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Abstract—We report on our research effort, called Fast
Semantic Attribute -Role-Based Access Control (ARBAC) to
develop a semantic platform-independert framework enabling
information originators and security administrators to specify
access rights to information conistently and completely, in a
social network environment,and then to rigorously enforce that
specification. Weuse a modified ARBAC security model and an
OWL ontology with additional rules in a logic programming and

Java framework to express access policy, going beyond the

limitations of previous attempts in this vein. We also
experimented with knowledge compilationoptimizing techniques

that allow access policy constraint checking to be implemented in

real-time, via a bit-vector encoding that can be used for rapid
run-time reasoning.

Index Terms—access control policy, attributebased, role
based, Semantic Web, logic programming, knowledge
compilation, social network, ontology, rulebased reasoning

[. INTRODUCTION

This paper is a report of our effort to provide a semantic
platform-independent  framework so that information
originators and security administrators can specify access rights
to information consistently and completely, in a social network
environment, and then to rigorously enforce that specification.
In previous work [1], we discussed the architecture and some
issues with optimization. In this paper, we introduce the
architecture (adapted from [1]), but focus more on the
optimization and implementation issues; as such, this paper can
be viewed as a follow-on to [1].

For many sensitivity, privacy, and proprietary reasons,
information sharing cannot be totally open. This is especially
true for collaborative social environments such as the emerging
MITRE Partnership Network (MPN), a large-scale
environment for group-based (social network) information
sharing among disparate governmental, commercial, academic,
and other communities.

In addition, it is difficult to enforce unambiguous access
rights and information privileges consistently and coherently
and apply the access rules correctly and efficiently.

In a collaborative social environment, access control of
information protecting privacy, security, and also enabling a
complex range of policy respecting those requirements, is
difficult.

To accomplish these objectives it is necessary to link a
security policy model to a policy language with sufficient
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expressive power to ensure logical consistency. We used a
modified Attribute-Role-Based Access Control (ARBAC)
security model and an OWL ontology with additional rules in a
logic programming framework to express access policy, going
beyond the limitations of previous attempts in this vein, and
then optimized with bit-vectors the runtime policy checking
inference.

We focused on three aspects: expressivity, adaptability, and
efficiency. We developed two implementations: one that
transforms the policy model instance into a logic programming
execution environment that includes rules; and a second that
transforms the model instance into Java data structures, that in
turn are optimized via a bit-encoding. In both cases, the
prototype was embedded in a Java program that interfaces with
external services, e.g., obtaining identity and access tokens
(and their specific attribute information) from the
authentication service.

The structure of the rest of the paper is as follows. In
section II, we present the overall architecture and describe the
runtime components. Then in section III, we briefly walk
through the processing involved, followed in section IV by a
discussion of the implementation. Section V addresses the
optimization issues. We introduce related work in section VI,
and finally, in section VII, we propose future directions.

II. SYSTEM ARCHITECTURE AND RUNTIME COMPONENTS

The general system architecture of the semantic ARBAC
system is represented in Figure 1. It consists of three processes
which flow from left to right. The three processes are: 1) the
Development time process; 2) the Transformation time process;
and 3) the Execution (runtime) process.

The Development process (the red rounded rectangle in
Figure 1) involves:

1) The creation (or update) of the ARBAC ontology,
represented in OWL and RDF, i.e., the semantic policy
model (SPM); and

2) The instantiation of the specific ARBAC policy (policies)
to be transformed and deployed, i.e., the semantic policy
instance (SPI). This is an instance of the semantic policy
model.

The Transformation process (the yellow rounded rectangle
in Figure 1) involves developing and/or generating in Prolog
and Java:
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1) The transformer interpreter that will take the SPI and
generate the runtime semantic policy instance (RSPI),
which is the bit-vector representation of the policy +
rules;

2) The attribute signature assignment engine (ASAE) which
generates and updates the resource access registry (RAR);

3) The RAR, which captures the attributes of the resources
in bit-vector representation, indexed by resource URI;

4) The runtime user access routine (RUAR);

5) The runtime inference engine (RTIE) which will execute
the RSPI using the RUAR.

