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Abstract—We report on our research effort, called Fast 
Semantic Attribute -Role-Based Access Control (ARBAC), to 
develop a semantic platform -independent framework enabling 
information originators and security administrators to specify 
access rights to information consistently and completely, in a 
social network environment, and then to rigorously enforce that 
specification. We use a modified ARBAC security model and an 
OWL ontology with additional rules in a logic programming and 
Java framework to express access policy, going beyond the 
limitations of previous attempts in this vein. We also 
experimented with knowledge compilation optimizing techniques 
that allow access policy constraint checking to be implemented in 
real-time, via a bit-vector encoding that can be used for rapid 
run-time reasoning. 

Index Terms—access control policy, attribute-based, role-
based, Semantic Web, logic programming, knowledge 
compilation, social network, ontology, rule-based reasoning 

I.  INTRODUCTION 
This paper is a report of our effort to provide a semantic 

platform-independent framework so that information 
originators and security administrators can specify access rights 
to information consistently and completely, in a social network 
environment, and then to rigorously enforce that specification. 
In previous work [1], we discussed the architecture and some 
issues with optimization. In this paper, we introduce the 
architecture (adapted from [1]), but focus more on the 
optimization and implementation issues; as such, this paper can 
be viewed as a follow-on to [1].  

For many sensitivity, privacy, and proprietary reasons, 
information sharing cannot be totally open. This is especially 
true for collaborative social environments such as the emerging 
MITRE Partnership Network (MPN), a large-scale 
environment for group-based (social network) information 
sharing among disparate governmental, commercial, academic, 
and other communities.  

In addition, it is difficult to enforce unambiguous access 
rights and information privileges consistently and coherently 
and apply the access rules correctly and efficiently.   

In a collaborative social environment, access control of 
information protecting privacy, security, and also enabling a 
complex range of policy respecting those requirements, is 
difficult. 

To accomplish these objectives it is necessary to link a 
security policy model to a policy language with sufficient 

expressive power to ensure logical consistency. We used a 
modified Attribute-Role-Based Access Control (ARBAC) 
security model and an OWL ontology with additional rules in a 
logic programming framework to express access policy, going 
beyond the limitations of previous attempts in this vein, and 
then optimized with bit-vectors the runtime policy checking 
inference.  

We focused on three aspects: expressivity, adaptability, and 
efficiency. We developed two implementations: one that 
transforms the policy model instance into a logic programming 
execution environment that includes rules; and a second that 
transforms the model instance into Java data structures, that in 
turn are optimized via a bit-encoding. In both cases, the 
prototype was embedded in a Java program that interfaces with 
external services, e.g., obtaining identity and access tokens 
(and their specific attribute information) from the 
authentication service. 

The structure of the rest of the paper is as follows. In 
section II, we present the overall architecture and describe the 
runtime components. Then in section III, we briefly walk 
through the processing involved, followed in section IV by a 
discussion of the implementation.  Section V addresses the 
optimization issues. We introduce related work in section VI, 
and finally, in section VII, we propose future directions. 

II.  SYSTEM ARCHITECTURE AND RUNTIME COMPONENTS  
The general system architecture of the semantic ARBAC 

system is represented in Figure 1. It consists of three processes 
which flow from left to right. The three processes are: 1) the 
Development time process; 2) the Transformation time process; 
and 3) the Execution (runtime) process. 

The Development process (the red rounded rectangle in 
Figure 1) involves:  
1) The creation (or update) of the ARBAC ontology, 

represented in OWL and RDF, i.e.,  the semantic policy 
model (SPM); and 

2) The instantiation of the specific ARBAC policy (policies) 
to be transformed and deployed, i.e., the semantic policy 
instance (SPI). This is an instance of the semantic policy 
model. 
The Transformation process (the yellow rounded rectangle 

in Figure 1) involves developing and/or generating in Prolog 
and Java:  
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1) The transformer interpreter that will take the SPI and 
generate the runtime semantic policy instance (RSPI), 
which is the bit-vector representation of the policy + 
rules;  

2) The attribute signature assignment engine (ASAE) which 
generates and updates the resource access registry (RAR); 

3) The RAR, which captures the attributes of the resources 
in bit-vector representation, indexed by resource URI;  

4) The runtime user access routine (RUAR);  
5) The runtime inference engine (RTIE) which will execute 

the RSPI using the RUAR.  
The Transformation process can thus be considered a 

knowledge compilation process, where source semantic 
models and their interpreting engines get transformed to 
efficient Execution time process objects. 

