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Abstract— We describe a strategy for performing semantic 
searches for analyzing military intelligence. Our strategy allows 
the analyst and the query engine to work together to reduce a 
complex query into simpler queries. The answers for the simpler 
queries are combined into answers for the original query. The 
queries can be refined using rules defined by the analyst or 
analytics created by a data scientist. Our strategy uses an 
alternative approach to semantic modeling than the state-of-the-
art approaches based on OWL. OWL is an implementation of a 
branch of mathematical logics designed specifically for semantic 
modeling called description logics. Our strategy uses a branch of 
mathematical logics called type theory. We use type theory 
because of the long history of developing systems based on type 
theory for reasoning interactively. We demonstrate with an 
example how the strategy can be used to answer questions posed 
by analysts that couldn't be answered using conventional 
methods. 

Keywords: semantic search; military intelligence; analytics; 
type theory; ontology; semantic modeling; interactive theorem 
proving  

I. INTRODUCTION 
"The Army is working closely with the intelligence 

community and other Defense Department partners, including 
the Navy, in developing cloud-based systems for battlefield 
intelligence."[1] The goal of the U.S. Army is to fulfill theater 
intelligence requirements using these systems as much as 
possible [2]. For example, suppose an analyst created a 
hypothesis that a family within an Afghan village is 
responsible for several IEDs. The analyst may use the Cloud to 
determine which families have connections to hostile 
organizations. The data may be in the Cloud that directly links 
a family to a hostile organization. For example, suppose the 
Sadat Baba family [2] is a member of the village and 
intelligence data contains the triple (Sadat Baba shares-profit 
Taliban). In the triple, Sadat Baba is the subject, shares-profit 
is the predicate and Taliban is the object. On the other hand, 
the intelligence data may only contain data that indirectly links 
the family to a hostile organization. These links have to be 
inferred either deductively or inductively from the data. For 
example, it may be possible to infer that Sadat Baba and the 
Taliban have common interests because both Sadat Baba and 
the Taliban attacked the Dalazak family. This could be inferred 
by applying the following rule.  If a family and an external 
organization attack another family in the same tribe or village, 

then the external organization and the attacking family have 
common interests. Or it could be inferred using network 
analysis because Sadat Baba and Taliban both are linked to 
Dalazak by the same relationship within the same subgraph. 

The current state-of-the-art for military intelligence 
analysis focuses on the analyst using visual aids and various 
retrieval techniques, such as faceted search and querying, to 
perform this inference manually [3]. Military intelligence 
analysis systems should focus on developing strategies for 
reducing the manual work performed by analyst by 
incorporating more automated methods. The effort for 
searching for data can be reduced if the query engine 
automated some of the work the analysts performed manually. 
This means the query engine would need to have analytics that 
automate some of the inductive and deductive reasoning 
performed by the analyst. 

Some of the analytics used in a query or search may be 
different from the analytics used in ETL (extraction, 
transformation, and load). In ETL, analytics are used primary 
for entity and feature extraction, entity resolution, and entity 
fusion [4]. In this case, the analytics aren't used to answer a 
query posed by an analyst. The analytics we are interested in, 
such as multi-relational link predication [5] [6], occur after 
ETL. The analytics will be performed after the data has been 
mapped into a graph-like structure, such as RDF or DRIF [7], 
[8]. Therefore, the query engine will need the ability to express 
the behavior of the analytic in terms of the underlying semantic 
network. 

The behavior of an analytic can be specified as the logical 
implication of the postcondition from the precondition. The 
precondition is a logical statement that must be satisfied in 
order for the analytic to produce valid output. The 
postcondition is a logical statement that describes the 
characteristics of the concepts and relationships produced by 
the analytic. In the simplest case, the specification of an 
analytic could be defined as ! → ! , where !  is the 
precondition and ! is the postcondition.   For example, the 
precondition of the analytic for associating a family and an 
external organization would be 'for any ? ! ∈ Family  and 
? ! ∈ National(Organization there exists a ?! ∈ Family such 
that ? !!attack!?!  and ? !!attack!?! '. The postcondition 
would be ' ? !!common!interests!? ! '.  
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The examples above may mislead the reader to believe that 
first-order logic would be sufficient for expressing the 
precondition and postcondition.  However, first-order logic 
doesn't support cases when analytics can operate on a set of 
concepts and roles. For example, consider an analytic that uses 
numeric calculations to determine relationships, such as 
common neighbor algorithms [9]. Such an analytic only cares 
about relationships or edges between nodes. So it can operate 
on any concept. For example, if the analytic uses a common 
neighbors algorithm for determining the common-interests 
relationship, then the precondition would be 'for any ? ! ∈
?!and ? ! ∈?!  there exists a ?! ∈?!such that ? !!?!!?!  
and ? !!?!!?! '.  In this precondition, we parameterized the 
concepts for the attackers, Family and National Organization, 
and we parameterized the attack relationship. We can also 
parameterize the postcondition. For example, a data scientist 
may be able to improve the analytic to infer a stronger 
relationship between the attackers using additional information 
about them. In this case, the postcondition would be 'there 
exists a ?! ⊆ common!interests such that ? !!?!!? ! '. 