The Transformation process can thus be considered a

standards, user- and group-level passwords, encryption
methods, hashing algorithms and values, etc.), Classification
Level (proprietary, sensitive, confidential, secret, top-secret,
etc.), Identity (Public Key Infrastructure [PKI], digital
certificates, etc.), Time (time-stamps, time intervals with

respect to various policy notions), etc.
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Figure 2 displays the runtime system components of the
Fast Semantic ARBAC system. The runtime system
components view represents most components of the system
architecture modules displayed in Figure 1, but focuses on their
relationships at runtime only.

A. Semantic Policy Model (SPM)

The SPM consists of the OWL ontology classes, object
properties, and data properties. The major classes consist of:
Subject (the person, organization, software that requests
specific access to a resource), Action (the kind of access
requested, e.g., read, write, create, delete, execute, etc.),
Resource (the object needing to be accessed by a subject:
executable, graphic, text, sound, video, hardware, etc.),
Environment VDOLHQW DVSHFWV RI

environment, e.g., risk or alert level, entry network domain),
Role (traditional roles such as administrator, expert, end user,
developer, etc., that are also related to groups), and related
notions: Authentication
DQG VR GHULYDWLYHO\
(can span information security notions such as protocols,

=

e

Fig. 2. ARBAC Runtime System Components

In addition, rules are a very important component of the
semantic policy model (SPM). Rules exist outside of the OWL
ontology per se, but are based on the classes and properties
specified in the ontology. Rules were expressed initially in
Prolog, and then in Java code for the second prototype. Rules
are potentially recursive and express logical constraints among
and across class and property values (instances). Some
examples are given below.

The SPM represents a set of generic semantic components
for ARBAC policy, and thus constitutes a family of potential
specific ARBAC instantiations.

B. Other Components of the Architecture

For more detailed descriptions of other components of the
architecture, including the SPI, RSPI, RAR, ASAE, RIE,
RUAR, the OWL parser, and external service interface, we
direct interested readers to [1].

III. ACCESS DECISION PROCESS FLOW AND WALKTHROUGH

The following depicts the access decision process flow.

e Initially, the Policy/Rules KB is read and loaded
(including any general rules that apply to all
circumstances) by the inference engine.

e Then a request comes in containing the Subject,
Resource, Action, and Environment.

e 7KH 6XEMHFW(YV
formed.

e An initial Resource/Group/Access check may be
performed.

e For some common accesses these may be cached, or

WKH V8®RFquirRng fughgrpipeeriggyif/a quick decision

can be made.
e  Otherwise, the appropriate rule set is generated and
populated with: any referenced access rule (pre-filtered

KRZ RQH DXWKHQWLFDW H Vtorkezip tha/ KB Grinld) ywd_fast), all facts about the
R Q HSgoriz$ R W H Q VBubpa® Rospurde, VGiroups] ard WEWvironment, and

General (generally applicable) rules.
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X The rule set is passed to a runtime inference engine
which evaluates the truth of the permission statement
(something along the lines of allow(Subject, Access,
Resource)).

X The Inference Engine passes back the permission
decision.

The semantic policy model (SPM) is the holder of much of
the underlying knowledge. Its contents include:

X Ontology

X Access Rules

X Group Membership Rules

X General Rules

The Access Rules ultimately determine whether an action
can be performed on a resource (a ‘Privilege’ to denote the
pairing of actions and resources); each rule has three parts:

1. The head, or consequence, which is always a
privilege (e.g., hasPrivilege(subject22,
read,medicalRecord66) ). This leaves the body of the
rule which for convenience is broken into 2 parts:

2. The Group membership required to obtain the
privilege, and

3. Any additional requirements, expressed in terms of
environment variables.

Example:
hasPrivilege(Subject, Action, Resource)

m agent(Subject), member(Subject, Group),
environmentalConstraints(Group, Action, Resource,
Environment), groupWithPrivilege(Group, Action,
Resource, Environment).

