
OntoRefiner, a user query refinement interface

usable for Semantic Web Portals

Brigitte Safar, Hassen Kefi, Chantal Reynaud

University of Paris Sud-CNRS (LRI), INRIA (Futurs),
LRI, Building 490, 91405 Orsay Cedex, France

{safar, kefi, cr}@lri.fr
http://www.lri.fr/~safar

Abstract. We present a user interface, the OntoRefiner1 system, for
helping the user to navigate numerous retrieved documents after a search
querying a semantic portal which integrates a very important number of
documents. Retrieved answers are filtered and the user could be provided
only with the answers which are, according to him, the most relevant. The
refinement process is based on two technologies, dynamic clustering close
to Galois lattice structure combined to the use of a domain ontology. The
Galois lattice structure provides a sound basis for the query refinement
process. However, its construction as a whole is a very costly process. So,
we propose an approach based on the use of a domain ontology, avoiding
the construction of the whole Galois lattice. In the paper, we present the
algorithm and experimental results.

1 Introduction

Web portals are a convenient way today to make information easily accessible for
users. Such portals have been developed for some years in different application
domains like tourism, medicine, biology, etc. As when using classical Information
Retrieval engines, users of Web portals are often swamped by a mass of answers.
To solve this problem, commonly referred to as information overload, classical
ranking or clustering schemes may be used in order to help users finding the
most relevant documents. We show, in this paper, that specific solutions which
take benefit of the specificities of semantic Web portals are more efficient and
convenient to the user.

A semantic Web portal is a framework allowing to make information search,
whatever done by human beings or machines, more easy and to obtain better
results, thanks to the semantic representation of the contents of the queried
documents. It is different from the current Web which is essentially syntactic.
The structure of the accessible documents is well defined but the content of the
Web remains inaccessible to automatic reasoning.

Ontologies play a major role in the construction of the Web semantic. They
are used each time modules have to be supported by semantic representations. In
the context of semantic Web portals, they are used to provide the vocabulary and

1 OntoRefiner is supported by France Telecom R & D under Picsel 2 contract.

the structure of metadata to annotate documents and also as an intermediate
representation connecting heterogeneous data sources, providing the user with
the vocabulary to use to query and then giving him the illusion that he queries
a centralized and homogeneous system.

We consider semantic portals allowing users to query documents relative to
a same application domain. These semantic portals are composed of an ontol-
ogy describing this application domain into a hierarchy of terms and a set of
documents annotated with terms of the hierarchy. We assume that the annota-
tion process has been made earlier, either in an automatic or in a manual way.
Whatever the case is, the annotation process is out of the scope of the paper.
Queries are posed as in a boolean search engine using terms coming from the
domain ontology. Given a query, the returned documents are documents with a
mapping between their annotation and the terms in the query.

OntoRefiner can then be viewed as an interactive interface helping the user to
navigate very numerous retrieved documents after a search. Retrieved documents
are filtered and the user could be provided only with subcollections of answers
which are, according to him, the most relevant.

Our approach combines both clustering techniques and the use of a domain
ontology. The refinement process is based on dynamic clustering close to Galois
lattice structure. The Galois lattice structure provides a sound basis for the query
refinement process. This structure has already been used for supporting browsing
retrieval in a database [6, 3, 5, 11]. It is also a very convenient structure for query
refinement. Indeed, each node in the lattice can be seen as a query described by
a set of terms, the terms which compose the query, and a set of documents, those
returned by the query. Given a query represented as a node in the lattice, its
refinements correspond to the queries represented by the child nodes. Navigating
through a Galois lattice can then be assimilated to a navigation from a query
to another, more or less specialized. We detail this point further in section 2.
However, such kind of structure has a serious limitation. Its construction as a
whole, each time the semantic portal is queried, is not efficient.