 The query engine could use the specification of an analytic 
as a rule for solving an intelligence requirement. If the 
specification of an analytic is ! → !  and the intelligence 
requirement can be reduced to !, then the solution to the 
intelligence requirement would be the concepts and 
relationships that the analytic produces that satisfy !. 

In this paper, we present a strategy for analyzing 
intelligence data using an interactive query language. When a 
user specifies a query, the query engine solves the query by 
refining it into new queries. If any of the new queries cannot be 
answered, it asks the user to assist it. The user assists the query 
engine by specifying an analytic or rule that can solve the 
query or reduce the query into new queries. This process 
continues until all queries are answered or until there is a query 
that cannot be answered. The query engine keeps track of this 
process and combines the answers from the generated queries 
into an answer for the original query. At the heart of the query 
language is the type theory TT-IQ, Type Theory for Interactive 
Querying.  The query engine for TT-IQ consists of a 
framework that allows a data scientist to define analytics that 
can be included in query processing and for analysts to add 
new rules.  

This paper is outlined as follows. First, we present work 
related to our strategy. Then, we use an example to 
demonstrate interactive querying. Next we give an overview of 
TT-IQ. Finally, we conclude the paper with a discussion of our 
strategy.   

II. RELATED WORK 
Our strategy is similar to approaches that use a semantic 

network or ontology for refining queries. These approaches, 
such as QUICK [10], LISQL [11], and query rewriting [12] use 
semantic information to enhance a query supplied by a user. 
These approaches use a semantic network and stepwise 
refinement to create semantic queries. Our approach, on the 
other hand, uses stepwise refinement for query execution. 

Researchers at GMU have spent over 15 years developing 
strategies that could be used for interactive querying [13]–[17]. 

Their approaches use heuristics to perform inductive and 
deductive reasoning. They also use machine learning to find 
new rules to add to the knowledge base. Our strategy support 
inductive and deductive reasoning except we use proof-
theoretic methods used in interactive theorem provers.  
Theorem provers, such as NuPrl [18], Coq [19], and Isabelle 
[20], use interactive methods for developing formal 
mathematical proofs. In these systems, the assertions are type 
judgments. Type judgments are logical statements that ask 
which objects belong to a specific type. The types can be 
defined to resemble logical statements, such as ! ∧ ! → !. We 
use this same technique in our query language. However, our 
type theory differs from the state-of-the-art in order to support 
semantic modeling.  

K-DTT [21] and S-DTT [22] are type theories that use an 
extensional approach to semantic modeling. Description logics 
also use an extensional approach to semantic modeling. This 
means that A-Box statements or an external source, such as a 
database, has to be used to determine that an object belongs to 
a concept. In TT-IQ, concept membership is intensional. In 
other words, we determine whether an object belongs to a 
concept based on how the object was constructed. Therefore 
there is no need for A-Box statements or external sources to 
determine concept membership. 

Type theory isn't the only method of using higher-order 
logic for semantic modeling. Classical higher-order logics have 
been used for semantic modeling as well [23]–[26]. However, 
the query languages used in these approaches do not allow a 
user to define analytics to be incorporated into the query 
engine.  

Rule-based approaches for semantic search, such as Tuple-
Generating Dependencies [27], have the capability to 
incorporate rules specified by a user into the query answering 
process. However, these approaches are implemented using 
first-order reasoning techniques from logic programming. As a 
result, they will not be able to support domain metamodeling. 
Our strategy, on the other hand, will support finding concepts 
and relationships that meet specific criteria.  

III. INTERACTIVE QUERYING  
In this section, we give an overview of how interactive 

querying is performed. Interactive querying is analogous to 
proving a type judgment. Informally, a typing judgment 
consists of a goal and a set of assumptions. The goal is the 
assertion we want to prove. The assumptions represent facts 
and statements from the knowledge base. Therefore, it consists 
of logical statements about the semantic meaning of concepts 
and relationships.  

