
SPortS: Semantic + Portal + Service

Chenxi Lin, Lei Zhang, Jian Zhou, Yin Yang, and Yong Yu

APEX Data and Knowledge Management Lab
Department of Computer Science and Engineering

Shanghai JiaoTong University, 200030, China
{linchenxi,tozhanglei,priest zhou,yini,yyu}@sjtu.edu.cn

Abstract. Ontology-based web portal generation and management is
an active field of research and development. Recently, many systems
have been developed. However, many of them lack the integration of
web services which may provide more dynamic information and richer
functionalities. In this paper, we describe SPortS, an OWL-DL based
portal generation system that integrates semantic web services into gen-
erated portals at the presentation level, the data level and the function
level. We present the portal generation process, the query decomposition
and the service recommendation algorithms through which semantic web
services are integrated tightly into the generated portal.

1 Introduction

Because of its clear advantages over conventional methods[1], ontology-based
web portal generation and management has become an active field of research
and development. SEAL[2] provides a general framework for developing semantic
portals. Numerous tools such as KAON portal[3], ODESeW[4], OntoWeaver[5],
and OntoWebber[6] have been developed to help design, generate and maintain
ontology-based web portals. However, these systems lack the integration of web
services which may provide more dynamic information and richer functionalities.
The integration of web services can bring the following benefits:

– Integrating information providing services may provide broader and more
up-to-date information that serves as an important extension to the domain
knowledge.

– Integrating world changing services may transform the current portal that is
mostly limited to organizing and presenting domain knowledge to one that
can also help user act based on contextual knowledge.

– Exposing the portal itself as web services makes it possible for other pro-
grams and agents on the Semantic Web to visit the portal.

Motivated by the above considerations, we have developed SPortS – a proto-
type ontology-driven system that automatically generates service-integrated web
portals based on declarative specifications. The major features of the system are
the following:

– Based on the common OWL-DL[7] formalism, semantic web services[8] and
domain knowledge are processed and presented uniformly in our system.
Hence, web services are treated as first-class citizens.

– By decomposing complex queries until they can be answered using available
web services and domain resources, we unified the two information sources.
The result is that, besides domain resources, the information providing ser-
vices can also transparently feed information to the portal. The information
serves as an important extension to the domain knowledge.

– Through capturing recently visited concepts to form a semantic context,
SPortS can dynamically recommend world changing services that the users
may be interested in under the current context. In this way, not only the
portal’s functionalities are greatly enriched by these services but also the
portal’s contextual knowledge is exploited to help users act in the portal.

– SPortS uses OWL-DL as the underlying knowledge representation formal-
ism. Compared with RDFS, OWL-DL is more expressive in describing the
constraints on and relationships among ontologies. Meanwhile, unlike OWL-
FULL, OWL-DL is decidable and computationally complete with support
from many existing DL reasoners (e.g. FaCT[9] and Racer[10]).

The rest of the paper is organized as follows. Section 2 gives an overview
of the SPortS system. Section 3 discusses the web portal generation and the
web service presentation process. Section 4 shows how to decompose complex
queries to integrate information providing services. In section 5, we describe the
recommendation process of world changing services and finally we conclude the
paper in section 7.

2 Overview of the SPortS System

In the design of the SPortS architecture(Fig.1), the main objective is to
integrate web services at the presentation level, the data level, and the function
level. Among them, the data level integration plays a central role of driving the
integration on the other two levels. In SPortS, data is stored in four knowledge
bases which are all based on the OWL-DL formalism.

Domain Knowledge Base stores the domain classes, properties, and individ-
uals. It serves as the primary knowledge source for the portal.

Service Knowledge Base stores OWL-S1 descriptions of all available seman-
tic web services. Through this knowledge base, SPortS can retrieve services’
specifications to render or invoke them.

Site Knowledge Base contains the site ontology used to model the portal at
a conceptual level and stores the declarative specification of the portal as
the instance of the site ontology.

1 http://www.daml.org/services/owl-s/1.0/

Fig. 1. SPortS architecture

Meta Knowledge Base is designed to enable us to directly manipulate classes
and properties in other knowledge bases as individuals. This capability is
necessary in a semantic portal system because of the need to show and
process both classes and individuals at the same time.