The Execution process (the blue rounded rectangle in 
Figure 1) thus includes the RAR, ASAE, RTIE, and the RUAR, 
in addition to access to the Development and Transformation 
models and data. 

  
Fig. 1. Fast Semantic ARBAC System Architecture 

 
Figure 2 displays the runtime system components of the 

Fast Semantic ARBAC system. The runtime system 
components view represents most components of the system 
architecture modules displayed in Figure 1, but focuses on their 
relationships at runtime only.  

A. Semantic Policy Model (SPM) 
The SPM consists of the OWL ontology classes, object 
properties, and data properties. The major classes consist of: 
Subject (the person, organization, software that requests 
specific access to a resource), Action (the kind of access 
requested, e.g., read, write, create, delete, execute, etc.), 
Resource (the object needing to be accessed by a subject: 
executable, graphic, text, sound, video, hardware, etc.), 
Environment  ���V�D�O�L�H�Q�W�� �D�V�S�H�F�W�V�� �R�I�� �W�K�H�� �V�S�D�F�H�� �R�U�� �V�H�V�V�L�R�Q�¶�V��
environment, e.g., risk or alert level, entry network domain), 
Role (traditional roles such as administrator, expert, end user, 
developer, etc., that are also related to groups), and related 
notions: Authentication ���K�R�Z�� �R�Q�H�� �D�X�W�K�H�Q�W�L�F�D�W�H�V�� �R�Q�H�¶�V�� �L�G�H�Q�W�L�W�\��
�D�Q�G�� �V�R���� �G�H�U�L�Y�D�W�L�Y�H�O�\���� �R�Q�H�¶�V�� �S�R�W�H�Q�W�L�D�O�� �D�F�F�H�V�V�� �U�L�J�K�W�V��, Security 
(can span information security notions such as protocols, 

standards, user- and group-level passwords, encryption 
methods, hashing algorithms and values, etc.), Classification 
Level (proprietary, sensitive, confidential, secret, top-secret, 
etc.), Identity (Public Key Infrastructure [PKI], digital 
certificates, etc.), Time (time-stamps, time intervals with 
respect to various policy notions), etc.  

 
Fig. 2. ARBAC Runtime System Components 

 
In addition, rules are a very important component of the 

semantic policy model (SPM). Rules exist outside of the OWL 
ontology per se, but are based on the classes and properties 
specified in the ontology. Rules were expressed  initially in 
Prolog, and then in Java code for the second prototype. Rules 
are potentially recursive and express logical constraints among 
and across class and property values (instances). Some 
examples are given below. 

The SPM represents a set of generic semantic components 
for ARBAC policy, and thus constitutes a family of potential 
specific ARBAC instantiations. 

B. Other Components of the Architecture 
For more detailed descriptions of other components of the 

architecture, including the SPI, RSPI, RAR, ASAE, RIE, 
RUAR, the OWL parser, and external service interface, we 
direct interested readers to [1]. 

III. ACCESS DECISION PROCESS FLOW AND WALKTHROUGH 
The following depicts the access decision process flow. 
x Initially, the Policy/Rules KB is read and loaded 

(including any general rules that apply to all 
circumstances) by the inference engine.  

x Then a request comes in containing the Subject, 
Resource, Action, and Environment. 

x �7�K�H�� �6�X�E�M�H�F�W�¶�V�� �*�U�R�X�S�� �P�H�P�E�H�U�V�K�L�S�� �L�V�� �O�R�R�N�H�G�� �X�S�� �D�Q�G��
formed. 

x An initial Resource/Group/Access check may be 
performed. 

x For some common accesses these may be cached, or 
may require no further processing if a quick decision 
can be made. 

x Otherwise, the appropriate rule set is generated and 
populated with: any referenced access rule (pre-filtered 
to keep the KB small and fast), all facts about the 
Subject, Resource, Groups, and Environment, and 
General (generally applicable) rules. 
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�x The rule set is passed to a runtime inference engine 
which evaluates the truth of the permission statement 
(something along the lines of allow(Subject, Access, 
Resource)). 

�x The Inference Engine passes back the permission 
decision. 