Fig. 1 shows an example proof created from an interactive 
query for attacks in a region that may have involved a specific 
person. We assume the analyst only knows that the person has 
a set of features observed by an interrogator, such as facial 
marks, height, and the number of a cell phone belonging to the 
detainee. This query is stated as a judgment that appears as the 
root of the proof tree. Here we state the judgments informally 
in natural language. The assumptions in the judgments in Fig. 1 
contain a definition of a type representing the concepts Attack 
and Person; an object representing the features of the detainee; 
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features of the detainee; declarations of the predicate symbols, 
such as involving; and definitions of data types that represent 
cell phone numbers and regions. The assumptions also contain 
a taxonomy of properties and features. The taxonomy is 
defined as a partial ordering on predicate symbols and attribute 
names. 

The query engine determines which tactics can be applied 
based on whether the conclusion of a tactic matches the goal of 
a judgment. The query engine uses the type compatibility 
relationship [28] of TT-IQ to perform matching. When two 
types !and !′!are compatible, it means that an object in ! can 
be converted to an object in !′  and vice versa. Type 
compatibility is an extension of the subtyping relationship in 
TT-IQ. We give an overview of subtyping in "Overview of TT-
IQ". 

Each tactic has a conclusion and zero or more antecedents. 
When a tactic matches a judgment, the query engine creates 
new judgments for each antecedent. For example, the Narrow 
Concept tactic is a built-in tactic that replaces a type ! in a 
term with a subtype of !.  This tactic has two antecedents. One 
antecedent is a judgment that asserts the replacement type is a 
subtype of the substituted type. The other antecedent is the 
same as the conclusion except all occurrences of the supertype 
are replaced with the subtype. Fig. 1 only shows the second 
antecedent because the first antecedent can be proved 
automatically using TT-IQ's subtyping relationship. 

In practice, the query engine will only show the judgments 
that require assistance from the user. There may be multiple 
tactics that can be applied to a judgment. The compatibility 
relationship can rank the tactics that match best. However, if 

two tactics have the same rank, then the user will need to select 
the tactic to apply.  

Narrow Predicate is similar to Narrow Concept, except 
Narrow Predicate replaces a predicate symbol with another 
predicate symbol. Therefore, Narrow Predicate has antecedents 
to prove that the replacement predicate is a sub-property of 
substituted predicate. This requires two antecedents: an 
antecedent to prove that the replacement property is a sub-
property of the existing property and an antecedent to prove 
that the type of the sub-property is a subtype of the type of the 
super-property. The first antecedent has to be proved using the 
taxonomy of the properties and features. The tactic also has a 
third antecedent that contains the sub-property instead of the 
super-property. The proof tree in Fig. 1 shows the judgment 
produced from the third antecedent. In particular, it shows 
"involving" replaced with "near". 

The judgments produced by Concept Introduction illustrate 
the need for dependent judgments. Normally in type theory and 
in sequent calculus, judgments of the same parent are 
independent of each other. However, when using interactive 
proofs to query for data, terms created on one branch could be 
used in a judgment on a different branch. Notice that two of the 
goals produced by Concept Introduction contain ≔ . This 
special constructor informs the query engine to create a 
reference to the term that satisfies the type on the right hand 
side of≔. At some point, a tactic will be invoked that uses an 
analytic to create objects or find objects in the knowledge base 
to bind to the reference.   

The Geo Search tactic uses an analytic to bind a reference 
to a collection of terms that are within a specific region. Geo 

Fig. 1. Example proof created from an interactive query 
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Search uses the goal as the criteria to search for objects within 
a specific region in the knowledge base. More specifically, Geo 
Search has a conclusion that has a type that contains one 
attribute, location. The type of location is the supertype of all 
types that could be used as the criteria for a geospatial search, 
such as KML. This type matches any type that has an attribute 
that is compatible with KML and the name of the attribute is 
interchangeable with location. The taxonomy determines which 
attributes are interchangeable with location. The tactic uses this 
attribute as the search criteria. In practice, the tactic may also 
require a time range.  