Based on the common OWL-DL[7] formalism, the four knowledge bases are
grouped into a virtual knowledge base with a unified ontology. Queries issued
to the virtual knowledge base can be expressed in the unified ontology without
caring how knowledge from different knowledge bases and services is composed
to answer them. This task is actually accomplished by the Query Decomposition
Engine. In this way, knowledge from different knowledge bases and even services
are integrated and can be accessed transparently.

The portal creation process consists of two phases, the design phase and the
generation phase. The major task of the design phase is to prepare the four
knowledge bases. The domain knowledge engineer builds the domain knowledge
base and then the default site knowledge base is automatically generated from
it. After that, the portal designer designs the content, layout and navigational
structure of the portal by customizing the default site knowledge base using
the customization tool. At the same time, the service integration engineer is
responsible for populating the service knowledge base with available semantic
web services.

During the generation phase, the Output Generator runs as a daemon. Upon
receiving a URL, it dynamically constructs a web page. This construction process
achieves presentation level integration, which will be described in Section 3. The
data presented in the web page is retrieved via the Query Decomposition Engine.
The query decomposition process is discussed in Section 4. Decomposed queries

that can be answered by a single knowledge bases are ultimately processed with
the help of the inference engine.

When a user browses web pages in the portal, the Recommendation Ser-
vice intelligently analyzes context knowledge and recommends world changing
services that the user may be interested in. The recommended service can be
presented in the portal for invocation, which achieves function level integration.
Section 3.2 and Section 5 will give more details about this process.

3 Portal Generation and Service Presentation

3.1 Site Ontology and Portal Generation

Fig. 2. Overview of the Site Ontology

The site ontology is designed to model web portals at a conceptual level. As
shown in Fig.2, the site ontology includes the following core classes: container,
class binding, layout, presentation and navigation rule.

In SPortS, the content of a web page is grouped into a tree of containers.
Atomic containers are mainly used to present the concrete information, while
composite containers group and layout the contents. In this paper, we use our
lab’s internal portal, Apex-Lab-Portal, as an example. Fig.3 shows a web page
of the portal and the tree structure of its container.

The content of an atomic container is specified as the result of a query over
the virtual knowledge base. Currently, queries can only be expressed in the form
of OWL-DL class descriptions. Hence, the content of an atomic container is the
set of all individuals of the query class. This limitation is further discussed in
section 4.1. For example, in Fig.3, the BannerContainer represents its content
using the following class description:

{Project, Graduate, UpcomingConference, Document} (1)

Fig. 3. A web page of the Apex-Lab-Portal example

It is an OWL-DL enumerated class in the meta knowledge base. Note that
Project, Graduate, etc. are individuals in the meta knowledge base, while in
the domain knowledge base they are classes. As another example, the index
container use the following class description:

∃ focusedBy.{apexLab}uConferenceu∃ hasDeadline. (∃ laterThan.{today}) (2)

This is actually a class in the virtual knowledge base because the apexLab indi-
vidual only exists in the domain knowledge base, while the laterThan property
only exists in the capability descriptions in the service knowledge base. The two
example classes as queries will be answered by the Query Decomposition Engine
and we can see that the atomic container can easily compose its content with
information from the virtual knowledge base regardless how and from where the
information is obtained, even from the invocation of web services. Section 4 has
more details for this example.

To further customize what properties of and how the individuals in an atomic
container are displayed, class bindings are attached to containers. Every class
binding has a bound class, a layout, and a presentation. When an individual i

in an atomic container O is to be presented, i must use a class binding B whose
bound class C satisfies i ∈ C and B must be attached to O or O’s ancestors. For
example, in Fig.3, the class binding of the IndexContainer determines that only
the names of the conferences are displayed. In contrast, in the DetailContainer,
the names, date, place, etc. of the conference are displayed using the following
DetailConfView class binding:

Class Binding: DetailConfView
Bound Class: Conference
Properties: Logo, Name, Date, Place, Submission Date,

Notification Date, Final Date, Host
Layout: Vertical
Presentation: Default

In the above example, the Vertical layout arranges the properties to display, and
the values of these properties are presented recursively until a presentation can
fully handle them. A presentation is actually a piece of program that completely
handles the rendering of the matched individual. In this way, using a service
presentation, SPortS can also render semantic web services because they are
described in OWL-DL in the virtual knowledge base. We further discuss this
issue in Section 3.2.

