
Big Data for Combating Cyber Attacks 
 

Terry Janssen, PhD, SAIC 
Chief Scientist & Cyber Strategist 

Cyber Operations 
Washington, D.C. USA 

terry.l.janssen@saic.com 

 
Nancy Grady, PhD, SAIC 

Technical Fellow, Data Science 
Emerging Technologies 

Oak Ridge, TN USA 
nancy.w.grady@saic.com

 
Abstract—This position paper explores a means of improving 

cybersecurity using Big Data technologies augmented by 
ontology for preventing or reducing losses from cyber attacks. 
Because of the priority of this threat to national security, it is 
necessary to attain results far superior to those found in modern-
day security operations centers (SOCs). Focus is on the potential 
application of ontology engineering to this end. Issues and 
potential next steps are discussed.  
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I. INTRODUCTION  
The last few years have seen tremendous increases in the 

amount of data being generated and used to provide 
capabilities never before possible. “Big Data” refers to the new 
engineering paradigm that scales data systems horizontally to 
use a collection of distributed resources, rather than only the 
earlier vertical scaling that brought faster processors and more 
data storage into a single monolithic data platform. Big Data 
technologies have the potential to revolutionize our capabilities 
to handle the large datasets generated in any cyber data 
analytics. The challenge, however, is not just in handling the 
large volumes and high data generation rate, but in leveraging 
all available data sources to provide better and faster analytics 
for attack detection and response. In this paper, we will discuss 
Big Data analytics, metadata, and semantics for data 
integration, and applications to cybersecurity and cyber data 
management. 

II. BIG DATA 
Big Data has several defining characteristics, including 

volume, variety (of data types and domains-of-origin), and the 
data flow characteristics of velocity (rate) and variability 
(change in rate) in which the data is generated and collected.  

 
Traditional data systems collect data and curate it into 

information stored in a data warehouse, with a schema tuned 
for the specific analytics for which the data warehouse was 
built. Velocity refers to a characteristic that has been previously 
referred to as streaming data. The log data from cell phones, 
for example, flows rapidly into systems, and alerting and 
analytics are done on the fly before the curation and routing of 
data or aggregated information into persistent storage. In a Big 
Data architecture, this implies the addition of application 
servers to handle the load. Variability refers to changes in the 
data   flow’s  velocity, which for cost-effectiveness leads to the 
automated spawning of additional processors in cloud systems  
to handle the load as it increases, and release the resources as 
the load diminishes. Volume is the dataset characteristic most 

identified with Big Data. The engineering revolution began due 
to the massive datasets from web and system logs. The 
implication has been the storage of the data in its raw format, 
onto distributed resources, with the curation and imposition of 
a schema only when the data is read.  

 
 Big Data Analytics. Much of the development of Big 
Data engineering is a result of the need to analyze massive 
web log data. Massive web logs were first filtered by page for 
aggregate page counts, to determine the popularity of pages. 
Then the pages were analyzed for sessions (spawning the now 
massive   “cookie”   industry   to  make   this   simpler).   “Sessions”  
are the sequence   of   activities   that   describe   a   customer’s  
interaction  with  the  site  at  a  “single-setting,”  with  the  analyst  
describing what time-window is considered a session.  The 
next step in analytics capability came from the realization that 
these sessions could be abstracted into patterns rather than 
being treated as just the literal collection of pages. With this 
step, traversal patterns helped site designers see the 
efficiencies in their link structure. Furthermore, these usage 
patterns could in some cases be attached to a customer account 
record. With this step, the site could be tuned to benefit the 
most valuable customers, with separate paths being designed 
for the casual visitor to browse, leaving the easy efficient 
handling for loyal customers. This pattern-oriented analysis 
applies to the cyber domain, in analyzing logs from a server. 
 

The last 15 years have seen the extension of a number of 
analytics techniques to leverage the horizontal Big Data 
scaling paradigm to address both log and linked-node data 
found in social sites. The cyber community can leverage web 
log and Social Network Analysis to use the massive amounts 
of data to determine session patterns and the appropriateness 
of activity between resources. The challenge is that cyber must 
also deal with a richer set of attributes for the resources and 
their expected/allowed interconnections, which adds in a 
variety of other contextual datasets into the analysis. 

 
Variety. Traditional systems handled the variety of data 

through a laborious integration process to standardize 
terminology, normalize into relational tables, choose indexes, 
and store into a data warehouse that is tuned for the specific 
analytics that are needed. This is an inflexible process that 
does not easily accommodate new data sources, changes into 
underlying data feeds, or new analytical requirements. 