Person Observation is a tactic that is created by a data 
scientist. In other words, it is an analytic that creates concepts 
inductively. This means it creates the definition of a type by 
generalizing existing data. Let's assume that Person 
Observation examines SIGINT data for calls originating form 
or made to the telephone number of the cellphone in the 
possession of a detainee. The time and location of the each call 
is used as an observation point of the person. In theory, a new 
triple is added to the knowledge base that links the person to 
the time and location of the call. In practice, the query engine 
may not create the triples. Instead, the query engine may define 
a way to create the triples on demand without altering the 
knowledge base unless directly instructed to do so. This 
approach is essential for cloud-scale data because it doesn't 
perform any destructive modifications if the analyst wants to 
back out changes. Instead the query engine could have a local 
cache containing the new triples. The modifications could be 
made permanent only when explicitly specified by the analyst 
or a data scientist.  

The antecedent and conclusion of a tactic based on an 
analytic is determined by the precondition and postcondition of 
the analytic. The system uses the precondition as the 
antecedent and the postcondition as the conclusion. For Person 
Observation the postcondition states that there exists a concept 
! where each object is a Person that has the features of the 
detainee and whose locations correspond to the locations of the 
cell phone. The precondition requires that there exists a person 
in the knowledge base who has the features of the detainee. To 
satisfy the precondition, the analyst will need to add the 
detainee to the knowledge base. The precondition also requires 
that we can determine the locations of the cell phone. We 
assume another analytic will determine this location. For 
brevity, assume that the query engine can prove this 
automatically. As a result, it isn't included in Fig. 1. 

We envision a suite of tactics that discover relationships 
between an entity and an event. These tactics use analytics that 
can create new relationships. In other words, they can add new 
triples to the knowledge base. Nearness Predicate belongs to 
this suite. Nearness Predicate uses an analytic that creates new 
triples using the near predicate. In other words, it creates triples 
of the form (! near !) where ! is an entity and ! is an event. 

IV. OVERVIEW OF TT-IQ  
In this section, we give the formal definition of TT-IQ. Due 

to space limitations, we omit some rigor that would be found in 
a normal presentation of type theory.  

Both types and objects are terms. We define the terms ! 
and ! as follows.  

!, ! ≔ ⊥ !! !|! ! ! !!,… , !! !. ! !.size 

 tt|ff !! = !!,… , !! = !! |[!!,… , !!!]!! 
 !! ∧ !! ! ∨ !! ! → !!|¬!|! !!,… ,!! prop 

 !! ℛ !!:!!×…×!!!:!! !∗| !:!|!′  

 |∀!:!.!′|∃!:!.!′!|∀! ≤ !.!!|!∃! ≤ !.!!|!! 

 

In the definition of terms, ! and ! range over strings and 
numbers respectively; !  ranges over attribute names; and ! 
and ! range over variables. The term ⊥ represents null. The 
terms tt and ff represent true and false, respectively. The terms 
of the form !! = !!,… , !! = !!  represent records. Each 
!! = !! in a record represents an attribute where !! is the name 
of the attribute and !! is the value of the attribute. The terms of 
the form !. ! represent selecting the value of an attribute whose 
name is !  from a record ! . Terms of the form [!!,… , !!!] 
represent lists. Terms of the form !.size represent the number 
of elements in the list !. ! and ! range over predicate symbols 
and function symbols, respectively.  ! is the type of strings and 
ℛ  is the type of numbers. We call the terms ! , ! , ! , 
!(!!,… , !!) , !. ! , !.size , tt , ff , !! = !!,… , !! = !! , and 
[!!,… , !!!] objects. We call all of the other terms, such as 
!:!|!′  and ∃!:!.!′, types.  

Terms of the form !!:!!×⋯×!!!:!!represent record types 
and terms of the form !∗represent list types. The type prop  
represent the type that contains types that represent logical 
formulas, such as ! ∧ !′ and ! !!,… ,!! . Any type created 
using terms in prop  will also be in prop . For example 
grt! 5,4 ∧ !grt! 7, 3  is a member of prop . Terms of the form 
!:!|!′  represent set types. Intuitively a set type 
!:!|!′ !represents a list of objects of type !  where each 

member of the list makes the type representing the logical 
formula !′ true. We call ! a reference. We use ! to support 
injecting terms created by an analytic running in a separate 
subsystem. Notice there are two kinds of quantifiers, those that 
range over objects,!∀!:! and ∃!:!, and those that range over 
types, ∀! ≤ ! and ∃! ≤ !. In the quantifiers that range over 
objects, !:! means ! is a member of type !. So, ∀!:! means 
for all terms !  that are members of the type ! . In the 
quantifiers that range over types, ! ≤ ! means ! is a subtype 
of !. So, ∀! ≤ ! means for all types ! that are subtypes of !. 