To model the navigational structure of the portal, the class navigation rule
is defined in the site ontology. Recall that a web page is modelled as a tree of
containers. The navigation from one page to another is thus modelled as a tree
transformation that replaces a subtree with another one. The transformation is
triggered when an item on a web page is clicked. A navigation rule bound to an
appropriate container is then activated to actually transform the web page.

A navigation rule consists of a content condition, a structural condition, the
subtree to replace, and a template for generating a new subtree. In SPortS,
all clickable items are individuals in the virtual knowledge base. The content
condition is met if the clicked individual is an instance of a virtual knowledge
base class defined in the content condition. The structural condition is met if the
clicked individual is presented in a container defined in the structural condition.
For instance, the following navigation rule is bound to the RootContainer:

Content Condition: Conference
Structural Condition: IndexContainer
Subtree to Replace: DetailContainer
New Subtree: DetailContainer({clickedIndividual})

When the user clicks any conference in the IndexContainer, e.g. ECAI, the con-
ference is then presented in the DetailContainer, as shown in Fig.3. Since the
content condition is actually a class defined in the virtual knowledge base, web
services can also be used to activate navigation rules just like other kinds of
individuals. An example is given in Section 3.2.

3.2 Presentation of Semantic Web Services

Based on the common OWL-DL formalism, semantic web services and domain
knowledge are processed and presented uniformly in our system. In this sub-
section, we show in detail how web services are presented in exactly the same
manner using the mechanism mentioned above.

In Fig.3, there is a RecommendationContainer that lists dynamically rec-
ommended world changing web services. The OWL-DL class description of its

content is RecommendedService, whose individuals are retrieved by the Query
Decomposition Engine (ref. Section 4) via the Recommendation Service (ref.
Section 5). When the ”Borrow proceedings from library” service link is clicked,
the following navigation rule bound to the RootContainer is activated:

Content Condition: RecommendedService
Structural Condition: AccessoryContainer
Subtree to Replace: DetailContainer
New Subtree: DetailContainer({clickedIndividual})

The DetailContainer is then replaced to show the details of the clicked service.
Fig.4 illustrates the result page. The DetailContainer is attached with a class

Fig. 4. Detailed View of the Borrow-Proceeding Service

binding for semantic web services shown below:

Class Binding: DetailServiceInputView
Bound Class: Service
Properties: NULL
Layout: NULL
Presentation: ServiceInputPresentaion

Since the Borrow-Proceeding service is an instance of the Service class, it is
covered by this class binding and is shown using the ServiceInputPresentation.
Because the service is fully handled by the presentation, there is no need to
specify the Properties and Layout for this class binding.

Portal users then can input service parameters by filling the form in the
DetailContainer. When the form is submitted, SPortS automatically invokes the
Borrow-Proceeding service according to its OWL-S’s WSDL grounding. Finally,
the effect of this invocation is again shown in the DetailContainer as an individual
of the “Effect” class.

4 Query Decomposition on Virtual Knowledge Base

The primary motivation for designing the Query Decomposition Engine is to
provide a unified query mechanism for the virtual knowledge base in order to
achieve data level integration. The engine enables users to issue queries in the
unified ontology without worrying about which knowledge base or information
providing service actually answers the query. Furthermore, the engine not only
decomposes the queries but also combines query results from different knowledge
bases or information providing services to answer the original complex query.
Through this method, potentially broader and more up-to-date information from
services can be integrated into the portal and presented to the users.

4.1 Problem Definition

Queries sent to the Query Decomposition Engine are expressed as OWL-DL
class descriptions using the unified ontology in the virtual knowledge base. We
admit that this is actually a simplification of the problem. More complex query
expressions are actually possible. [11] proposed a formal description logic query
language and its algorithm for the Semantic Web. Although our compromise
constrains the capability to express queries to some extent, we find in practice
that most of the queries in semantic portals can still be expressed. Besides, most
current DL reasoning engines provides support for answering this type of queries.
Precisely, the query is an OWL-DL class expression C, and the answer set of
the query is {i |Ω |= C(i)} where Ω is the entire virtual knowledge base. In DL
terms, the problem is thus an ABox retrieval problem .