The semantic policy model (SPM) is the holder of much of 
the underlying knowledge. Its contents include: 

�x Ontology 
�x Access Rules 
�x Group Membership Rules 
�x General Rules 

The Access Rules ultimately determine whether an action 
can be performed on a resource (a ‘Privilege’   to   denote   the  
pairing of actions and resources); each rule has three parts: 

1. The head, or consequence, which is always a 
privilege (e.g., hasPrivilege(subject22, 
read,medicalRecord66) ). This leaves the body of the 
rule which for convenience is broken into 2 parts: 

2. The Group membership required to obtain the 
privilege, and 

3. Any additional requirements, expressed in terms of 
environment variables. 

Example:  
hasPrivilege(Subject, Action, Resource)  

�m  agent(Subject), member(Subject, Group),  
environmentalConstraints(Group, Action, Resource, 
Environment), groupWithPrivilege(Group, Action, 
Resource, Environment). 

Premises: 
�x All access decisions can be expressed as a  

privilege  �m  requirements rule. 
�x All role or subject attributes can be expressed as 

group membership. 
�x Group membership is both dynamic and contextual. 
�x Resources and their attributes are known a priori. If 

resources and attributes can change arbitrarily 
dynamically, this will decrease performance. 

Knowledge of four things is used to resolve a permission 
question: 

1. The Subject (the entity requesting the permission) 
2. The Resource that the Subject is requesting 

permission about 
3. The Action that the Subject wishes to perform 
4. The Environment, which is a set of facts/assertions 

that the rules may take into account in order to make 
a permission determination. 

The result will be either a yes or no answer as to whether 
permission is granted. 

The access rules can have fairly complicated group 
membership conditions (e.g., a doctor who is an associate of a 
patient’s   primary   care  physician   can  have   read access to that 
patient’s   medical   record).      Therefore,   determining   group  
membership may rely on a number of General Rules to help 
resolve the inferences (e.g., a doctor may be a member of a 
group; if another doctor is also a member of that group, then 
that doctor is an associate of the first doctor, etc.).  By making 

group membership dynamic we can keep the access rules 
general. 

IV. IMPLEMENTATION 
The Fast Semantic ARBAC software prototype was 

designed to show how a system could quickly make access 
decisions based on the attribute values of the requesting agent.  
How the agent obtained the attribute values is outside the 
scope of the prototype; the ARBAC system is provided these 
from a separate source, projected to be a session authentication 
token (with a prescribed lifespan), that points to the attribute 
store, which has been obtained and encoded by the ARBAC 
system.  

To achieve this, five conceptual classes were defined that 
constitute   the   “ARBAC   view”   of   the   world:      Agents,  
Resources, Groups, ResourceCollections, and Policies.  Two 
of these are collections, or sets:  Groups (collections of 
Agents) and ResourceCollections (collections of Resources).  
They are hierarchical, e.g., one group may be a subset of 
another group, so any member of the subset group is 
automatically a member of the larger group.  The other three 
classes   are   “flat”   in   an   ontological   sense,   but   contain   many  
instances.  Agents have (at least) a unique ID, and zero or 
more attribute/value pairs, which contain values that may be 
assigned to them by an organization or may be values 
contained in a security token.  A Group is a set of Agents; 
group membership can be expressed in two ways: directly (an 
Agent by his/her ID value is asserted to be a member of a 
specific group) or indirectly (by specifying a set of 
attribute/value pairs an agent must possess in order to be a 
member of that group; any agent having all of the specified 
attribute/value pairs is considered a member of the group).  
Each group also has a unique ID. Unique IDs are considered 
special attributes and are assigned by the attribute signature 
assignment engine (ASAE), which updates the resource access 
registry (RAR). Agent IDs in the future will probably inherit 
the IDs of the identity token received from the external 
authentication service. 

Resources and ResourceCollections are organized similarly 
to Agents and Groups.  Resources also have a unique ID 
assigned by the attribute signature assignment engine (ASAE), 
and possess attribute/value pairs (such as ownedBy:: 
someOrganization, or locatedAt:: area).  ResourceCollections 
likewise are sets of Resources, and membership can also be 
asserted directly or indirectly using a set of attribute/value 
pairs that a Resource must have.  

Policies are different from the other four classes, in that 
they  specify  the  “access  rules”  of  what  it  takes  for  an  Agent  to  
perform some action on a Resource.  In essence, a policy is 
just a 3-tuple containing a reference to a ResourceCollection 
ID that the policy controls, a reference to the Group ID to 
which an Agent must belong, and the action (from an 
enumerated set) which the Agent is requesting to perform. 