Notice that types may contain objects. For example, if grt 
is a predicate symbol that represents greater than equal to and 
abs is a function symbol that represents absolute zero, then 
!:ℛ|grt abs ! , 0  is a type that contains the objects 0 and 
abs(!).  

Given any two terms ! and !′ and a variable !, ![!!/!] is 
the term produced by replacing all free occurrences of ! in ! 
with !′. For example, ! ! !, ! , ! 3/!  is ! ! 3, ! , 3 . For 
two terms ! and !, we write !:! to mean that ! inhabits the 
type ! or ! is a member of the type !. For example, 3:ℛ and 
3,4,5 :ℛ∗ . We give some of the rules of TT-IQ for 

determining which terms inhabit a type in Fig. 4.  
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The specification of an analytic can be generalized as 
follows. The specification will need to contain universal 
quantifiers to allow the query engine to pass in types and 
objects to the analytic. If the analytic takes in ! types and ! 
objects, then the specification will need the quantifiers 
∀!! ≤ !!.⋯ .∀!! ≤ !!  and ∀!!:!!.⋯ .∀!!:!! . We 
abbreviate these as ∀! ≤ !  and ∀!:! , respectively.  An 
analytic may output types and objects. If an analytic generates 
!  types and !  objects, then the specification will need to 
contain existential quantifiers ∃!! ≤ !!!⋯ ∃!! ≤ !!!  and 
∃!!:!!!.⋯ .∃!!:!!! . We abbreviate these as ∃! ≤ !!  and 
∃!:!!, respectively. The specification will also contain the 
precondition and the postcondition of the analytic. We denote 
these respectively as ! and !.  The general term that represents 
the specification of an analytic is specified in (1). 

∀! ≤ !.∀!:!. ! → ∃! ≤ !!.∃!:!!.!  (1) 

In practice, the number of inputs and outputs of an analytic 
will be small. For example, the specification of Geo Search, an 
analytic that finds objects that occur within a region, is as 
follows. 

∀! ≤ location:KML .∀!:KML.true
→ ∃!:!∗.∀!: !.inRegion !, !  (2) 

In the specification of an analytic, the !'s and !'s in (1) 
represent concepts and the !'s and !'s represent individuals. An 
analytic may also take relationships as input and output 
relationships. The relationships an analytic takes as input are 
defined by !, and the relationships an analytic produces are 
defined by !. For example, the Geo Search analytic outputs a 
relationship inRegion !, ! . The domain is defined by the type 
of !  which is KML  and the range is all subtypes of 

location:KML . Geo Search doesn't take any relationships as 
input.  

Traditionally, the definition of a type theory includes rules 
for evaluating terms. As a result, most type theories in the 
literature are definitions of statistically typed functional 
programming languages. TT-IQ has rules for evaluation. We 
list a subset of the rules in Fig. 2. TT-IQ should not be 
considered a functional programming language. TT-IQ does 
not contain a construct for creating functions. Instead, TT-IQ 
defines a means for injecting functions and relations into it that 
are executed by an external subsystem or programming 
language. We represent the external subsystem or 
programming language as an interpreter. For any term !, an 
interpreter maps !  to a term !′ . We use ℑ  to denote an 
interpreter. We write ℑ ! ↦ !′ to mean that ℑ interprets ! as 
!′ . The interpreter is used to evaluate the application of 
function symbols and predicate symbols.  For a term !, we 
write ! ⇀ !′! to mean !  evaluates to !′ . The rules 
FUNCTION!APPLICATION ⇀  and PREDICATE!APPLICATION ⇀  indicate 
that the application of a function symbol or a predicate symbol 
to a sequence of terms is equal to the interpretation of the 
application of the function symbol or predicate symbol. These 
rules do not require that the arguments of the function symbol 
and predicate symbol be evaluated before passing them to the 
interpreter. As a result, the interpreter can determine the mode 
of evaluation, such as lazy evaluation or eager evaluation. The 
evaluation rule REFERENCE ⇀  illustrates the ability of the 
interpreter to manage storage of instance data. Intuitively 
REFERENCE ⇀ means that a reference to a concept evaluates to 
the set of individuals in the concept. The concept is defined by 
the type ! and ! is a pointer to an index, graph or other data 
structure that contains members of the concept.  