 
For web log analysis, this extension to customer session 

analytics only required the assignment of a customer or visitor 
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ID to the session, allowing integration with a purchasing 
history. In the cyber analytics case, the integration point is not 
so simple. The integration of packet data, with server log data, 
with port-to-port connectivity data, with server type data, with 
network router settings, and so forth, provides a more complex 
use case, needing a more sophisticated way to integrate such a 
variety of data, some of which carries a number of additional 
attributes that are needed. 

 
Recently, variety datasets have been addressed through 

mashups that dynamically integrated a couple of datasets from 
multiple domains to provide new business capabilities. Early 
mashups demonstrated this value, for example, in the 
integration of crime data with real estate listings; a valuable 
analysis that was not possible before the availability of open 
datasets. There is a limitation to such mashups because of the 
integration of a limited number of datasets, with the integration 
variables being manually selected.  This type of manual 
integration is insufficient for analytics across different large 
volume datasets with complex inter-relationships. 

 
Variety is the Big Data attribute that will enable more 

sophisticated cyber analytics. The requirement is for an 
automated mechanism to integrate multiple highly diverse 
datasets in an automated and scalable way. This is best 
achieved through a controlled metadata. 

 
III. METADATA 

The executive branch has been pushing an open data 
initiative to move the federal government into being a data 
steward. The goal in releasing the data is to better serve the 
public and promote economic growth through the reuse of this 
data. The difficulty in using this data arises from the lack of the 
metadata descriptions. Data reuse requires as much information 
as possible on the provenance of data; the full history of the 
methods used for collection, curation, and analysis. Proper 
metadata increases the chances that datasets are re-purposed 
correctly—leading to analytical conclusions that are less likely 
to be flawed. 

 
Two mechanisms are used for dataset integration in a 

relational model. In the relational model, lookup tables are 
established to translate to a common vocabulary for views, and 
a one-to-one correspondence is used to create keys between 
tables. In a NoSQL environment, joins are not possible so table 
lookups and or keys cannot be used for data integration.  The 
connection of data across datasets must reside in the query 
logic and must rely on information external to the datasets. 
This metadata logic must be used to select the relevant data for 
later integration and analysis, implying the need for both 
standard representation and additional attributes to achieve the 
automated data retrieval. 

 
A second approach is used to speed the data integration 

process for manual mashups of diverse datasets. Often XML 
wrappers are used to encapsulate the data elements, with the 
nomenclature for each dataset provided in the wrapper, based 

on user interpretation of the data elements. This approach 
allows rapid integration of data through the wrappers (as 
opposed to a lengthy data warehouse integration), but it is not 
an approach that can be automated, nor can it be used for large 
volume datasets that cannot be copied due to their volume. 
Even in a mashup, wrapper terms used in the metadata are 
themselves subject to interpretation, making reuse of data 
elements difficult.   

 
Without metadata referenced to well-understood standard 

terminology applicable across domains, the diverse datasets 
cannot be integrated automatically. In addition, the integrating 
elements must be applied outside the big data storage, implying 
that the integration logic must reside in the metadata layer. 

 
IV. SEMANTIC TECHNOLOGY 

Semantic technologies are crucial for the future handling of 
big datasets across multiple domains. While we have methods 
for unique concept identification arising through the Semantic 
Web, these technologies have not made inroads into traditional 
data management systems. Traditionally, the ETL process has 
been used to enforce standard terminology across datasets, with 
foreign keys to external tables for the related information. This 
is not a scalable solution, since the introduction of a new data 
source requires the careful construction of foreign keys to each 
other dataset in the database. This lack of extensibility to add in 
additional sources highlights the limitations of horizontal 
scalability in current approaches. In addition, there are 
limitations on the continued expansion in large data 
warehouses, highlighting their inability to continue to scale 
vertically.  

 
Semantic technologies have not yet made inroads into Big 

Data systems. Big datasets that consist of volume tend to be 
monolithic with no integration across datasets. The data is 
typically stored in its raw state (as generated), and no joins 
were allowed in the initial Big Data engineering. Given this, 
most Big Data analytics approaches apply to single datasets. 

 
For solutions addressing the integration of variety datasets, 

the ability to integrate the datasets with uniquely defining 
semantic technology is a fundamental requirement. Two 
overarching requirements need to be addressed to use ontology 
for the integration of Big Data: constructing the ontology and 
using the ontology to integrate big datasets. 