The result is a simple but very flexible way to organize 
authorization decisions about accessing resources.  In addition 
to general group membership, some special cases are also 
supported.  For instance, a ResourceCollection can be created 
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to contain a single resource in order to directly control it.  
Similarly, a Group can be defined to consist of a single agent 
thus allowing individualized policies.  Again, Groups and 
ResourceCollections may be organized in a hierarchy which 
simplifies policy creation and application.  Some advanced 
access control mechanisms, such as an expiration date/time for 
an   agent’s   token   value,   or   the   ability   to   specify   negative  
conditions (e.g., agents which have a certain attribute/value 
pair(s) are NOT allowed access) are not implemented in this 
prototype, but are not precluded by this approach (i.e., they 
could be added at a later date without having to re-design the 
prototype system). 

The ARBAC software is able to make quick authorization 
decisions because 1) most of the required information is 
known a priori and 2) the actual decision becomes a largely 
lookup-and-compare operation.  The policies and resource 
attributes are known and stored in a location accessible to the 
ARBAC system.  The Group and ResourceCollection 
definition rules are also known ahead of time and stored 
(although these may need to be recomputed from time to 
time).      The   agent’s   attribute/value   pairs   are   passed   to   the  
ARBAC system (usually via a secureID token, but it can be 
done in other ways) once the agent logs onto the system.  The 
Groups to which the Agent belongs can then be pre-computed 
right after login (before the Agent even selects a Resource, in 
most cases).  Once the agent selects a Resource and the action 
he/she wants to take, a series of lookups take place.  First, all 
of the policies related to the Groups to which the Agent 
belongs and allow the requested Action are obtained.  Next, all 
of the IDs of the ResourceCollections to which the Resource 
belongs are obtained.  Then the retrieved policies are 
examined to see if any of them contain a reference to any of 
the relevant ResourceCollections.  If any one of them does, 
then that allows the Agent to access the requested Resource 
and perform the desired action.  If none of the policies 
contains a reference to any of the possible 
ResourceCollections, then the action is not allowed. 

The actual implementation of the system allows for several 
possibilities.  Based on our work in FY12, the initial design 
represented each of the five conceptual classes as OWL 
classes, and each instance as an OWL individual.  
Attribute/value pairs were implemented as OWL datatype 
properties, as were the policy tuples.  While some of the 
reasoning (such as class hierarchy subsumption) could be done 
in OWL, most of the actual policy/rule reasoning was done 
using Prolog.  The ARBAC system converted the 
(hierarchically extended) information into Prolog assertions 
and then made a prolog query to see if a particular 
Agent/Resource/Action combination was allowable.  While 
this proved workable, expressing all of the information in 
OWL (and using the Jena OWL reasoner to do some of the 
pre-computation) turned out to be somewhat cumbersome.  
Furthermore, the OWL format is not very interoperable with 
what are likely to be the other components of a true ARBAC 
system (such as other databases).  Since only a small portion 
of the OWL semantics were needed, it was decided to 
generalize the expression of the ARBAC data by allowing it to 

be held in other formats, e.g., JSON (Java Script Object 
Notation). 

Using JSON instead of OWL (with Jena) resulted in a 
performance increase.  Also, because many data sources 
support JSON this approach will make interoperability much 
easier.  Another implementation change was to use a direct bit 
vector approach in Java for policy evaluation, rather than 
Prolog.  The idea is that by keeping everything in Java (Prolog 
requires a call to an external .dll or .so application) and using 
the inherent efficiency of bit reasoning, performance would 
increase further.  So a parallel implementation using the 
standard Java BitSet class was created, whereby each 
attribute/value pair is assigned a bit position at runtime.  
Group membership and ResourceCollection membership were 
then pre-computed using a set of bits (i.e., a bit vector).  When 
an agent selects a Resource, all of the Policies are retrieved 
based on the pre-computed ResourceCollections, and these are 
compared  with  the  set  of  the  Agent’s  Groups.    If  any  Group  is  
found in any of the policies, then the action is approved.  
Given the small set of data available, it was not possible to 
determine which approach (Prolog based or bit vector based, 
or both) will have the better performance at scale; this 
determination will need to be made during a follow-on test and 
integration effort. 

V. OPTIMIZATION: BIT-ENCODING 

Bit representation for ontology constructs (classes, 
properties, etc.), subsumption, and rule reasoning must address 
two related notions: 

1) Efficiency of the representation in space and time. This 
includes efficiency of the encoding for storage 
purposes, but also compaction/compression techniques. 
It also includes the time required to perform the offline, 
development time encoding, as well as the time  
required to do the matching, subsumption 
computations, and automated reasoning performed at 
runtime. 

2) Incremental encoding, i.e., making modifications 
dynamically during runtime to ontology constructs and 
rules, potentially recomputing the encodings of 
ontology constructs and rules, and then continuing 
efficient reasoning. 