A paramount feature of TT-IQ is subtyping. TT-IQ uses a 
unique feature to typing that is required for semantic modeling. 
Traditionally, subtyping on record types is the same as class 
inheritance. In other words, a record type ! is a subtype of !′ if 
all the attributes in !′ are also attributes in !. This means that 
for every attribute named !  in !′  there is attribute !  in T. 
However, this definition of subtyping ignores the semantic 
meaning of attribute names. Two attributes can have different 
names, but mean the same thing. As a result, TT-IQ defines 
subtyping so that attribute names do not have to be 
syntactically the same, but semantically the same. Actually, in 
TT-IQ attribute names do not need to be equivalent, but one 
attribute name has to be subsumable by the other. The 
definition of subtyping in TT-IQ uses a partial ordering on 
attribute names to define subtyping. Due to space limitations 
we are unable to define the complete definition of subtyping. 
We do show the subtyping rule for record types below. 

! ≥ ! for!! = 1,… ,! !! ⊑ !!′ !! ≤ !!′

!1: !1×⋯×!!: !! ≤ !1′ : !1′ ×⋯×!!′ : !!′
 

In "Interactive Querying" we showed examples of tactics. 
A tactic is a program or script that returns a proof tree. A proof 
tree represents a proof of a type judgment. Intuitively a type 
judgment asserts that a term belongs to a type. A type 
judgment has the form ! ⊢ !:!′  where !  represents an 
environment and !:!′ represents the assertion that ! inhabits 

!! ⇀ !!! ⋯ !! ⇀ !!!
(!! = !!,… !! = !!) ⇀ (!! = !!! ,… , !! = !!! )

(REC.⇀) 

! ⇀ (!! = !!,… , !! = !!) ! = !!
!.! ⇀ !!

(FIELD!SELECTION ⇀) 

!! ⇀ !!! ⋯ !! ⇀ !!!
[!!,… , !!] ⇀ [!!! ,… , !!! ]

!(LIST ⇀)!

! ⇀ [!!,… , !!]
!.size ⇀ ! (LIST!SIZE ⇀)!

ℑ!!(!!,… , !!)! ↦ !
!(!!,… , !!) ⇀ ! (FUNCTION!APPLICATION ⇀)!

ℑ!!(!!,… , !!)! ↦ !
!(!!,… , !!) ⇀ ! (PREDICATE!APPLICATION ⇀) 

ℑ!!!! ↦ !
!! ⇀ ! (REFERENCE ⇀)!

 
Fig. 2. Evaluation rules for terms that do not evaluate to themselves. 
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!′.  The environment, !, of a type judgment consists of type 
assignments, terms, predicate symbols and function symbols. It 
also consists of pairs of predicate symbols and attribute names. 
These pairs form a partial ordering, ⊑. If !!,… ,!! are type 
assignments of terms, predicate symbols, and function 
symbols, then ⊑;!!,… ,!! is an environment.  

Only the rule engine can execute a proof rule. The rule 
engine is a subcomponent of the query engine. Given a rule, a 
proof tree, and judgment in the proof tree, the rule engine will 
apply the rule to the judgment. The result will be a proof tree 
that uses the antecedent of the rule to create children of the 
judgment. Fig. 3 illustrates the relationship between the query 
engine, the rule engine and the interpreter.  
 TT-IQ does not define the language in which tactics are 
written. An interpreter performs evaluation of tactics. Detailed 
discussion of the language for creating tactics is outside the 
scope of this paper. In this paper it suffices to say that a tactic 
takes as input a typing judgment and outputs a proof tree. The 
root of the tree has to be the input judgment. The tactic has to 
use proof rules to create the proof tree.  

 Fig. 4 contains a few proof rules for TT-IQ. We use 
∃!!ELIMINATION to specify that an analytic will retrieve the 
individuals of a concept represented as !!or a subtype of !. 
The rule uses a concept reference so that we can postpone 
selection of the analytic until we have a judgment whose type 
matches the postcondition of an analytic. We use ANAYLIC!EVAL 

to prove judgments that require an analytic. ANAYLIC!EVAL 
generates concepts and individuals that satisfy a condition 
specified as a type. The condition can represent a relationship 
or the search criteria for a query. The condition is specified as 
the type ! in ANAYLIC!EVAL. An analytic whose postcondition 
matches ! is used to generate the concepts and individuals that 
satisfy the condition specified as !.  In the rule, the analytic is 
! and its postcondition is !. The top-right hypothesis is used to 
establish that ! matches ! if replacing the free variables in ! 
produces a term that is a supertype of !.  The terms that 
replace the free variables are the inputs to the analytic, ! and 
!, and the outputs of the analytic, ! and !. ! is a sequence of 
types !!,… ,!!  and !  is a sequence of objects !!,… , !! . 
Likewise !  is a sequence of types !!,… ,!!  and !  is a 
sequence of objects !!,… ,!! . Intuitively, !  and !  are the 
concepts and individuals required by the analytic to produce 
the concepts and individuals !  and !  that satisfy the 
relationship defined by !. All free variables in each !! and !! 
are declared in !. Each !! and each !! do not have any free 
variables.  