Premises:

X  All access decisions can be expressed as a
privilege m requirementsule.

X All role or subject attributes can be expressed as
group membership.

X Group membership is both dynamic and contextual.

X Resources and their attributes are known a priori. If
resources and attributes can change arbitrarily
dynamically, this will decrease performance.

Knowledge of four things is used to resolve a permission
question:

1. The Subject (the entity requesting the permission)

2. The Resource that the Subject is requesting

permission about
The Action that the Subject wishes to perform

4. The Environment, which is a set of facts/assertions
that the rules may take into account in order to make
a permission determination.

The result will be either a yes or no answer as to whether

permission is granted.

The access rules can have fairly complicated group
membership conditions (e.g., a doctor who is an associate of a
patient’s primary care physician can have read access to that
patient’s medical record). Therefore, determining group
membership may rely on a number of General Rules to help
resolve the inferences (e.g., a doctor may be a member of a
group; if another doctor is also a member of that group, then
that doctor is an associate of the first doctor, etc.). By making

[08)

group membership dynamic we can keep the access rules
general.

IV. IMPLEMENTATION

The Fast Semantic ARBAC software prototype was
designed to show how a system could quickly make access
decisions based on the attribute values of the requesting agent.
How the agent obtained the attribute values is outside the
scope of the prototype; the ARBAC system is provided these
from a separate source, projected to be a session authentication
token (with a prescribed lifespan), that points to the attribute
store, which has been obtained and encoded by the ARBAC
system.

To achieve this, five conceptual classes were defined that
constitute the “ARBAC view” of the world:  Agents,
Resources, Groups, ResourceCollections, and Policies. Two
of these are collections, or sets: Groups (collections of
Agents) and ResourceCollections (collections of Resources).
They are hierarchical, e.g., one group may be a subset of
another group, so any member of the subset group is
automatically a member of the larger group. The other three
classes are “flat” in an ontological sense, but contain many
instances. Agents have (at least) a unique ID, and zero or
more attribute/value pairs, which contain values that may be
assigned to them by an organization or may be values
contained in a security token. A Group is a set of Agents;
group membership can be expressed in two ways: directly (an
Agent by his/her ID value is asserted to be a member of a
specific group) or indirectly (by specifying a set of
attribute/value pairs an agent must possess in order to be a
member of that group; any agent having all of the specified
attribute/value pairs is considered a member of the group).
Each group also has a unique ID. Unique IDs are considered
special attributes and are assigned by the attribute signature
assignment engine (ASAE), which updates the resource access
registry (RAR). Agent IDs in the future will probably inherit
the IDs of the identity token received from the external
authentication service.

Resources and ResourceCollections are organized similarly
to Agents and Groups. Resources also have a unique ID
assigned by the attribute signature assignment engine (ASAE),
and possess attribute/value pairs (such as ownedBy::
someOrganization, or locatedAt:: area). ResourceCollections
likewise are sets of Resources, and membership can also be
asserted directly or indirectly using a set of attribute/value
pairs that a Resource must have.

Policies are different from the other four classes, in that
they specify the “access rules” of what it takes for an Agent to
perform some action on a Resource. In essence, a policy is
just a 3-tuple containing a reference to a ResourceCollection
ID that the policy controls, a reference to the Group ID to
which an Agent must belong, and the action (from an
enumerated set) which the Agent is requesting to perform.