A. Ontology Constructs 

The primary ontology constructs we use are the following: 
�x Group: A subclass of Collection. There are Classes of 

Groups (such as the Federally Funded Research and 
Development Center [FFRDC] class) and there are 
instances of Classes that are groups (e.g., the instances 
of the FFRDC class, such as MITRE, Aerospace, Los 
Alamos National Lab, etc.) 

�x Resource: A resource is any hardware, software, or 
service. 

�x ResourceCollection: A subclass of Collection. There 
are Classes of ResourceCollections and there instances 
of Classes that are resource collections. 
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�x User: A user (agent) is generally a person, but could 
be a software agent. 

�x Policy: A policy is a set of access constraints on a 
Group or Resource created by a User who has the 
requisite permissions to create the policy. 

�x Access: The kind of access a User has to a Resource, 
as permitted by a Policy. Examples: Create, Read, 
Write, Delete, Execute, etc.  

�%�H�F�D�X�V�H���Z�H���D�U�H���I�R�F�X�V�L�Q�J���S�U�L�P�D�U�L�O�\���R�Q���³�D�W�W�U�L�E�X�W�H�V�´���I�R�U��
access control, whether or not a User U belongs to a specific 
Group is a Bo�R�O�H�D�Q���D�W�W�U�L�E�X�W�H�����Z�L�W�K���Y�D�O�X�H���H�L�W�K�H�U���µ�W�U�X�H�¶���R�U���µ�I�D�O�V�H�¶��
���R�I���Y�D�O�X�H���µ�W�U�X�H�¶���L�I���W�K�H���8�V�H�U���8���L�V���D���P�H�P�E�H�U���R�I���D���*�U�R�X�S���*�����H�O�V�H��
�R�I���Y�D�O�X�H���µ�I�D�O�V�H�¶�������6�L�P�L�O�D�U�O�\�����Z�K�H�W�K�H�U���R�U���Q�R�W���D���5�H�V�R�X�U�F�H���5���L�V���D��
member of a ResourceCollection RG is a Boolean attribute. If 
it helps us in our processing, even a User U can be considered 
a singleton Group, i.e., a specific instance of a Group having 
just one member, U. 

We assume a User U can create a Policy P (perhaps of a 
�V�S�H�F�L�I�L�F���W�\�S�H�����W�K�D�W���J�U�D�Q�W�V���D�Q�R�W�K�H�U���8�V�H�U���8�¶���V�S�H�F�L�I�L�F���$�F�F�H�V�V�H�V���$��
to a Resource R of ResourceCollection RC if the User is a 
�P�H�P�E�H�U�� �R�I�� �V�R�P�H�� �*�U�R�X�S�� �*�� �D�Q�G�� �*�U�R�X�S�� �*�� �µ�R�Z�Q�V�¶�� �W�K�H��
ResourceCollection. Other policies may specify Roles, etc., 
which we are not yet addressing here. 

The bit-representation for Group (and Resource) constructs 
is similar to the following, naïve representation: 

Table 1. User Groups: Bit Representation 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 
U1 1 1 0 0 0 0 0 0 0 
U2 0 1 1 0 0 0 0 0 0 
U3 0 0 1 1 1 0 0 0 0 
U4 1 0 1 1 1 1 0 0 0 

 

B. Subsumption 
Subsumption is the relatively simple automated reasoning 

that can be done on hierarchies of classes, i.e., the taxonomic 
subclass �µ�E�D�F�N�E�R�Q�H�¶���R�I���W�K�H���R�Q�W�R�O�R�J�\�����7�K�H�V�H���V�X�E�F�O�D�V�V���K�L�H�U�D�U�F�K�L�H�V��
are important for ontologies, but also important for strongly 
typed programming languages, which perform subsumption 
�U�H�D�V�R�Q�L�Q�J�� �D�V�� �µ�W�\�S�H�� �L�Q�I�H�U�H�Q�F�H�¶�� �R�Y�H�U�� �W�K�H�� �I�R�U�P�D�O�� �W�\�S�H�V�� �R�I��
constructions in the specific program.  

