternative route to their destination. If the travel direction
of the mobile users to the destination crosses the emergency
area determined by the emergency location and its affected
area radius, we need to get an alternative route to avoid
the emergency area. We can easily retrieve the directions of
users’ moving vehicles by using the Accelerometer sensor
and GPS sensor to determine the vector (speed and direction)
of the moving vehicle. But this direction is only temporary
and not necessarily the primary direction of where they are
heading. Therefore, we need to retrieve the direction from
their current position to their destination. We retrieve the
location, speed, direction, and the affected area (radius from
the emergency location) of the impending emergency from the
CMAS message as discussed in section III-C2.

Algorithm 2 : isAltRouteNeeded Algorithm (Input: HashMap
mapN VP, GPSLocation gpsULoc, GPSLocation gpsDest)
Require: mapNV P # null
Require: gpsU Loc # null
Require: gpsDest # null
i isAlt RouteNeeded < false
x lat <~ mapNV P.gets(" LT")
5 Ing + mapNV P.gets("LN")
+ rd < mapNV P.gets(” RD")
s gpsELoc + new GPSLocation(lat, Ing)
s distUtoE <« getFlyingDist(gpsU Loc, gpsELoc)
7 bearingEL < calculate Bearing(gpsU Loc, gpsE Loc)
s. bearingDest < calculateBearing(gpsU Loc, gpsDest)
o. angleUEtoT + arcsin(rd/distUtoE)
w0 angle BE <+ bearingEL — angleU EtoT
. angleBE < bearingE L + angleU EtoT
i if bearingDest > angleBE AND bearingDest <
angle EFE then
i isAltRouteNeeded < true
e end if
is: return isAltRouteNeeded

Algorithm 2 discusses the need for the alternative routes.
The algorithm accepts three parameters: mapNVP, gpsULoc,
and gpsDest. The first parameter is the hash map of the name-
value pairs from the SMS message sent by the NAF. The
second parameter is the GPS user location. And the third
paramter is the GPS destination location. On line 1, isAltRoute-

Needed is false. On lines 2 to 4, latitude lat, longitude Ing,
and affected area radius rd of the emergency are retrieved. The
GPS location gpsELoc of the emergency is created on line 5.
The flying distance [16] distUtoE from the user location to the
emergency location is calculated on line 6. The bearing angle
bearingEL formed between the North and the line from the
user location to emergency location is calculated one line 7.
The bearing angle bearingDest formed by the Northern line
and the line from the user location to the destination location
is calculated on line 8. The angle angleUEtoT formed by the
line from the user location to the emergency location and the
tangent line is calculated on line 9. The angle angleBE marked
the beginning of the emergency effected area is calculated on
line 10. On line 11, the angle angleEE marked the end of the
emergency effected area is calculated. We are now ready to
verify if the bearing angle of the destination is in the angle
range of the beginning and end of the emergency affected
area on line 12. If the bearingDest is within the range, the
isAltRouteNeeded is set to true on line 13 and returned on
line 15. The figure 4 provides the visual map these locations.

North
a

Destination Location
{diat, ding)

Fig. 4. Alternative Route Decision

4) Providing Emergency Advice: The ERApp uses the
accelerometer sensor built in the hand-held devices to detect
the user’s movement. By comparing the (lat, long) acceleration
components, the ERApp can estimate if the user is moving or
at rest. The ERApp then compares the distance between the
user location and the emergency location to know if he is
approaching the emergency area. If the distance calculation
indicates that the user is moving toward the emergency area,
the ERApp can provide some intelligent advice to the user
based on the nature of the emergency.

The advice can also be given based on the user location with
respect to the impending emergency. For example, if the user
is inside the affected area of a tornado, relevant advice would
be to drive to the nearest shelter immediately. ERApp can
compare the distance from the user location to the emergency
location with the radius of the affected area to see if the user
is inside the affected area.

As described in Figure 2, Emergency Sources sent the
emergency advice to the NAF in XACML policies. The
ERApp applies these policies to see if the user’s behavior
status satisfy the conditions on the policy. The ERApp displays
the recommended advice to the user.

IV. EXPERIMENTATION

In order to start the experimentation, we need to generate
a tornado alert informing the all people in the local area

STIDS 2013 Proceedings Page 154

that the tornado is coming. In our experiment, we set the
emergency location to be in Vienna, Virginia, the radius of
the effected area to be 3200 meters from the center of the
tornado, the expired time, category, certainty, status, urgency,
and severity of the tornado. We broadcast the CMAS message
to an emulator. Figure 5 shows the preparation of the tornado
alert and the ERApp running on the emulator showing the
user’s location.