So, our approach is also based on the use of a domain ontology. The use of
terms linked together by a subsumption relationship allows to directly construct
only the most general nodes of the lattice, avoiding, that way, the construction
of the whole Galois lattice. Moreover the domain ontology allows to identify
semantic criteria to refine those nodes. These semantic criteria are terms, called
in the paper axes of refinement, which annotate the documents composing the
most general nodes. The user can select, in a first step, among the most general
nodes of the lattice, the most interesting subset of documents which corresponds
to a refined query. In a second step, by choosing an axis of refinement among the
axes associated to this selected refined query, he adds another term in the query
which becomes still more specific, and covers still less of documents. The process
realizes, this way, two steps of refinement in the same time, and can be iterated
on the set of selected documents until the user is satisfied with the obtained set.
Consequently, the parts of the Galois lattice which are not relevant according to
the choices of the user will never be built.

Let us take an example to illustrate more precisely an iteration of the re-
finement process from a user point of view. Given the query Q:{Hotel, Al-
waysSunny}, let us assume that we obtain 50 000 answers, that is 50 000 doc-
uments accessible from the semantic portal concern both hotel and locations
which are always sunny. Our aim is to avoid delivering these 50000 documents
brutally with no organization. Consequently, we use OntoRefiner to deliver the
answers gradually, and only the most relevant ones. At the first step of the first
iteration, initially retrieved documents are separated into several groups. In the
example, we may have a first group of documents which concerns hotels located
in a sunny place which is an isle, a second group of documents which concerns
hotels located in places which are always sunny, a third group which concerns
hotels located in a sunny place, those documents also containing information

about available equipments on site. At that point, we doesn’t allow the user
to choose the group of documents that are the most relevant for him.

In a second step, for each group of documents just identified, OntoRefiner
searchs axes of refinement. For example, it may propose that among the docu-
ments in which the places are isles, there are documents with places which are
isles with a beach and documents with places which are sunny in summer.

Once this two-step refinement is done, the result of the grouping is presented
to the user. The user has to choose the set of documents he prefers from the
groups obtained from the first refinement step and for this selected set, he must
indicate the axis of refinement which corresponds the most to the documents he
is interesting in. At the end of the iteration, the initial query is complemented
with the terms which characterize the set of chosen documents and the axis of
refinement. The second iteration starts from this new more precise query and
the associated documents.

The paper is organized as follows. Section 2 presents the Galois lattice clus-
tering method and related work for query refinement. Section 3 introduces the
domain ontology and its use for bringing out different points of view in a docu-
ment description. Then we show, in section 4, how the use of a domain ontology
allows the gradual construction of only pertinent parts of the Galois lattice and,
in section 5, our algorithm. We conclude with experimental results and a short
discussion in section 6.

2 Galois Lattice and Related Work

Given two finite sets D (set of documents) and T (set of terms), and a binary
relation R between these two sets, the Galois lattice[12, 6] is a particular set of
nodes, in which each node is a pair, composed of a subset of documents D′ ⊆ D,
called extent, and a subset of terms T ′ ⊆ T , called intent. Each pair (D′, T ′)
must be a complete pair with respect to R, meaning that T ′ must only contain
the terms shared by all the documents in D′, and the documents in D′ must be
precisely those sharing all the terms in T ′.

T ′ = f1(D
′) where f1(D

′) = {t′ ∈ T ′ | ∀d′ ∈ D′, d′Rt′}

D′ = f2(T
′) where f2(T

′) = {d′ ∈ D′ | ∀t′ ∈ T ′, d′Rt′}

The complete pair centered around a term ti can be computed as Ci =
(f2(ti), f1(f2(ti))) where f1(f2(ti)) is the closure of the term ti.

Example 1 Figure 1 shows an example containing 5 documents described by 7 terms, {a, b, c, d, e, f, g}.
Document 1 is indexed by terms {a, c, f}. Term g appears in documents 2 and 3. To compute Cb, the com-
plete pair centered around the term b, we compute f2(b) = {4, 5} then f1({4, 5}) = {b, c, f}. Cb =
({4, 5}, {b, c, f}).

 a b c d e f g
1 • • •
2 • • •
3 • • •
4 • • •
5 • • • •
Fig. 1. An example of relation

Given two pairs C1 = (D1, T1) and C2 = (D2, T2), a partial ordering relation (<)
is defined on this set of pairs by: C1 < C2 ⇔ T1 ⊆ T2 or C1 < C2 ⇔ D2 ⊆ D1.
The partial order is used to generate the lattice graph in the following way:
there exists an edge (C1, C2) if C1 < C2 and there is no other element C3 in
the lattice such that C1 < C3 < C2. C1 is called parent of C2 and C2 child of
C1. The graph reveals the generalization/specialization relationship between the
pairs corresponding to the subset relationship between the D or T parts.