Ait-Kaci et al [4] proposed a number of bit-representations 
that could be used for very efficient subsumption reasoning,  by 
plungeing the hierarchy of classes (or types), which typically 
�F�R�Q�V�W�L�W�X�W�H�V�� �D�� �µ�S�D�U�W�L�D�O�O�\�� �R�U�G�H�U�H�G�� �V�H�W�¶�� ���S�R�V�H�W������ �L�Q�W�R�� �D�� �E�R�Rlean 
lattice, thus enabling efficient Greatest Lower Bound (GLB) 
and Least Upper Bound (LUB)  operations, and efficient 
transitive closure.  In an arbitrary poset, neither the GLB or the 
LUB is guaranteed to exist, but there are formal structural 
embeddings one can perform on the poset into an order-
preserving structure, a semilattice, a lower semilattice in this 
initial case, which  preserves the GLB, sometimes called a 
meet-semilattice, which says that for any nonempty finite 
subset of poset, there is a GLB. Note that the ordering relation 
on the elements of the poset (which define the poset) is 
�W�\�S�L�F�D�O�O�\�� �Q�R�W�D�W�H�G�� �D�V�� �”�� ���� �H���J������ �D�� �”�� �E���� �Z�K�H�U�H�� �”�� �L�V�� �U�H�I�O�H�[�L�Y�H����
antisymmetric, and transitive.  

An ontology subclass relation is an ordering relation on the 
classes, i.e., reflexive, antisymmetric, and transitive. OWL 

provides a top (greatest or most general) and bottom (least or 
most specific) class, called respectively Thing and Nothing, 
which makes OWL into a language able to model bounded 
(semi-) lattices. Bottom is often notated as �A, with top notated 
as �a. 

C. Encoding Bit Representations of Subsumption and 
Inheritance 

We will discuss encodings proposed in the literature, 
beginning first with a naïve bit matrix representation. For all 
of these encodings, we adapt the example used by [17, p. 16-
17], displayed in graph form as the ontology of classes in 
Figure 3 (where the isa relation is taken to be synonymous 
with the subclass relation). We use this example, rather than 
one drawn from our domain ontology, simply because our 
ontology does not currently have much depth and no multiple 
inheritance, which this example has. �1�R�W�H�� �W�K�D�W�� �W�K�H�V�H�� �µ�U�R�O�H�¶��
subclasses are not ontologically correct, but have been 
accommodated to a simple example.  

 
Fig. 3. Academic Role Ontology 

Table 2 displays the naïve bit matrix representation for this 
�R�Q�W�R�O�R�J�\�¶�V���V�X�E�V�X�P�S�W�L�R�Q���U�H�O�D�W�L�R�Q�V�����1�R�W�H���W�K�D�W���W�K�H���E�L�W���D�V�V�L�J�Q�P�H�Q�W��
goes as follows: 

1) Initially assign 1 (true) for every class (i, j) (where i is 
the row, j is the column)  and itself, because every 
class subsumes itself.  This means there is a diagonal 
with value 1 from (1, 1) to (n, n).  

2) Then for each cell of the matrix (i, j), if  the class i is 
an ancestor of class j, assign the value 1, otherwise 
assign the value 0. 
Table 2. Naïve bit matrix representation of Subsumption 

i: row      
j: column 

Pe
rs
on 

St
ud
en
t 

E
m
pl
oy
ee 

As
so
ci
at
e 
Pr
of
es
so
r  

Te
nu
re
d 
Pr
of
es
so
r  

PhD   
Studen
t 

Teachi
ng 
Assista
nt 

Person 1 1 1 1 1 1 1 

Student 0 1 0 0 0 1 1 

Employee 0 0 1 1 1 0 1 

Associate 
Professor 

0 0 0 1 0 0 0 

Tenured 
Professor 

0 0 0 0 1 0 0 
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PhD 
Student 

0 0 0 0 0 1 0 

Teaching 
Assistant 

0 0 0 0 0 0 1 

�A  0 0 0 0 0 0 0 

 
This encoding thus is the reflexive, transitive closure of the 
(antisymmetric) subclass (isa) hierarchy of Figure 4. 

The naïve bit-assignment algorithm as represented in Table 
2 is bottom-�X�S���� �Z�L�W�K�� �D�Q�� �L�P�S�O�L�F�L�W�� �µ�E�R�W�W�R�P�¶�� ���A).  The classes 
Employee and Student, and then Person, are the only classes 
which have subclasses. 

Subsumption between two classes can then be computed in 
constant time using a binary AND operation on the bit vectors 
of the two classes.  The subsumption operator over the bit-
encoded classes is defined as follows. 