The result is a simple but very flexible way to organize
authorization decisions about accessing resources. In addition
to general group membership, some special cases are also
supported. For instance, a ResourceCollection can be created
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to contain a single resource in order to directly control itbe hdd in other formats, e.g., JSON (Java Script Object
Similarly, a Group ca be defined to consist of a single agentNotation).
thus allowing individualized policies. Again, Groups and Using JSO instead of OWL (withJena)resulted in a
ResourceCollections may be organized in a hierarchy whicherformance increase. Also, because many data sources
simplifies policy creation and application. Some advancedupport JSON this approach will make interoperability much
access control mechanisms, such asxpiraion date/time for easier. Another implementation change was to utieeat bit
an agent’s token value, or the ability to specify negative  vector approachin Java forpolicy evaluation,rather than
conditions (e.g., agents which have a certain attribute/valuerolog. The idea is thdty keeping everything in Javar(tog
pair(s) are NOT allowed access) are not implemented in thigequires a call to an external .dll or .so application) and using
prototype, but are not precluded by this approaeh, (they the inherent efficiency of bit reasoning, performance would
could be added at a later date without having tdesign the increase further. So a parallel implementation using
prototype system). standard Java BitSet class was created, whereby each
The ARBAC software is able to make quick authorizationattribute/value pair is assigned a bit position at runtime.
decisions because 1) most of thequired information is Group membership and ResourceCollection membership were
known apriori and 2) the actual decision becomelmmely then precomputed using a set of bits (i.e., a bit vector). When
lookup-andcompare operation. The policies and resourcean agent selesta Resourceall of the Policies are retrieved
attributes are known and stored in a location accessible to th@ased on the preomputed ResourceCollections, and these are
ARBAC system. The Group and ResourceCollectioncompared with the set of the Agent’s Groups. If any Group is
definition rules are also known ahead of time and storefbund in any of the policies, then the action is approved.
(although these mayeed to be recomputed from time to Given the small set of ¢k available, it was not possibto
time). The agent’s attribute/value pairs are passed to the determine which approach riftog based or bit vector based
ARBAC system (usually via a securelD token, but it can beor both will have the better performance at scalthis
done in other ways) once the agent logs onto the system. THetermination will need to be made during a folowtest and
Groups to which the Agent belongs can thenprecomputed  integration effort.
right after login (before the Agent even selects a Resource, in
most cases). Once the agent selects a Resource and the action V. OPTIMIZATION: BIT-ENCODING
he/she wants to take, a series of lookups take place. First, allBit representation for ontology constructs (classes,
of the policies related to the Groups to whitte Agent properties, etc.), subsumption, and rule reasoning must address
belongs and allow the requested Action are obtained. Next, &lvo related notions:
of the IDs of the ResourceCollections to which the Resource 1) Efficiency of the representatidn space and time. This

belongs are obtained. Then the retrieved policies are includes efficiency of the encoding for storage
examined to see if any of them contain a reference to any of purpcses, but also compaction/compression techniques.
the elevant ResourceCollections. If any one of them does, It also includes the time required to perform the offline,
then that allows the Agent to access the requested Resource  development time encodingas well asthe time
and perform the desired action. If none of the policies required to do the matching, subsumption
contains a reference to any of the possible computations, and automatedasoning performed at
ResourceCollections, then the actiomad allowed. runtime.

The actual implementation of the system allows for several 2) Incremental encoding, i.e., making modifications
possibilities. Based on our work in FY12, the initial design dynamically during runtime to ontology constructs and
represented each of the five conceptual classes as OWL rules, potentially recomputing the encodings of
classs, and each instance as an OWiIndividual. ontology constructs and rules, and then continuing
Attribute/value pairs were implemented as OWL datatype efficient reasoning.

properties, as were the policy tuples. While some of th ontol Construct
reasoning (such as class hierarchy subsumption) could be done 0 ogy onstructs _
in OWL, most of the actual policy/rule reasoning was done The primaryontology constructs we use are the following:

using Prolg. The ARBAC system converted the X Group: A subclass of Collection. There are Classes of
(hierarchically extended) information into Prolog assertions Groups (such ahe Federally Funded Research and

and then made a prolog query to see if a particular DevelopmenCenter{FFRD( clasg and there are
Agent/Resource/Action combination was allowable. While instances of Classes that are groups (e.g., the instances
this proved workable, expressing all of the inforimatin of the FFRDC classsuch as MITRE, Aerospace, Los
OWL (and usg the JenaDWL reasoner to do some of the Alamos National Lab, etf.