Example 2 In figure 2a showing the lattice graph corresponding to the relation of figure 1, we can see
that the pair ({1,2,3},{a}) is more general than its child, the pair ({2,3},{a,g}): a subset of terms characterizes
an overset of documents.

a
123

c
1245

ac
12

ag
23

cf
145

bcf
45acg

2

acf
1

adg
3

bcef
5

12345
Ø

abcdefg
Ø

a
123

c
1245

g
23

f
145

b
45d

3
e
5

12345
Ø

2
Ø

1
Ø

Ø
Ø

12
Ø

Fig. 2. fig.2a Galois lattice graph fig.2b T ′ − ICL graph

The Galois lattice representation exhibits a lot of redundancy. For a pair C =

(D′, T ′), D′ will be present in every ancestor of C and T ′ will appear in all its
descendants. Godin et al. showed in [7] that this redundancy may be eliminated
without losing any information if the graph is maintained. For a pair C = (D′, T ′),
let T ′′ be the non redundant element in T ′, T ′′ = {t′ ∈ T ′|t′ ∈ f1(D

′) and there
is no other pair C′ = (X, Y) < C such that t′ ∈ Y }. Godin defines the T ′−

inheritance concept lattice (T ′ − ICL) using the set of pairs (D′, T ′′), and shows
that for a given pair C, the corresponding values of T ′ can be computed by taking
the union of the T ′′ sets of the ancestors of C including C itself. The features of
T ′ not in T ′′ are inherited from their ancestors. In our work, we will use the set
of pairs (D′, T ′′), too.

Example 3 Comparing fig. 2.a and 2.b, we can see that the intent of the pair ({1,2},{a,c}) of fig. 2.a, is
empty in fig. 2.b. The intent of this pair can be computed by taking the union of the intent of its ancestors, the
pairs ({1,2,3},{a}), ({1,2,4,5},{c}) and ({1,2,3,4,5},∅).

This clustering structure is especially relevant in the context of information
retrieval because one cluster is directly described in intension by T ′ which is a
simple set of terms easily readable and understandable by the user. Furthermore,
this lattice structure allows overlap: a document may appear in different clusters
reflecting different points of view. This is an advantage compared to hierarchical
classification for example.

Godin [6] and Carpineto [3] have used this type of structure to index a doc-
ument collection manually annoted by a set of terms. Once the lattice charac-
terizing the whole database is built, user’s queries are compared with the intent
of the lattice pairs. Indeed, for each pair, its intent can be seen as a conjunctive
query and its extent as the documents answering this query. In this setting, an-
swering a user’s query consists in looking for the more general pair whose intent
contains all the terms of the considered query. Once this pair is found 2 the user
is allowed to explore its direct neighbors in the lattice. The children of the pair
correspond to a minimal refinement of the query (additional terms in the query
that becomes then more specific) and the parents to a minimal enlargement.
These additional terms are, for us, the axes of refinement of the query.

Example 4 In figure 2a, the pair ({2,3},{a,g}) has two children ({2},{a,c,g}) and ({3},{a,d,g}). These
child nodes are two different refinements of the query composed of the term a and g respectively obtained by
adding the term c or d. c and d are the two possible axes of refinement. The only enlargement of the query is
represented by the pair ({1,2,3},{a}).