Fig. 5. Prepare the Tornado Alert

The CMAS authority is ready to send the broadcast tornado
alert to the emulator by clicking on the Send button. Figure 6
shows the tornado with the effected area in red and the user’s
location.

~ Pan Park

(8) 3

Y

antilly @

Fair Lakes

— ——

Fig. 6. Tornado Alert on ERApp

We built an Emergency Response Simulation Monitor (ER-
SimMon) prototype to simulate an individual driving to work
during an ongoing tornado. Figure 3 shows the map of the
area, the ongoing tornado, and several marker points. These
marker points represent users that are currently on the map.
There are some configuration settings that are necessary for the
simulation. In these configuration settings, Distance Increment
is set to 50 meters for the duration of 200 milliseconds, which
is indicated by the Sleeping Duration. Emulation Location
and ADB Location are required to run the Android Phone
emulation. Speed Display is set to Miles per Hour. As the
user moves from his location to the destination, it can display
the speed at which the user is moving.

In addition, the ERSimMon allows to search, add, modify,
or delete markers. Two required fields are the user name and
the emulator name. The Address indicates the start point of the
user on the map. The Destination Address indicates the ending
point of the user on the map after the simulation is complete.
These addresses are real address because we use the Google
Maps API web service to retrieve the user’s location and place

the marker on the map. Telnet Server is the loopback server
that the emulator is running on. The ERSimMon will set the
new position as the user makes a movement. This process
simulates the actual driving of the user and at a certain time
interval, the GPS on the user hand-held device will detect its
new position, which triggers the ERApp to update the position
on the map.

The ERSimMon simulates the driving of the selected user
and spawns the emulator for that user, showing the user’s
location and the ongoing tornado. The ERSimMon determines
the bearing angle between the user’s location to the destination
to be 85.64 degrees, the bearing angle between the user’s
location to the first tangent line to the effected area to be 50.35
degrees and the bearing angle between the user’s location to
the second tangent line to be 86.73 degrees. Clearly, the user
is in the path of the tornado. The ERSimMon presents the
alternative route to the user. Figure 7 shows the user driving
at the speed of 55.92 miles per hour into the effected area.

% ul @ 851

Fig. 7. Driving toward the Affected Area

If we choose to take the alternative route, the user is taking
a different route, Route 50 instead of Route 66 with the
driving speed of 29.08 miles per hour. Figure 8 shows that
the alternative route helps the user avoid the affected area of
the ongoing tornado.

oo
Fle Toos e

@ Fat

Fig. 8. Avoiding the Affected Area

V. RELATED WORKS

This section briefly discusses other significant works aimed
at improving or providing the mobile users’ navigation assis-
tance.

Although we haven’t found any publications that are in this
research area, there are other related works on navigation as-
sistance. However, their targets have been for different groups
of audiences such as indoor users and blind audiences, one of
which is the Guiding Light system [22] that uses projections
based augmented reality from the hand-held projectors to

STIDS 2013 Proceedings Page 155

provide way-finding information. This system uses a combi-
nation of hand-held sensors such as proximity, accelerometer,
compass, and vision to gather and places information on the
surrounding spaces. It then compiles all the reference walls,
paths, and other stationary objects in its repository. The system
then presents the fast-forward clip of the paths and objects that
they will encounter when moving from one place to the other
in the building.

The second is the General Framework for a Collabora-
tive Mobile Indoor Navigation Assistance System [23]. This
system is to provide a cost-effective method to effectively
transfer what the user is seeing to a remote expert who is
familiar with the area (e.g., providing museum tours, guiding
a lost pedestrian, and providing guided emergency response to
an area struck by hurricane), such that interactive assistance
can be provided to the local user using augmented reality
techniques.

Treuillet et al. [24] presents a new approach for localizing a
person by using a single-body-mounted camera and computer
vision techniques to guide and navigate a blind person within
a navigation corridor less than 1 meter wide along the intended
path.

Clearly, published works up to now have addressed the
indoor navigation assistance or to the specific groups of users.
To the best of our knowledge, there has been little or no
research done in guiding drivers in emergency conditions.