We roughly divide the information sources in the virtual knowledge base
into two kinds. One is those information sources whose query capability can be
declaratively specified. For example, most information providing services are of
this kind. The query capability can be described by a set of input class descrip-
tions I and an output class description O. Each input class description I ∈ I
describes the parameter type/class of an input i. Given all inputs of a service, O

describes the output of the service as a class of individuals. Both I and O can
be expressed in OWL-S profiles. A concrete example of I and O is given in the
next subsection.

The other kind of sources, however, have very powerful query capabilities that
can not be expressed using a single class expression. The domain knowledge base
is such an example. Backed by a DL inference engine, it can retrieve instances
for any class in its ontology. Nonetheless, given a query class, we require this
kind of sources be able to tell whether the query can be answered independently
by themselves.

Given a query class expression and the information sources in the virtual
knowledge base, the SPortS Query Decomposition Engine should make the most
of the available sources to answer the query. For example, it is possible that a
query can not be answered alone either by the domain knowledge base or the
information providing services. In this case, the Query Decomposition Engine
should do its best to combine them for answering the query. Recall that in our

Apex-Lab-Portal example the query class of the IndexContainer (as formulated
in Section 3.1 formula 2) can only be answered by combining Domain knowledge
base and information providing services.

4.2 Query Decomposition Algorithm

Queries and capabilities of information providing services are expressed as OWL-
DL class descriptions. Therefore, in theory, the query decomposition algorithm
needs to find a semantically-equivalent logic combination of several OWL-DL
class descriptions for a given OWL-DL query class. To perfectly solve the problem
of query decomposition is very difficult if not impossible. Currently in SPortS,
we attack the problem via a syntactical approach.

Any OWL-DL class description can be parsed into a syntax tree. According
to the OWL-DL abstract syntax definition in [7], the tree has 6 basic elements
shown in Fig. 5. In our running Apex-Lab-Portal example (Fig.3), in order to

Fig. 5. OWL-DL Syntax Tree Elements

show a list of upcoming conferences focused by our lab in the IndexContainer,
the query class as formulated in Section 3.1 formula 2 is

∃ focusedBy.{apexLab}uConferenceu∃ hasDeadline. (∃ laterThan.{today}) (3)

Its syntax tree is shown in Fig.6. The conferences must satisfy two requirements.
Firstly, they must be focused by the Apex lab. This can be expressed as

∃ focusedBy.{apexLab} u Conference (4)

which can be answered by the domain knowledge base. Secondly, the paper
submission deadline must be later than ”today”. In fact, the paper submission
deadline of a conference is not fixed because it may change from year to year and

even in one year it may still be postponed. In our Apex-Lab-Portal example, a
semantic web service is built that periodically crawls the conferences’ web sites to
collect the paper submission deadlines of conferences. It then has the capability
to return a list of conferences whose paper submission deadlines are later than an
input date. The input class description of the service’s capability is I = {Date}.
The output class description O is

Conference u ∃ hasDeadline. (∃ laterThan.{input}) (5)

where input ∈ Date. The syntax tree of O is shown in Fig.7.

Fig. 6. Syntax Tree of Query
Fig. 7. Syntax Tree of Service Output

It is clear that the class expression (3) can not be answered alone either by
the class expression (4) or (5). Yet the intersection of the latter two is exactly
the answer. This is also reflected on the query’s syntax tree (Fig.6). The left
two subtrees can be answered by the domain knowledge base and the right two
subtrees can be answered by the service. Thus all the subtrees are covered by
at least one information source and the entire query can be answered. This idea
can be seen as a horizontal decomposition. Note that in Fig.5, only intersection
and union syntax tree has more than one sub-trees, therefore this idea is used
to decompose intersection and union queries. On the other hand, we also need
a vertical decomposition method, i.e. query result of a sub-tree may be used as
input to feed another service.

The query decomposition algorithm works recursively on the query syntax
tree by repetitively doing horizontal and vertical decomposition until the entire
query can be answered. If there are more than one way to decompose the query,
currently we assume that any of them is acceptable. Before presenting the de-
tails of the algorithm, we first give definitions for the “match” and “semi-match”.

Match: match(Q, S) is an ordered binary relation. A query (sub)tree Q matches
a syntax (sub)tree S of a service’s output class description if one of the following
conditions is met.