 
Ontology scaling. The standard method for data access 

through an ontology is to ingest the data into an ontological 
database, where the data elements are encoded along with their 
extant relationships. This does not work in a Big Data scenario, 
since ontological databases do not have the horizontal 
scalability needed to handle data at high volume, velocity, or 
diversity.  Further exacerbating the problem is that some of the 
data needing to be integrated are not owned by the analytical 
organization and cannot be ingested, but only accessed through 
query subsets. 
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 Separate ontology for metadata. The implementation of 
an integrating ontology would consequently need to reside in 
the metadata for browsing and querying. While this metadata 
could be browsed manually, the real value comes if it can be 
actionable; such that selections over the metadata ontology 
would automatically construct queries to the Big Data 
repository.  A number of ontologies relative to the cyber 
domain already exist, encompassing resources, attack event 
ontologies, and so forth. The key is to incorporate the 
appropriate elements and their relationships needed to 
describe the elements in the desired datasets. Our intent is not 
to recreate a cyber ontology from scratch, but to leverage 
those that exist to develop a first order ontology specific to the 
integration of the relevant cyber datasets. Focusing on first 
order logic will enable the ontology to be actionable to 
dynamic data integration.  

 
In order to serve as the facilitator for data integration for 

automated integration, this first order ontology would need to 
contain elements such as: data element definitions, dataset 
location, data producing resource characteristics, and resource 
connectivity. 

 
For analytics, additional mid-level ontologies would be 

needed to provide reasoning over the data, such as time and 
location. Domain-specific ontology elements would include, 
for example, resource attributes by resource type, translations 
such as Internet protocol (IP) to location, and derived attack 
pattern components. 
 

The key to the use of a semantic representation for the 
metadata is separating the semantic metadata from the data 
storage. In order to leverage the scalability and speed of high-
volume NoSQL solutions, the ontology will need to reside in 
its own scalable environment. Data exploration would require 
a mechanism to browse the metadata within the ontology, with 
a seamless transfer mechanism to flow down into the data.  
 

Probabilistic Challenges. One significant challenge in the 
use of ontology for automated data analytics across datasets 
resides in the need for probabilistic reasoning. Typically in 
ontology representations, triplets are considered “facts,”  
implying full confidence in the data elements being described. 
In the real world, such a luxury is typically non-existent. 
Resources will continually be updated, and there will be 
latency before the new configurations are updated in the 
ontology. Attack chains will have multiple possible paths with 
probabilistic representations of each link type.  Activity counts 
must be evaluated with a statistical significance test to 
determine if an activity is truly of concern. Such counts will 
have variations relative to time of day and day of week. Using 
an ontology for such probabilistic analytics will require the 
ability to analyze activity under some uncertainty. Much work 
has been done on probabilistic ontology, like MEBN, which 
inserts Bayes’ theorem in ontology nodes [1]. 

 

V.  APPLICATION TO CYBERSECURITY 
Practical application to countering cyber attack is 

achievable in the near-term. The following questions can be 
answered with properly implemented Big Data technologies 
that span the variety of datasets: What data is available on 
malware X attacks globally? How many machines did an 
event land on? What ports were leveraged? What users were 
affected? What machines were compromised? What was 
leaked? Was sensitive information lost? Who did it? Was it an 
insider or outsider? More difficult questions for the future 
would be: What is the composite activity globally of this 
attacker that penetration tested (pentested) my perimeter? 
What are all the locations globally of <malware name> 
attacks? What should I expect from this attacker within the 
next hour? Next week? Next month? (Based-on the historical 
data on this attacker.) What unsafe actions are my users doing, 
rank ordered by risk significance? What suspicious activity 
occurred today? Where is the greatest risk within the 
enterprise? It would also be useful to tabulate statistics on 
vulnerabilities versus attacks, and visualize the results. 
 

The  latter  “future set” of questions requires more research 
and development in topics like machine learning and 
reasoning, and is well beyond this   paper’s   scope.  For 
example, can ontology as proposed in this paper help us 
reason about risk based on the topology of devices and 
controls? Theoretically, this is deterministic and machines 
should be able to do better than man. Our intent is to model 
perimeter security of a large, enterprise network and collect 
real-time data, reason about risk in real-time based on the 
topology of devices and controls, and respond to threats in 
attempt to prevent loss. Given the appropriate set of data and 
generation of a set of reasonable hypotheses, can we use Big 
Data to do evidence collection to support or refute those 
security risk and threat hypotheses, in time to prevent loss?   
 