VI. CONCLUSIONS

We have addressed the navigation problem during an emer-
gency by building a Navigation Assistance Framework for
Emergencies to provide the navigation assistance to mobile
users or commuters. The NAF is collecting emergency data
from Emergency Sources and disseminating it to all the regis-
tered mobile users. When there is a new update to emergency
data, the Emergency Source pushes the new information to
the NAF, which in turn updates all of its register ERApps via
SMS message. ERApp sends a new query to Google Maps
for an alternative route to the destination in order to avoid the
emergency path. We also build the ERSimMon to simulate a
tornado event and the driving from one place to another to
avoid the tornado and its affected area. It also spawns users’
emulators in the simulation process to show what is being
displayed on the user’s ERApp. We suggest interfaces for the
Emergency Sources to implement and to send the emergency
data to the NAF.

REFERENCES

[1] Paul Ngo and Duminda Wijesekera, Emergency Message In CMAS, In
Proceedings of the International Conference on Critial Infrastructure
Protection - Sixth IFIP WG, Mar 2012.

[2] Paul Ngo and Duminda Wijesekera, Enhancing CMAS Usability, In
Proceedings of the International Conference on Critial Infrastructure
Protection - Fifth IFIP WG, Mar 2011.

[3] Paul Ngo and Duminda Wijesekera, Using Ontological Information to
Enhance Responder Availability in Emergency Response, In Proceedings
of the Semantic Technology for Intelligence, Defense, and Security
Conference - STIDS, 2010.

[4] ATIS-0700006, CMAS via GSM/UMTS Cell Broadcast Service Specifica-
tion; March 2010.

[S] ATIS-0700007, Implementation Guidelines and Best Practices for
GSM/UMTS Cell Broadcast Service Specification; October 2009.

[6] Commercial Mobile Alert Service Architecture and Requirements.
http://www.npstc.org/documents/PMG-0035_Final_Recommendations_
v0.6.pdf

[7]1 The Google Directions API
documentation/directions/

[8] Tornado Data http://www.srh.noaa.gov/oun/?n=tornadodata-county

[9] Technical realization of the Short Message Service (SMS) http://www.
3gpp.org/ftp/Specs/html-info/23040.htm

[10] Base 64 http://en.wikipedia.org/wiki/Base64

[11] Internet Calendaring and Scheduling Core Object Specification http://
tools.ietf.org/html/rfc5545

[12] Out-of-State and Long Commutes: 2011 http://www.census.gov/hhes/
commuting/files/2012/ACS-20.pdf

[13] Commuting in the United States: 2009 http://www.census.gov/prod/
2011pubs/acs-15.pdf

[14] Poll: Traffic in the United States http://abcnews.go.com/Technology/
Traffic/story ?id=485098 &page=2#.UVDUaBkbqL8

[15] Commercial Mobile Alert System (CMAS) http://www.fema.gov/
commercial-mobile-alert-system

[16] Calculate distance, bearing and more between Latitude/Longitude points
http://www.movable-type.co.uk/scripts/latlong.html

[17] XACML. https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=xacml

[18] National Hurricane Center. http://www.nhc.noaa.gov/

[19] National Weather Center. http://nwc.ou.edu/

[20] Dynamic Mobile Application. http://www.its.dot.gov/dma/index.htm

[21] Imagine... http://www.its.dot.gov/imagine.htm#two

[22] J. Chung, I. Kim, and C. Schmandt, Guiding light: navigation assistance
system using projection based augmented reality, in Proceedings of
the IEEE International Conference on Consumer Electronics (ICCE11),
IEEE, 2011, pp. 881882, doi: 10.1109/ICCE.2011.5722917.

[23] Rao, H. and Fu, W.-T. ”A General Framework for a Collaborative
Mobile Indoor Navigation Assistance System.” In Proceedings of the
ACM International Conference on Intelligent User Interfaces (IUI), Santa
Monica, CA. 2013.

[24] S. Treuillet and E. Royer, ”Outdoor/Indoor Vision-Based Localiza-
tion For Blind Pedestrian Navigation Assistance”, International Jour-
nal of Image and Graphics Vol. 10, No. 4 (2010) 481496. DOI:
10.1142/S0219467810003937

[25] Shortest Path http://www.cs.princeton.edu/~rs/AlgsDS07/
15ShortestPaths.pdf

https://developers.google.com/maps/

STIDS 2013 Proceedings Page 156