Ecklund and Cole [5] improve the refinement process using a hierarchy of anno-
tation terms. When assigning terms to documents, only the most specific terms
are used and all their subsumers are automatically added. This hierarchy al-
lows to construct pairs at distinct abstraction levels as required by the user.
Stojanovic [11] used a hierarchy of terms for computing the relevance of query
refinements and ranking them according to user’s preferences. [6] or [5] build
their lattice structures from a static database. Our context is different since the
response documents set is generated dynamically for a user’s query: documents
clustering is ephemeral and the construction of the whole Galois lattice for each
set of answers would be too costly. As Carpineto [4] which only construct the
direct neighbors of the user’s query, we present in sections 4 and 5, an algorithm
which allows to construct only a subpart of the original Galois lattice under the
user guidance.

3 Domain Ontology and Description of Documents

We consider a domain ontology composed by a hierarchy of terms (denoted Dh)
and expressed by a set of rules of the form: t1 → t2, where t1 and t2 are terms.
Throughout the paper we will use a toy example as an illustration from the
tourism products domain. For such an application, possible ontology terms could
be AccomodationPlace, Localization, Equipment, Activities. Figure 3 shows a fragment of the

2 If the query has no answer in the set of documents, the searched pair does not exist.
The problem of cooperative answering is not studied here and the reader interested
in this problem has to refer to [3], [1] or [9].

hierarchy describing the localizations according to different points of view like
physical and geographical characteristics. The following two definitions establish
the notion of subsumer of a term.

Definition 1 A term t’ is a direct subsumer of a term t if the rule t → t’ is
in Dh. t is a direct specialization of t’.

A term can have many direct subsumers and specializations.

Definition 2 t’ is a subsumer of a term t if t’ is a direct subsumer of t or if
there exists t” such that t’ is a direct subsumer of t” and t” is a subsumer of t.

Example 5 The direct subsumers of Reunion Island are AlwaysSunny, OutOfEurope and IslandWithBeach
while other subsumers are PlaceWithBeach, Island, etc. The direct specializations of UnderTheSun are Sunny-
OnlySummer and AlwaysSunny while other specializations are Corsica, Sahara, etc.

UnderTheSun

NoBeachPlace

SaharaMadeira Corsica

Island

InEurope

AlwaysSunny

PlaceWithBeach

CaribbeanReunion

GeoPlace

PhysicalPlace

SunnyOnlySummer

OutOfEurope

IslandWithBeach

Top

ResidencePlace

Hotel
B&B

Fig. 3. A fragment of the hierarchy

Documents are supposed to be indexed with the most specialized terms of the
domain ontology as in [5] but their description is enriched before clustering. All
subsumers in the ontology of the terms indexing the documents are added. This
process is called saturation and is defined as follows:

Definition 3 Sat(T) is the saturated of the set of terms T , if for each term t
in T , all subsumers of t are in Sat(T).

Example 6 Given the hierarchy in figure 3, given a document focusing on a hotel situated on Reunion
Island with the description T = {Hotel, Reunion}, Sat(T) = {Hotel, ResidencePlace, Reunion, AlwaysSunny,
UnderTheSun, OutOfEurope, IslandWithBeach, PlaceWithBeach, Island, GeoPlace, PhysicalPlace}.

Conversely, we define desaturation of a set of terms T as the process of remov-
ing from this set all subsumers whose specializations are in T .

Definition 4 DeSat(T) is the desaturated of the set of terms T , if it contains
all t in T which have no specialization t” in T .

The purpose of the saturation step is to make appear similar terms between
descriptions that do not share any term in their initial description but that
describe related documents. For example, the intersection of the descriptions
for {Madere} and {Réunion} is empty, but the saturated descriptions share common
subsumers {GeoPlace, UnderTheSun, Island}. Saturation allows also to show similarities

between documents at a more abstract level (using more general terms) and along
different points of view represented in the ontology. Indeed, ontologies describe
the characteristics of terms using various points of view relevant to a particular
domain. In the tourism domain, for example, a place will be characterized by
its facilities for nautic, swimming or other leisure activities, whereas in another
settings, historical, political or geological perspectives will be expressed. When

Island
AlwaysSunny

PlaceWithBeach

 Reunion

IslandWithBeach

UnderTheSun

 Island
AlwaysSunny

PlaceWithBeach

Reunion

IslandWithBeach

UnderTheSun

Fig. 4. fig.4a : Desat(T) fig.4b : Mgt(T)

looking for shared terms, we work on non-desaturated document descriptions
and we focus on the most general terms which are more prone to be shared
between descriptions. The most general terms of a set of terms are defined below.