 Progress-to-Date. As a first step in preparing to 
instantiate an ontology, we have been mindful of what 
hundreds of organizations do in the current cybersecurity 
management process in a global networked enterprise.  
Description of this workflow is beyond this   paper’s scope. 
System awareness currently resides in the minds of hundreds 
of professionals who track threats and malware, maintain the 
security devices like firewalls and the configurations and 
patches of thousands of network devices, monitor events and 
log files, create tickets when an anomaly is observed, and 
perform remedial actions such as  Incident Response; 
Configuration Management; Vulnerability and Patch 
Management; Firewall, Intrusion Detection and Prevention; 
Deep Packet Inspection and Cyber Threat Assessment; 
Security Architecture and Design; and so forth. 
 

We propose to elicit all knowledge necessary assessment, 
decision, planning, and response into this ontology.  At first 
glance, this may appear daunting, but based on the successes 
with ontology engineering in recent years, and the high stakes, 
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we believe this not only practical, but necessary, to better 
understand how to solve this national priority problem. 
 

Cyber-security management has the characteristics of a 
successful knowledge elicitation and ontology engineering 
endeavor.  The information is in digital form, and cyber-
security processes are repetitive—meaning that the same 
indications of an attack are well documented and observed in 
typical network operations routinely and the remedial steps are 
documented and used routinely. This is not to say the 
cybersecurity experts are not highly knowledgeable and 
skilled—just the opposite. This knowledge can be coded and 
reused in the parts the machine does best; man should 
continue to do the parts that it does better than machines. With 
this expectation, we will meet the goal stated up front of 
flipping the current situation to one where a network’s  defense 
is optimized and efficient, lowering cost of defense, and 
making it very hard and expensive for the attacker. 
 

 Cyber Ontology for Countering Attacks.  The top levels 
are illustrated in Figures 1 and 2. 

 
Figure 1. Upper Level and Lower Level Infrastructure Ontology. 

 
Figure 2. Lower Level Ontology for Attack and Defense. 

 
Our goal is a proof-of-concept prototype of the entire 

process, but only for a few appropriate types of attacks and 
respective plans as defined by a fairly rigorous test set. Big 
Data elements for proof-of-concept have been partially 
selected. 
 

Ontology engineering tools are being  evaluated  for  “most  
suitable”  for  implementing  this  ontology  for  use  in  the  system  

as previously described.  A trade study will need to be 
conducted, for tools that can be selected for implantation of a 
production system capable of meeting the aforementioned 
objectives in a large, global enterprise network.  For the 
purpose of demonstrating the concept we selected an ontology 
engineering tool from highfleet.com that reportedly provides 
an implementation of first order logic that is decidable and 
tractable (by simple programming constraint). It is a tool that 
one of the authors has used in the past. Results here are 
positive from the little done to-date; we cannot do an 
assessment until the ontology is populated. There are other 
ontology engineering tools, for example the description logic 
Protégé ontology editor. We have not made a decision; 
eventually we will need to identify appropriate metrics and 
conduct assessments to determine what would be needed for 
production grade deployment to address this problem space   
 

Due to page limit constraints, it is impossible to discuss 
all aspects of the cyber ontology development, but a few 
aspects need to be mentioned. For example, there are many 
good resources for specifying and instantiations these 
ontologies to a level useful in cyber, most notable are efforts 
by MITRE [2]. Research issues remain unanswered and they 
can be categorized into big data and analytics, ontology and 
probabilistic reasoning, decision making and design and 
architecture. Cybersecurity is a hard problem and it is doubtful 
that the approach taken in this paper, or any other, will be a 
complete solution. Furthermore, the cyber attack 
sophistication is advancing rapidly which compounds this 
problem significantly [3].   

 
VI. FUTURE STEPS 

We are in the planning phase for continued research and 
development, beginning with the Big Data analytics necessary 
to more fully identify, understand, and respond to cyber 
attacks. In parallel, we would like to develop a proof-of-
concept prototype to test how well this ontology and Big Data 
integration would work in practice in a large enterprised 
network with high traffic and large number of cyber attacks. 
The key to the success of this prototype will be to focus on 
one narrow aspect of cyber attack defense; if one is 
implemented and demonstrated, it can be used to extrapolate 
the resources needed for development and implementation in 
large production environments.  
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