pre-computation) turned out to be somewhat cumbersome. X ResourceA resource is any hardware, software, or
Furthermore, the OWL format is not very interoperable with service.

what are likely to be the other components of a true ARBAC x ResourceCollectionA subclass of Collection. There
system (such as otheatabases). Since only a small portion are Classes of ResourceCollections and there instances
of the OWL semantics were needed, it was decided to of ClassesHat are resource collections.

generalize the expression of the ARBAC data by allowting i
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X User A user (agent) is generally a person, but could
be a software agent.

X Policy: A policy is a set of access constraints on a
Group or Resource created by a User who has the
requisite permissions to create the policy.

X AccessThe kind of access a User has to a Resource,
as permitted by a Policy. Examples: Create, Read,
Write, Delete, Execute, etc.

%HFDXVH ZH DUH

access control, whether or not a User U belongs to a specific

GroupisaBoROHDQ DWWULEXWH ZLWK Y
RI YDOXH pWUXHY LI WKH 8VHU 8 LV
ZKH

Rl YDOXH pIDOVHY 6LPLODUO\
member of a ResourceCollection RG is a Boolean attribute. If
it helps us in our processing, even a User U can be considered
a singleton Group, i.e., a specific instance of a Group having
just one member, U.

We assume a User U can create a Policy P (perhaps of a

IRFXVLQJ SULPD

provides a top (greatest or most general) and bottom (least or
most specific) class, called respectively Thing and Nothing,
which makes OWL into a language able to model bounded
(semi) lattices Bottom is often notated as A with top notated
as a

C. Encoding Bit Representations of Subsumption and

Inheritance
‘.%%? ["P\/SEd the literature,
ive matrix represeLljltatlon For all

Ube 1nnin, %érs
0 gt%gjs iﬁCEC{W A % asses‘ﬂi;
?jll'—t(h e syn ous

Rt ) sl
Wﬁl:‘l{fl& i r?trﬁaplonéel%e use s example, rat T than

one drawn from our domain ontology, simply because our
ontology does not currently have much depth and no multiple
inheritance, which this example has. 1RWH WKDW WKHYV
subclasses are not ontologically correct, but have been

VSHFLILF W\SH WKDW JUDQWYV D Q RWRPNogasd oa simple example.,, ey HY §

to a Resource R of ResourceCollection RC if the User is a
PHPEHU RI VRPH *URXS * DQG
ResourceCollection. Other policies may specify Roles, etc.,
which we are not yet addressing here.

The bit-representation for Group (and Resource) constructs
is similar to the following, naive representation:

Table 1. User Groups: Bit Representation

Gl | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9
Ul 1 1 0 0 0 0 0 0 0
U2 0 1 1 0 0 0 0 0 0
U3 0 0 1 1 1 0 0 0 0
U4 1 0 1 1 1 1 0 0 0

B. Subsumption

Subsumption is the relatively simple automated reasoning
that can be done on hierarchies of classes, i.e., the taxonomic

subclass LEDFNERQHY RI WKH RQWRORJ\

are important for ontologies, but also important for strongly
typed programming languages, which perform subsumption
UHDVRQLQJ DV uW\SH
constructions in the specific program.
Ait-Kaci et al [4] proposed a number of bit-representations
that could be used for very efficient subsumption reasoning, by
plungeing the hierarchy of classes (or types), which typically

FRQVWLWXWHY D uSDUWLDOO\ RWWGHUHG VHW

lattice, thus enabling efficient Greatest Lower Bound (GLB)
and Least Upper Bound (LUB) operations, and efficient
transitive closure. In an arbitrary poset, neither the GLB or the
LUB is guaranteed to exist, but there are formal structural
embeddings one can perform on the poset into an order-
preserving structure, a semilattice, a lower semilattice in this
initial case, which preserves the GLB, sometimes called a
meet-semilattice, which says that for any nonempty finite
subset of poset, there is a GLB. Note that the ordering relation
on the elements of the poset (which define the poset) is
WA\SLFDOO\ QRWDWHG DV 7 H J
antisymmetric, and transitive.