Definition 5 Mgt(T) is the set of the Most general terms of a set of terms
T if for each term t in Mgt(T), t is in T and it does not exist t’ in T such that
t’ is a subsumer of t.

Example 7 Given the hierarchy in figure 3, given T = {Reunion, AlwaysSunny, UnderTheSun, Island-
WithBeach, PlaceWithBeach, Island}, DeSat(T) = {Reunion} and Mgt(T) = {UnderTheSun, PlaceWithBeach,
Island}, respectively represented in figure 4a and 4b in boxes.

We show now how we use these most general terms to only and directly construct
the most general nodes of the lattice, the minimal refinements of the user’s query.

4 Contribution of the Use of a Domain Ontology in the

Construction of a Galois lattice

Our aim, in this section, is to show the impact of the domain ontology, par-
ticularly the set of subsumption links between terms, on the Galois Lattice to
simplify its building process.

Given a query Q:{X}, let us assume that the retrieved documents are {12345}
and the set of the terms which annote these documents is :{abcdefghijx}. Re-
member that all the terms which annotate the documents are terms in the do-
main ontology (see figure 5)3 and let us remark that the most general terms of
the annotation terms are Mgt = {a,b,c } which appear in boxes in figure 5. Only
the most specialized terms (here, {efghijx}) have been used in the annotation
process but the descriptions have been enriched by the saturation process just
before computing the Galois lattice. This allows to make appeared new similar-
ities between documents and to identify new groupings of documents.

3 The term X does not appear in figure 5, because this term belongs to the initial query,
then it annotates all the documents and does not allow to discriminate between them.
It is the same with the term c in figure 7.b.

Fig. 5. Subsumption relationships and Mgt

Figure 6 presents first the annotations of the documents once the saturation
process has been done and then the Galois lattice which has been built from these
annotations. Let us remark in this figure that the nodes in the upper level of
the Galois lattice, the most general nodes, the ones whose extent is not included
in the extent of the other nodes, are nodes centered around terms belonging to
the set of the most general terms (here, {a,c})4. The reason is that these most
general terms are subsumers of the majority of the other terms. They are in all
the documents annotated with one of their specializations, thus in an equal or
greater number of documents.

Fig. 6. Annotations of documents and associated Galois lattice

Our gradual construction of the lattice is then based on these most general
terms. Let us suppose a set D of documents annotated by a set of terms T

which belong to the hierarchy. Comparing performance of algorithms for gen-
erating concept lattices, Kuznetsov shows in [8] that in a classical top-down
algorithm like, for example, the Bordat algorithm [2], the time complexity of the
procedure which finds the most general nodes, the lower neighbours of the node
that represents the query, is O(|D|×|T |2).

In our approach, using subsumption links between terms, we know that
those most general nodes will belong to the nodes centered around the terms
in Mgt(T). The time complexity of the algorithm that calculates the node cen-
tered around one term is O(|D|×|T |). As several terms in T have the same
subsumers, the number of terms in Mgt(T), n = |Mgt(T)|, is lower than |T |.
Then, our algorithm is less costly since its time complexity is O(|D|×|T |×n).

Let us show now that the general nodes obtained this way are the same as
the ones calculated by a classical algorithm. Let us suppose there exists a term
t such that t /∈ Mgt(T) for which there exists a node (X, Y) centered around t

and built by a classical algorithm. As before clustering, the description of each

4 The term b is a most general term too, but all documents annotated by this term
are annotated by the term a too, and the extent of the node centered around the
term b is included in the one of a.

document is enriched with all subsumers of the terms indexing the document,
since t /∈ Mgt(T), in each description where t appears there exists a subsumer t′

of t such that t′ ∈ Mgt(T). All descriptions of documents X containing t contain
t′ too which means t′ ∈ Y and the node (X, Y) has been built by our algorithm
too, as the closure of t′.