– S is an atomic class with a ClassID and Q is an equivalent class of S.
– S is {s0, s1, . . . , sn−1}, Q is {q0, q1, . . . , qn−1}, there is a one-to-one mapping

between si and qj that satisfies:
• if si is an input, then qj is an instance of the input class description of

si

• if si is not an input, then si is equivalent to qj .
– both S and Q are cardinality restriction classes and they have exactly the

same class description.
– S is ∀Rs.Cs, Q is ∀Rq .Cq , Rs is an equivalent property of Rq , and

match(Cq , Cs).
– S is ∃Rs.Cs, Q is ∃Rq .Cq , Rs is an equivalent property of Rq , and

match(Cq , Cs).
– S is Si∈S Si, Q is Qj∈Q Qj (S,Q are the set of operands in S, Q, respec-

tively) , and ∃f : S → 2Q that satisfies:
• ∀Si ∈ S match(Qj∈f(Si) Qj , Si)
•

⋃
Si∈S

f(Si) = Q
– S is

⊔
Si∈S

Si, Q is
⊔

Qj∈Q
Qj (S,Q are the set of operands in S, Q, respec-

tively) , and ∃f : S → 2Q that satisfies:
• ∀Si ∈ S match(

⊔
Qj∈f(Si)

Qj , Si)

•
⋃

Si∈S
f(Si) = Q

– S is ¬s, and Q is ¬q, match(q, s).
– S is an service input, Q is an instance of the input class description of S (note

that this instance check may be performed in the meta knowledge base), and
Q can be further decomposed and answered.

Semi-Match: semimatch(Q, S) is an ordered binary relation. A query (sub)tree
Q semi-matches a syntax tree S of a service’s output class description if one of
the following conditions is met.

– S is i Si, Q is j Qj , and ∀Si ∃Qj match(Qj , Si).
– S is

⊔
i Si, Q is

⊔
j Qj , and ∀Si ∃Qj match(Qj , Si).

The following is the query decomposition algorithm.

0 QueryResult decompose (Subtree Q) {

1 if (domainKB.canAnswer(Q)) return domainKB.answer(Q);

2 for each service S do

3 if (match(Q,S)) return S.invoke();

4 if (Q.isIntersectionOrUnion())

5 QueryResult R = NULL;

6 mark all operands of Q unmatched;

7 for each operand O of Q do

8 if (decompose(O)!=NULL)

9 R = doIntersectionOrUnion(R,decompose(O));

10 mark O matched;

11 repeat

12 for each Service S do

13 if (semimatch(Q,S))

14 R = doIntersectionOrUnion(R, S.invoke());

15 mark all the operands used in S matched;

16 until all operands matched or no more operands can be matched

17 if all operand matched return R;

18 return NULL;

19 }

Line 4 to 17 in the above algorithm is doing a horizontal decomposition us-
ing semi-match judgements in line 13. The judgements actually depend on the
order of services in the for loop of line 12. For example, though at first one
service may not be semi-matched, using the output of another semi-matched
service as its input may enable it to be semi-matched. However, this order can
not be determined ahead of time. Hence, line 11 to 16 repeats until a fix point is
reached. In this algorithm, line 3, 8, 13 recursively calls match, semi-match and
decompose functions and may lead to vertical decompositions.

4.3 Discussion

The above query decomposition method leaves some open problems. First, de-
scribing query and service capabilities using OWL-DL class descriptions is not
enough. Work on DL query languages such as [11] may provide solutions for this.

Second, because of our syntactical approach, the current algorithm can not
decompose some queries that can actually be decomposed at the semantic level.
For example, A ∩ B can not be answered using A ∪ B in the current algorithm.

Third, there may be more than one way to decompose the query and give the
answer and it is possible that different services give different information about
the same thing. How the decomposition engine chooses the best one according to
the reputation and other attributes of the services is thus a problem. Research
on trust and reputation on the Semantic Web may help solve this problem. In
addition, the engine itself may learn from past experience to choose one.

Finally, even if the query can not be answered accurately, giving a close
subset or superset of the query result may also be very helpful for the user.
In SPortS, both syntax structure and DL inference engine can provide help on
judging sub-class relation. We are now working on utilizing them to improve the
current algorithm.