 
Definition: Subsumption over  Bit-Encoded Classes: 

Let x1, �«����xn, be classes in a subclass hierarchy, �J be an bit-
encoding function, and ⊑ be the subsume relation  (where �D, �E 
are classes and �D ⊑ �E �L�V���U�H�D�G���D�V���µ�F�O�D�V�V���D subsumes class �E�¶): 

Then the following holds: 
i. �J (xi) ⊑ �J (xj) �l  �J (xi) AND �J (xj) = �J (xj)  

[the encoding of the first class subsumes the 
encoding of the second class if and only if the binary 
AND of those encodings is equal to the encoding of 
the second class] 

ii. �J (xj) ⊑/ �J (xi) �l  �J (xj) AND �J (xi) �z �J (xj) 

[the encoding of the first class does not subsume 
the encoding of the second class if and only if the 
binary AND of those encodings is not equal to the 
encoding of the second class]  
 

Example 1:  Does TeachingAssistant subsume 
AssociateProfessor? 
I.e., does AssociateProfessor occur in the transitive closure of 
the subclass relation of TeachingAssistant? 
SubsumeS (TeachingAssistant, AssociateProfessor)  

= AND (0000001, 0001000) = 00000000, i.e., no. 
 
Example 2: Does Person subsume TeachingAssistant? 
Subsumes (Person, TeachingAssistant) 

= AND (1111111, 0000001) = 0000001, i.e., yes, 
because the result 0000001 = 0000001 (the encoding for 
TeachingAssistant. 

 
Example 3: Does Employee subsume  Student? 
Subsumes (Employee, Student) 

= AND (0011101, 0100011)  = 0000001, i.e., no, 
because the result 0000001 �z 0100011 (the encoding for 
Student). 

What if one wants at runtime to add a new class 
incrementally (dynamically) after the above bit-representation 
has been generated at development time? We add the new class 
ResearchAssistant to the original ontology, resulting in Figure 
4. 

Recomputing our bit-matrix, we arrive at the following, 
Table 3. Note that we have to add a new bit by creating a new 
row and new column for ResearchAssistant, which we add as a 
new i+1 row and a new j+1 column into the matrix (but above 

 

 
Fig. 4. Academic Role Ontology + ResearchAssistant 

If we added the new bit as a new row and new column at 
the beginning of the matrix, then we would maintain the 1-bit 
diagonal we saw in Table 2.  In addition, of course, we have to 
update the entries in the new Research Assistant column with 
their values (1 if an ancestor of Research Assistant, 0 
otherwise). The naïve bit-encoding of Subsumption requires 
n2 bits. 

Table 3. Naïve bit matrix representation of Subsumption with Incrementally 
Added ResearchAssistant Class 

i: row 
j: column 

Resear
ch 

Assista
nt 

Pe
rs
on 

St
ud
en
t 

E
m
pl
oy
ee 

As
so
ci
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e 

Pr
of
es
so
r 

Te
nu
re
d 

Pr
of
es
so
r 

PhD   
Studen

t 

Teachi
ng 

Assista
nt 
 
 

Person 1 1 1 1 1 1 1 1 

Student 1 0 1 0 0 0 1 1 

Employee 1 0 0 1 1 1 0 1 

Associate 
Professor 

0 0 0 0 1 0 0 0 

Tenured 
Professor 

0 0 0 0 0 1 0 0 

PhD 
Student 

0 0 0 0 0 0 1 0 

Teaching 
Assistant 

0 0 0 0 0 0 0 1 

Research 
Assistant 

1 0 0 0 0 0 0 0 

�A 0 0 0 0 0 0 0 0 

 
Ait-Kaci et al [4] propose a number of new methods for 

encoding subsumption. Their first method requires a bottom-up 
(from the terminal classes to the root class) computing of the 
binary OR of the bits assigned to children classes, the result of 
which becomes the bit-encoding of their parent classes. New 
bits are introduced whenever a parent has just one class and 
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whenever a false positive subsumption would result.  If 
incremental updates to the encoding are necessary, there are 
potential complications. If one wants to add new leaf (terminal) 
class nodes to the hierarchy, such as we did with 
ResearchAssistant above, there are no issues. However, if one 
wants to add new non-terminal (or root) nodes, there are 
complications. If a class Cj  is added that has the same 
inheriting subclasses as an existing class Ci, then a new bit 
must be added to re-encode the existing class and all of its 
ancestors too. In addition, any new non-terminal class will have 
to have the ancestors of its children classes checked for 
conflicting encodings. 

For a discussion of other bit-encoding techniques, the 
interested reader is directed to [17, pp. 16-23]. There are other 
encoding approaches, including interval-encodings. Interval-
based encodings compute non-overlapping codes for the 
children within the interval of the parent, but do not support 
multiple inheritance. 