 Since ! and ! represent the input to the analytic, we need 
to verify they satisfy the precondition !. The three hypotheses 
of ANAYLIC!EVAL  on the left achieve this. The top two 
hypotheses are judgments to verify that the inputs to the 
analytic have the correct types. The last of the three hypotheses 
verifies that ! is true with all of its free variables replaced with 
inputs to the analytic. The top hypothesis on the right is used to 
verify that the postcondition is true for the inputs and outputs 
of the analytic. The second hypothesis from the top on the right 
indicates that the output of ! on ! and ! produces ! and !. 
Recall from FUNCTION!APPLICATION ⇀  in Fig. 2 that an 
interpreter is used to produce ! and !. The hypothesis on the 
bottom-right indicates that each !! evaluates to a list of terms 
of type !! and that each !! evaluates to a term that is of type 
!!!. This hypothesis shows that we intend to represent concepts 
as list of terms of a specific type.  The ∃{}!REWRITE rule makes 
use of the fact that for any term !, if !: !:!|!!  then !:! and 

!,!! ≤ ! ⊢ ![!!!/!]:prop
! ⊢ ∃! ≤ !:prop !(∃!!ELIMINATION) 

! ⊢ ∃! ≤ !. (∀!:!. !!) ∧ !!!:prop
! ⊢ ∃! ≤ !!:!|!!!!′!. !!!:prop (∃{}!REWRITE) 

! ⊢ !!!⃗ ≤ !!!!⃗ ! ⊢ !! ≤ ![!!!!⃗ /!!⃗ ][!!!⃗ /!⃗][!⃗/!⃗][!!⃗ /!⃗]
! ⊢ !!!⃗ :!!!⃗ !(!!⃗ , !⃗) ⇀ !!!!!⃗ ,!!!⃗ !

! ⊢ ![!⃗/!⃗][!!⃗ /!⃗]:prop !!!! ⇀ !! !!!"#!! ⊢ !!:!!∗ !! ⇀ !!!!!!"#!! ⊢ !!!:!!!
!, !:∀!⃗ ≤ !!!⃗ .∀!⃗:!!⃗ . !! → ∃!!⃗ ≤ !!!!!!⃗ . ∃!⃗:!!!!!⃗ .!!, !! ⊢ !:prop

(ANAYLIC!EVAL) 
! ⊢ ! ≤ ! ! ⊢ ∃! ≤ !. !!:prop

! ⊢ ∃! ≤ !.!′:prop! !(NARROW!TYPE) 

 
Fig. 4. A subset of the type rules of TT-IQ 

Fig. 3. Interaction between the query engine, the rule engine, and the 
interpreter. 
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![!/!]:prop. 

 Recall in Fig. 1, we used the Narrow Concept tactic to 
replace Attack with IED. Narrow Concept contains code to 
select the appropriate concept to use as the subtype for the 
Narrow Type rule. After it finds a subtype, it asks the rule 
engine to apply Narrow Type to a target type judgment in a 
proof tree. The rule engine creates a new judgment using the 
antecedent of Narrow Type as a template. The new judgment is 
added as a child of the target type judgment.  The rule engine 
returns the new proof tree to Narrow Concept and Narrow 
Concept returns the proof tree to the query engine. Fig. 5 
contains a portion of the proof tree created from the Geo 
Search and Concept Introduction tactics in Fig. 1.  

V. DISCUSSION 

A. Believability  
A query engine for intelligence data needs to support 

various levels of believability. We can support believability in 
TT-IQ by using type modality [29]. In other words, we can 
annotate type with a modality operator that represents a level 
of believability, such as  certain, l ikely , not!likely , and 
impossible . Then an analyst could prove a hypothesis 
represented by the type ! is likely to occur as the judgment 
! ⊢ !!"#$!%!:!"#!  or disprove it by proving the judgment 
! ⊢ !!"#$%%!&'(!:!"#!. 
B. Too complex for an analyst 

The formalism of TT-IQ and the method of reasoning 
employed by TT-IQ may be too complicated for an analyst. 
We don't expect the analyst to specify queries in the formal 
language of TT-IQ, but in natural language similar to that used 
in Fig. 1. We could employ a technique similar to that used in 
[14] to allow end users to specify queries using natural 
language. 