This mechanism can be reused at distinct steps in the algorithm to compute
the refinements of any node. Furthermore, as we know that the refined nodes of
one node can be built from the most general terms appearing in the descriptions
of the documents associated to this node, we can prevent the construction of the
refined nodes all the time. A node and its most general terms, which are possible

refinements axes, can be enough to make the user being aware of the terms he
can add in the next step. Moreover, we will see in section 6, that when documents
are very numerous, intents of the nodes are usually composed of a unique term,
the term around which the node is centered. Then exact computations of the
nodes are often useless, but costly.

Fig. 7. Most general nodes (7.a), terms and Mgt associated to the node (234,c) (7.b)
and axes of refinement of each general node (7.c)

We will precisely show, in the next section, how we are going to work, in
an iteration, from one node, called active node, that will represent, at the
beginning, the initial user’s query and then the current refined query. First, the
algorithm will really construct the refined nodes (see figure 7.a). Then, it will
compute the most general terms associated with each refined node (figure 7.b)
and display them (figure 7.c). This way, it provides the user, in the same time,
with a vision of two steps of refinement of the active node. This is a means to
prevent the exact and costly computation of all the nodes centered around axes
of refinement, when only few of these axes are interesting for the user.

5 Algorithm

Given a query Q0, the inputs of the algorithm are (1) the set D0 of identifiers
of documents with a mapping between their description and all the terms of the
query and (2) for each di in D0, a set of terms called current description of
di, Cdesc(di), initialized with the saturated of the set of terms describing the
document di. After n iterations, the output is a refined query Qn which contains
all the terms of Q0 and the set of terms added by the user at each iteration.

Example 8 Let us suppose that the user query is Q0 = ResidencePlace. Let us suppose too (for a not too
big example) that the search engine finds only four documents mapping this query and that the sets of terms
describing these documents are:

d1: {Hotel, Reunion}, d2: {Hotel, Carribean}, d3: {B&B, Sahara}, d4: {B&B, Corsica}.

The current description of d1 is then initialized as follows: Cdesc(d1) = {Hotel, ResidencePlace, Reunion, Al-
waysSunny, UnderTheSun, OutOfEurope, IslandWithBeach, PlaceWithBeach, Island, GeoPlace, PhysicalPlace}.

At each iteration, the algorithm realizes four tasks: i) the construction of the
active node from the documents mapping the current user query, ii) the con-
struction of its ”refined” nodes, (nodes representing refined queries), iii) the
identification of potential axes of refinement for each refined node. At this point,
the user may decide to iterate the process. He may choose a refined node and an
axis of refinement. Then the algorithm realizes the fourth task: iv) the construc-
tion of the new current query from the user choice, and goes back to the task i).
If the user decides to stop the process, the final refined query is built from the
last node chosen by the user.

5.1 Construction of the active node Ci from the set of document Di

We show here the main steps of task i.

To compute the Active Node Ci from the set of documents Di

1. Compute Ci = (Di, Ti) with Ti ← f1(Di), the set of terms shared
by all current descriptions of documents in Di

2. Remove the terms shared by all documents from the description of
each of them, ∀dj ∈ Di, Cdesc(dj)← Cdesc(dj)− Ti

The current descriptions of all the documents in Di share, at least, the terms
belonging to the descriptions and mapping the terms of the query Qi. This set
of shared terms is going to make up the intent Ti of the active node Ci. The
extent of Ci is the set of identifiers of the documents Di. The shared terms are
removed from the current description of the documents because they don’t allow
to discriminate between each of them. That way, we eliminate the redundant
elements in Ti as in the Godin’s T ′ − ICL.
Example 9 Current descriptions of the four documents of the example share the term ResidencePlace

of the query Q0 and {UnderTheSun, GeoPlace, PhysicalP lace} which are common subsumers of the
locations appearing in all the documents. The active node is then C0 = (1234, {ResidencePlace, UnderTheSun,
GeoPlace, PhysicalPlace}).