5 Recommendation of World Changing Services

In web portals, especially E-Commerce portals, world changing services may
play a pivotal role because they can perform real world (business) transactions.
Many current semantic portals are limited to only presenting domain knowledge.
Adding world changing services will greatly enrich the portal’s functionality and
help user act based on contextual knowledge. However, simply listing all available
world changing services on the portal is far from an appropriate integration

method. Users may be overloaded with lots of irrelevant or uninteresting services.
SPortS solves the problem by listing only those services that are contextually
relevant. The function is provided by another information providing service –
Recommendation Service.

Intuitively, the semantic context that determines which service is relevant
includes the concepts/classes that the user recently visits. For instance, in our
running Apex-Lab-Portal example, when the user clicks a conference link to
show its details, he/she is probably interested in those services that involve
related concepts, such as conferences, papers, proceedings, etc at that moment.
Borrow-Proceeding is such a service. However, with time, the user may gradually
shift his/her focus to other concepts in the portal during his/her visit and the
list of relevant services should change accordingly. We simulate this process by
assigning temperatures to concepts that reflect their degrees of user attention.
“Hotter” concepts receive more user visits and attention and the temperature
will be dropped if the concepts are not visited by users for a while.

In SPortS, the semantic context is constructed based on an un-directional
graph G = (V, E) where V is the set of all the classes in the unified ontol-
ogy of the virtual knowledge base and the edges in E are the semantic relations
between classes. The graph can be obtained by converting the OWL-DL descrip-
tions of the virtual knowledge base into an RDF graph. Currently in SPortS, we
obtain the graph using a special algorithm that analyzes the OWL-DL class de-
scriptions. For each vertex c ∈ V , a temperature t(c) is assigned and for each
edge r ∈ E a thermal conduction factor d(r) is assigned. All t(c) are initialized
to 0 and d(r) are initialized according to the semantic types of r. For a path
p consisting of edges r0, r1, . . . rn in the graph, its thermal conduction factor
d(p) =

∏n

i=0 d(ri). To measure the mutual influences between any pair of ver-
tices c1 and c2, we define the maximum thermal conduction factor between them
as md(c1, c2) = max{d(p) | p connects c1 and c2} and we define md(c, c) = 1 for
any c. Whenever a user visits some concepts by browsing a web page, the fol-
lowing procedure is used to update the temperatures of concepts:

0 void update temperature () {

1 let C be the set of the currently visited concepts;

2 let G = (V, E) be the entire graph;

3 for each v ∈ V , t(v) = α ∗ t(v); // α is a cooling coefficient.

4 for each c ∈ C do

5 for each v ∈ V do

6 t(v) = t(v) + ∆ ∗ md(c, v); // ∆ is the temperature increment.

7 for all v ∈ V normalize t(v) into the range of 0..1;

8 }

The semantic context then consists of all the concepts and their current
temperatures. Based on this context, the relevance value of a semantic web
service s is calculated as

rel(s) =
t(c0) + t(c1) + . . . + t(cn−1)

n

where ci is the concept in the OWL-S description of s. The services are then
ranked according to the relevance values rel(s) and recommended to the user.
In addition to the dynamic recommendation, SPortS also supports static recom-
mendation that always recommends specific services for certain concepts. System
administrators can utilize this feature to enforce business policies on service rec-
ommendation.

6 Related Work

Recently, a great variety of technologies and systems have been developed to
achieve the goal of automatic semantic web portal generation. Similar to SPortS,
they use ontologies to model a data-intensive web site at a conceptual level. As
a result, the portal designer can focus on the conceptual structure of the target
portal and domain knowledge, independently of its realization.

SEAL[2] proposed a generic architecture for developing, constructing and
maintaining semantic portals, and extended the semantic modules to include
a large diversity of intelligent means for accessing the web site, like semantic
ranking, machine accessing, etc.

ODESeW[4] is an ontology-based application designed on the top of
WebODE[12] ontology engineering platform that automatically generates and
manages a knowledge portal. It provides functions for content provision, content
visualization, and content search and querying. It also provides an easy-to-use
tool suite for the administration of the generated knowledge portals.

The OntoWebber[6] is a tool that was used to build the Semantic Web Com-
munity Portal as part of the OntoAgents project. It takes the sources from
ontologies in RDF or semi-structured data like HTML with corresponding data
translators.

IIPS[13] is another ontology based portal generating system. Similar to SPortS,
It defines a site ontology to model the navigational structure and the compo-
sitional structure of a data-intensive web site on the basis of pre-existing site
modelling approaches. It provides explicit mapping mechanisms, which make it
possible to generate quickly site implementations from the conceptual model. On-
toWeaver[5] extends IIPS by proposing and introducing a customization frame-
work into the ontology-based web modelling approach to the design and main-
tenance of web applications.