An ontology subclasgelation is an ordering relation on the
classes, i.e., reflexive, antisymmetric, and transitive. OWL

Asso ciateP rofessor )

isa—""

*URXS * T

isa ;___TenuredProfessor___.-

— ipa " —iza

TeachingAssistant“,‘-
— Student )= |. . i
—- -iga

" PhDStudent )

Fig. 3. Academic Role Ontology

Table 2 displays the naive bit matrix representation for this
RQWRORJ\fV VXEVXPSWLRQ UHODWLRQV
goes as follows:
1) Initially assign 1 (true) for every class (i, j) (where i is
the row, j is the column) and itself, because every
class subsumes itself. This means there is a diagonal
with value 1 from (1, 1) to (n, n).
Then for each cell of the matrix (i, j), if the class i is

2)
7 KH VoHan¥eXibr oPdR Y, distell OMIfeKIL bitérwise

assign the value 0.

LQIHUHQFHY RY H UpblegyNaiyy bit meriy reppsentatioppd SghspryptioR |

i row Pe St E As Te [PhD [Teachi
j: column rs ud m S0 nu [Studenng
on en pl ci re |t Assistd
t oy at d nt
€ e B
SRYEW & LBWR |[D ERR
of
es so
so r
r
Person 1 1 1 1 1 1 1
Student 0 1 0 0 0 1 1
Employee 0 0 1 1 1 0 1
Associate 0 0 0 1 0 0 0
D » EPURHUH|” UV UHIOH|LYH
Tenured 0 0 0 0 1 0 0
Professor
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PhD 0 0 0 0 0 1 0
Student

Teaching 0 0 0 0 0 0 1
Assistant

A 0 0 0 0 0 0 0

This encoding thus is the reflexive, transitive closure of the
(antisymmetric) subclass (isa) hierarchy of Figure 4.
The naive bit-assignment algorithm as represented in Table

2 is bottom-XS ZLWK DQ LPS @)L Flhalags&R W W R P q€Femn

Employee and Student, and then Person, are the only classes
which have subclasses.

Subsumption between two classes can then be computed in
constant time using a binary AND operation on the bit vectors
of the two classes. The subsumption operator over the bit-
encoded classes is defined as follows.

Definition: Subsumption over Bit-Encoded Classes:

Let x;, « x, be classes in a subclass hierarchy, Jbe an bit-
encoding function, and L be the subsume relation (where D E
are classesand D ELV UHD G BibsyunteCrBsY ¥y

Then the following holds:

i Jx)C o) | Ix) AND Jix) = Ixy)

[the encoding of the first class subsumes the
encoding of the second class if and only if the binary
AND of those encodings is equal to the encoding of
the second class]

i )2 J) | Jg) AND ) Z Xox)

[the encoding of the first class does not subsume
the encoding of the second class if and only if the
binary AND of those encodings is not equal to the
encoding of the second class]

Example 1: Does TeachingAssistant subsume
AssociateProfessor?
I.e., does AssociateProfessor occur in the transitive closure of
the subclass relation of TeachingAssistant?
SubsumeS (TeachingAssistant, AssociateProfessor)

= AND (0000001, 0001000) = 00000000, i.e., no.

Example 2: Does Person subsume TeachingAssistant?
Subsumes (Person, TeachingAssistant)

= AND (1111111, 0000001) = 0000001, i.e., yes,
because the result 0000001 = 0000001 (the encoding for
TeachingAssistant.