In fact, although each of the above approaches out-perform 
the naïve encoding, all of them have some issues (except 
perhaps [17], which relies on binary representation of prime 
numbers) with incremental (dynamic) updates, requiring some 
recomputation of encodings and determination of conflicts, 
which in turn may require recomputation of encodings. 

Rules too may be given encodings, but space limitations 
preclude a discussion of this topic here, but see [8] for 
Boolean satisfiability (SAT) reasoning using bit-matrices. 

VI. RELATED WORK 
There is much previous related research across multiple 

dimensions (access control regimes, policy languages and 
approaches, specialized languages (and logics) vs. ontology 
approaches, knowledge compilation issues, bit-vector and 
other optimization approaches, social network approaches, 
privacy vs. security issues and approaches, etc.) that have 
influenced our current and impending work.   

In order to accomplish our objectives it was necessary to 
link a security policy model to a policy language with 
sufficient expressive power to ensure logical consistency. We 
extend the NIST Role-Based Access Control (RBAC) security 
model [15] and related approaches [18-19], as have many 
other researchers to include attributes, and extend the Web 
Ontology Language (OWL) with additional rules to express 
access policy using logic programming, and beyond the 
limitations of [20]. Unfortunately, given our own space 
limitations here,  we cannot do an extensive comparison of our 
approach across the multiples dimensions with other 
approaches, nor justly describe those other approaches.  

In addition, there is extensive research in more general 
policy-based approaches that could be employed also for 
access control [21-22].  

There are other Semantic Web-based approaches (including 
[22]), some of which address more specifically social network 
types of applications [23, 24]. 

For implementation in real-time, via a bit-vector or other 
efficient encodings that can be used for rapid run-time 
reasoning,   we’ve   looked   at [2-6, 7-12, 17]. For bit-vector 
representation to support RDF triples, we investigated [11-14].  

Our own previous work addressed issues in translating 
OWL/RDF ontologies and Semantic Web Rule Language 
Rules (SWRL) [25] into logic programming for efficient 
runtime reasoning, and employing knowledge compilation 
techniques [26-28], which we also generalized to address 
services using first-order logic theorem provers and for 
ontology alignment [29]. 

VII. FUTURE WORK 
Although we have investigated and implemented some 

optimizations, e.g., extensionalization and delayed rule 
evaluation, we have only rudimentarily implemented the 
second-level of optimization we intended, i.e., the bit-
representation execution at runtime.  

If we had additional time, we intended to implement the 
prime-number bit-encoding of subsumption described in [17]. 
In general, for the restricted reasoning we need for access 
control policy enforcement as described in this paper, and 
given the probable volume of access request determinations 
(and thus subsumption and equivalence checks, rule 
execution) we foresee needing in a complex collaborative 
social network environment such as the MPN, optimized 
efficient automated reasoning is necessary. Traditional, more 
general description logic reasoners were deemed too slow 
(Pellet, etc.) In addition, most proposed bitmap encodings for 
subsumption and type reasoning are efficiently statically 
initialized and then used, but dynamically updating the 
subsumption/type hierarchy, i.e., adding, deleting, modifying 
classes and properties (which will happen, under the Open 
World Assumption of OWL and first-order logic), leads to 
degraded performance and increasingly baroque re-encodings 
to avoid conflicts. 

Therefore, we would consider implementing the bit-
encoding scheme based on assigning prime numbers to nodes 
in the class and property subsumption graphs, as developed by  
Preuveneers and Berbers [17, 30]. Adding a new class or 
property does not require re-encoding. Furthermore, the 
encoding automatically provides us the direction of the 
relationship. Modular hierarchies, each separately encoded, 
with very efficient subsumption-checking, are the result. 
Figure 5 depicts a subclass hierarchy encoded using prime 
numbers. 

 
FIG. 5. PRIME NUMBER ENCODING FOR CLASS SUBSUMPTION 
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In addition to the use of prime numbers, the scheme of [17, 
30] defines a compact binary matrix representation of the 
inheritance relationships, which we will not go into here.  

Evaluation done in [30, p. 32]  shows that subsumption 
testing in his scheme is much faster than that of some major 
existing description logic reasoners, on the order of 250 times 
faster than Pellet. An evaluation performed on a different 
project we are involved in, written in C/C++ demonstrated 
1000% improvement using this method of subsumption 
checking over the previous naïve, breadth-first search of the 
subsumption graph. 
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