C. Non-determinism and Subtyping  
Since a type may have multiple subtypes, a tactic that finds 

or creates a subtype of a type could be nondeterministic. In 
other words, the tactic may not produce the same subtype for 
the same supertype. As a result, the query engine could 
produce different results for the same query over the same data. 
We can resolve non-determinism by asking the user to select 
the appropriate subtype. This approach would be similar to 
faceted search. The query engine would require the end user to 
select from a list of subtypes to use as a candidate to narrow 
the search space. 

D. Implementation of TT-IQ 
Currently, we are in the planning stage of creating an 

implementation of TT-IQ. We plan to create an implementation 
of TT-IQ using Coq and R. Coq will provide the interactive 
reasoning capability. R will be used as the language and 
runtime for defining and executing analytics. We anticipate 
having to add a library to R to provide a more seamless 
interaction with RDF than the existing R libraries.  

We consider this implementation of TT-IQ a proof-of-
concept implementation. We plan to use this implementation to 
conduct research to address usability issues and determine 
strengthens and weaknesses of interactive semantic querying 
over automatic semantic querying.  

The analyst workstation will contain an analytic framework 
that would provide an interface to support contribution of 
analytics written in a wide range of languages, such as 
MATLAB, C, Java, and Python. 

VI. CONCLUSION 
In this paper, we showed how to apply techniques from 

ITPs (interactive theorem provers) to analyze military 
intelligence. Users of ITPs apply small programs called tactics 
in an iterative fashion to construct a proof. We demonstrated 
how tactics could be used to answer semantic queries 
interactively. Furthermore, we showed how to incorporate 

!
!

!!!!!"#$%&'!!"#$%&'(!!"#$$%&' ! !! ! !!"#!!!!! !"#$%!&" !!! ! !!
! !!!"#$%&! ! !!!"#$%&"'!! ! !"#$ !! ! !!!!!!!!!!!!"#$!!!!!!

"#!!!$%&'&()*&+(!

!!!!!"#$%&'!!"#$%&'(!!"#$$%&'(! ! !"# ! !!!!! !"#$%!&" !!! ! !!
! !!!"#$%&! ! !!!"#$%&"'!! ! !"#$ !! ! !!!!!!!!!!!!"#$ !!! !

!!!!!"#$%&'!!"#$!"#$!!"#$$%&'(! ! !"# ! !!
! !!!"#$%&! ! !!!"#$%&"'!! ! !"#$ !! ! !!!!!!!!!!!!"#$ !!! !

"#!!!

!!!!!"#$%&'!!"#$%&'(!!"#$$%&'(! ! !"# ! !!!!! !"#$%!&" !!! !

!!!!!"#$%&'!!"#$%&'(!!"#$$%&'(! ! !"# ! !!!!"#!!

"#!,()%#*&-!$.)%/)*&+(! ! ! !!! ! !!!

!!!!!"#$%&'!!"#$%&'(!!"#$$%&'(! ! !"# ! !!!!!!"#$%!&" !!!
! !!!!!!"#$%!&"!!!!!!

!"#!!"#$%& !!!!!!!!"#$%!&" !!! ! !!!!

! ! !"#$%& ! !"#!$%&%!!!"#$%&"' ! !! !!

!!!!!"#$%&'!!"#$%&'(!!"#$$%&'(! ! !"#
! !"#$%& ! !"#!$%&%!!!"#$%&"' ! !! !!"#!

!!!!!"#$%&'!!"#$%&'(!!"#$$%&' ! !! ! !!!"#!!"#$%!&" !!! !!!
! !!!"#$%&! ! !!!"#$%&"'!! ! !"#$ !! ! !!!!!!!!!!!!"#$!!!!!!

"#!! ! !0123&*1!

Fig. 5. Proof tree illustrating ∃ rules and analytic evaluation.  
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analytics that use machine learning, knowledge discovery, or 
network analysis into the querying process. 

A. Future Work 
In "Believability", we eluded to an approach to handle 

uncertainty. Future work should investigate this approach. 
Also, we should consider how to incorporate the approach in 
[15] into our type system.    

In the future, we would like to investigate how to 
implement interactive querying in an existing military 
intelligence cloud system, such as the DCGS-A Cloud. We 
believe our approach to querying would be a good fit for the 
semantic enhancement approach adopted by the DCGS-A 
Cloud. 
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