Example 3: Does Employee subsume Student?
Subsumes (Employee, Student)
= AND (0011101, 0100011) = 0000001, i.e., no,

because the result 0000001 z 0100011 (the encoding for
Student).

What if one wants at runtime to add a new class
incrementally (dynamically) after the above bit-representation
has been generated at development time? We add the new class

ResearchAssistant to the original ontology, resulting in Figure
4.

Recomputing our bit-matrix, we arrive at the following,
Table 3. Note that we have to add a new bit by creating a new
row and new column for ResearchAssistant, which we add as a
new i+1 row and a new j+1 column into the matrix (but above
the implicit ().

( AssociateProfessar )

~1 PhDStudent )

Fig. 4. Academic Role Ontology + ResearchAssistant

If we added the new bit as a new row and new column at
the beginning of the matrix, then we would maintain the 1-bit
diagonal we saw in Table 2. In addition, of course, we have to
update the entries in the new Research Assistant column with
their values (1 if an ancestor of Research Assistant, 0
otherwise). The naive bit-encoding of Subsumption requires
n2 bits.

Table 3. Naive bit matrix representation of Subsumption with Incrementally
Added ResearchAssistant Class

it row Resear| Pe St E As Te PhD |Teachi
j: column ch rs ud m S0 nu |[Studen| ng
Assista| on en pl ci re t |Assistal
nt t oy at d nt
ee e Pr
Pr of
of es
es S0
S0 r
r
Person 1 1 1 1 1 1 1 1
Student 1 0 1 0 0 0 1 1
Employee 1 0 0 1 1 1 0 1
Associate 0 0 0 0 1 0 0 0
Professor
Tenured 0 0 0 0 0 1 0 0
Professor
PhD 0 0 0 0 0 0 1 0
Student
Teaching 0 0 0 0 0 0 0 1
Assistant
Research 1 0 0 0 0 0 0 0
Assistant
A 0 0 0 0 0 0 0 0

Ait-Kaci et al [4] propose a number of new methods for
encoding subsumption. Their first method requires a bottom-up
(from the terminal classes to the root class) computing of the
binary OR of the bits assigned to children classes, the result of
which becomes the bit-encoding of their parent classes. New
bits are introduced whenever a parent has just one class and
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whenever a false positive subsumption would result. If
incremental updates to the encoding are necessary, there are
potential complications. If one wants to add new leaf (terminal)
class nodes to the hierarchy, such as we did with
ResearchAssistant above, there are no issues. However, if one
wants to add new non-terminal (or root) nodes, there are
complications. If a class C; is added that has the same
inheriting subclasses as an existing class C;, then a new bit
must be added to re-encode the existing class and all of its
ancestors too. In addition, any new non-terminal class will have
to have the ancestors of its children classes checked for
conflicting encodings.

For a discussion of other bit-encoding techniques, the
interested reader is directed to [17, pp. 16-23]. There are other
encoding approaches, including interval-encodings. Interval-
based encodings compute non-overlapping codes for the
children within the interval of the parent, but do not support
multiple inheritance.

In fact, although each of the above approaches out-perform
the naive encoding, all of them have some issues (except
perhaps [17], which relies on binary representation of prime
numbers) with incremental (dynamic) updates, requiring some
recomputation of encodings and determination of conflicts,
which in turn may require recomputation of encodings.

Rules too may be given encodings, but space limitations
preclude a discussion of this topic here, but see [8] for
Boolean satisfiability (SAT) reasoning using bit-matrices.

VI. RELATED WORK

There is much previous related research across multiple
dimensions (access control regimes, policy languages and
approaches, specialized languages (and logics) vs. ontology
approaches, knowledge compilation issues, bit-vector and
other optimization approaches, social network approaches,
privacy vs. security issues and approaches, etc.) that have
influenced our current and impending work.