The fundamental difference between the SPortS approach and previous ap-
proaches is that SPortS tightly integrates semantic web services, both infor-
mation providing services and world changing services, into generated portals.
Meanwhile, unlike all the previous approaches, SPortS adopts the OWL-DL as
the underlying knowledge representation language.

7 Conclusion and Future Work

In this paper, we have presented SPortS, an OWL-DL[7] based semantic por-
tal system that integrates semantic web services into generated portals at the

presentation level, the data level, and the function level. At the presentation
level, semantic web services can be uniformly presented as first class citizens
with domain knowledge. At the data level, knowledge from information provid-
ing services can be retrieved and composed together with domain knowledge to
answer complex queries. In this way, potentially broader and more up-to-date
information from services can be synthesized. At the function level, the rec-
ommendation of world changing services greatly enriches the generated portal’s
functionality and can help users act in the portal based on contextual knowledge.

Currently, the SPortS prototype system is limited in the following aspects.
At the presentation level, the generated portal is only in HTML, which makes it
difficult for the portal itself to be exposed as semantic web services. At the data
level, due to the lack of an appropriate OWL query language and the difficulties
in decomposing queries, we cannot fully utilize the information to answer more
queries with better results. At the function level, the portal personalization is not
yet designed in the current prototype. For example, the semantic context used by
the service recommendation does not include any personalization information.
Our future work will be focused on these aspects.

References

1. Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A., Maedche, A., Studer,
R., Sure, Y.: Semantic community web portals. In: Proceedings of the 9th World
Wide Web Conference (WWW9), Amsterdam, Netherlands (2000)

2. Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y.: SEAL – a framework
for developing semantic web portals. In: Proceedings of the 18th British National
Conference on Databases. Volume 2097 of LNCS. (2001) 1–22

3. R.Volz, D.Oberle, B.Motik, S.Staab: KAON server - a semantic web management
system. In: Proceedings of the 12th International Conference on World Wide Web
(WWW2003). Alternate Tracks - Practice and Experience, Budapest, Hungary
(2003)

4. Corcho, O., Gmez-Prez, A., Lpez-Cima, A., Lpez-Garca, V., Surez-Figueroa, M.:
ODESeW: automatic generation of knowledge portals for intranets and extranets.
In: The Semantic Web - ISWC 2003, Second International Semantic Web Confer-
ence, Sanibel Island, FL, USA, October 20-23, 2003, Proceedings. Volume 2870 of
Lecture Notes in Computer Science., Springer (2003)

5. Lei, Y., Motta, E., Domingue, J.: Design of customized web applications with On-
toWeaver. In: Proceedings of the international conference on Knowledge capture,
ACM Press (2003) 54–61

6. Jin, Y., Decker, S., Wiederhold, G.: OntoWebber: model-driven ontology-based
web site management. In: Proceedings of SWWS’01, The first Semantic Web
Working Symposium, Stanford University, California, USA, July 30 - August 1,
2001. (2001)

7. F.Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL Web Ontology Language
semantics and abstract syntax. W3C Recommendation, W3C (2004)

8. McIlraith, S., Son, T., Zeng, H.: Semantic web services. IEEE Intelligent Systems
(Special issus on the Semantic Web) 16 (2001) 46–53

9. Horrocks, I.: The FaCT system. (1998) 307–312

10. Haarslev, V., Moller, R.: Racer system description. In: Proceedings of the First
International Joint Conference on Automated Reasoning, Springer-Verlag (2001)
701–706

11. Horrocks, I., Tessaris, S.: Querying the Semantic Web: A formal approach. In:
Proceedings of the 1st International Semantic Web Conference (ISWC2002). LNCS
2342 (2002) 177–191

12. Arprez JC, Corcho O, F.L.M.G.P.A..: WebODE: a scalable ontological engineering
workbench. (In: First International Conference on Knowledge Capture (KCAP01).
Victoria, Canada.)

13. Lei, Y., Motta, E., Domingue, J.: An ontology-driven approach to Web site gener-
ation and maintenance. Lecture Notes in Computer Science 2473 (2002) 219–234