In order to accomplish our objectives it was necessary to
link a security policy model to a policy language with
sufficient expressive power to ensure logical consistency. We
extend the NIST Role-Based Access Control (RBAC) security
model [15] and related approaches [18-19], as have many
other researchers to include attributes, and extend the Web
Ontology Language (OWL) with additional rules to express
access policy using logic programming, and beyond the
limitations of [20]. Unfortunately, given our own space
limitations here, we cannot do an extensive comparison of our
approach across the multiples dimensions with other
approaches, nor justly describe those other approaches.

In addition, there is extensive research in more general
policy-based approaches that could be employed also for
access control [21-22].

There are other Semantic Web-based approaches (including
[22]), some of which address more specifically social network
types of applications [23, 24].

For implementation in real-time, via a bit-vector or other
efficient encodings that can be used for rapid run-time
reasoning, we’ve looked at [2-6, 7-12, 17]. For bit-vector
representation to support RDF triples, we investigated [11-14].

Our own previous work addressed issues in translating
OWL/RDF ontologies and Semantic Web Rule Language
Rules (SWRL) [25] into logic programming for efficient
runtime reasoning, and employing knowledge compilation
techniques [26-28], which we also generalized to address
services using first-order logic theorem provers and for
ontology alignment [29].

VII.FUTURE WORK

Although we have investigated and implemented some
optimizations, e.g., extensionalization and delayed rule
evaluation, we have only rudimentarily implemented the
second-level of optimization we intended, i.e., the bit-
representation execution at runtime.

If we had additional time, we intended to implement the
prime-number bit-encoding of subsumption described in [17].
In general, for the restricted reasoning we need for access
control policy enforcement as described in this paper, and
given the probable volume of access request determinations
(and thus subsumption and equivalence checks, rule
execution) we foresee needing in a complex collaborative
social network environment such as the MPN, optimized
efficient automated reasoning is necessary. Traditional, more
general description logic reasoners were deemed too slow
(Pellet, etc.) In addition, most proposed bitmap encodings for
subsumption and type reasoning are efficiently statically
initialized and then used, but dynamically updating the
subsumption/type hierarchy, i.e., adding, deleting, modifying
classes and properties (which will happen, under the Open
World Assumption of OWL and first-order logic), leads to
degraded performance and increasingly baroque re-encodings
to avoid conflicts.

Therefore, we would consider implementing the bit-
encoding scheme based on assigning prime numbers to nodes
in the class and property subsumption graphs, as developed by
Preuveneers and Berbers [17, 30]. Adding a new class or
property does not require re-encoding. Furthermore, the
encoding automatically provides us the direction of the
relationship. Modular hierarchies, each separately encoded,
with very efficient subsumption-checking, are the result.
Figure 5 depicts a subclass hierarchy encoded using prime
numbers.

List of 2 (A 1s G a child of C? No,

Primes: 15708/30=523.6
2
Is G a child of B? Yes,
3 15708/6 = 2618 exactly
5 \ Is G a child of E? Yes,
|

15708/22 = 714 exactly

Is G a child of F? No,
15708/286 = 54.9

\ \ Is F a child of B? No,
) = e 286/6=47.667

*  When you create a node, assign it

the next available prime number In an actual

implementation, 1 could
be the root although
technically 1 is not a
prime.

A
*  Assign its subsumption number by 17 (67 ﬂ
multiplyingits prime number by
the subsumption number(s) of its
immediate parent(s)

 (=422a7)

*  Subsumption is true if rem(x,y)=0

FIG. 5. PRIME NUMBER ENCODING FOR CLASS SUBSUMPTION
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In addition to the use of prime numbers, the scheme of [17,
30] defines a compact binary matrix representation of the
inheritance relationships, which we will not go into here.

Evaluation done in [30, p. 32] shows that subsumption
testing in his scheme is much faster than that of some major
existing description logic reasoners, on the order of 250 times
faster than Pellet. An evaluation performed on a different
project we are involved in, written in C/C++ demonstrated
1000% improvement using this method of subsumption
checking over the previous naive, breadth-first search of the
subsumption graph.
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