5.2 Construction of the refined nodes Cij of the active node Ci

This step clusters the documents from the active node Ci and creates its child
nodes in the lattice. The originality is that using the specialization-generalization
hierarchy of terms in the ontology, we obtain a more efficient algorithm than the
traditional one.

To compute the refined nodes Cij of the node Ci

3. Build the set UTi of the distinct terms remaining in the current
descriptions, UTi ←

⋃
j∈[1...n] Cdesc(dj)

4. Compute the Most General T erms of UTi, Mgti ←Mgt(UTi)
5. ∀tij ∈ Mgti, compute the complete pair Cij = (Dij , Tij) centered

around tij
6. Keep only the most general nodes among Cij . Their intent does not

contain the intent of an other node.

We start by identifying the set of the distinct terms appearing in the docu-
ments of the active node Ci. This set, UTi, is the union of the terms remaining
in the current descriptions when shared terms identified in step 1 have been
removed.
Example 10 UT0 = {Hotel, B&B, Reunion, Caribbean, Sahara, Corsica, AlwaysSunny, SunnyOnlySum-
mer, OutOfEurope, InEurope, IslandWithBeach, PlaceWithBeach, Island, NoBeachPlace} and Mgt0 = {Hotel,
B&B, AlwaysSunny, SunnyOnlySummer, OutOfEurope, InEurope, PlaceWithBeach, NoBeachPlace, Island}.

Then, we compute the most general terms of this set, Mgti, and for each
term tij in Mgti, the algorithm constructs the complete pair (Dij , Tij) centered
around tij . We only keep the most general nodes, their intent does not include
the intent of an other node. The intent of each most general node is displayed to
the user, providing an informative way of summarizing its contents and helping
to choose the next node to explore.

Example 11 The complete pair centered around AlwaysSunny is: (123, {AlwaysSunny, OutOfEurope}).
It is more general than the one centered around Hotel, which is: (12, {Hotel, AlwaysSunny, OutOfEurope,
PlaceWithBeach}). Only the first one is kept. 3 nodes are finally contructed in this step: C01=(34, {B&B}),
C02= (123, {AlwaysSunny, OutOfEurope}), C03=(124, {PlaceWithBeach, Island, IslandWithBeach}).

5.3 Identification of axes of refinement Mgtij for a refined node Cij

During the interactive node construction, as an additional help to the user, we
propose some axes of refinement for each node. They are terms the user can
choose to include in the future query.

To compute the potential axes of refinement Mgtij of one node Cij

7. In each node Cij = (Dij , Tij), remove the terms shared by all docu-
ments, ∀dk ∈ Dij , Cdesc(dk)← Cdesc(dk)− Tij

8. Build the set UTij of the distinct terms remaining in the current
descriptions, UTij ←

⋃
k∈[1...n] Cdesc(dk)

9. Compute Mgtij ←Mgt(UTij)

The three steps of this task are identical to steps 2, 3 and 4, but applied on
each Cij . As in step 2, each node is cleaned: the intent of the node is removed
from each document description. Let us remark that a document may appear in
different brother nodes. In that case, it has several current descriptions.

Example 12 At step 6, d1 appears in the two brother nodes C02 and C03 and its current description is
Cdesc(d1) = {Hotel, Reunion, AlwaysSunny, OutOfEurope, IslandWithBeach, PlaceWithBeach, Island}. After
step 7, in the two nodes, the new current descriptions of d1 are now:
- for the node C02 = (123, {AlwaysSunny, OutOfEurope}), Cdesc(d1) = {Hotel, Reunion, IslandWithBeach,
PlaceWithBeach, Island}.
- for the node C03 = (124, {PlaceWithBeach, Island, IslandWithBeach}), Cdesc(d1) = {Hotel, Reunion, Al-
waysSunny, OutOfEurope}).

Each new set Mgtij of the most General Terms remaining in the new de-
scriptions of a node Cij is displayed to the user as the set of refinement axes
of the node. For each term appearing in each Mgtij, the number of documents
mapping this term is displayed too.

Example 13 For the node C02 = (123, {AlwaysSunny, OutOfEurope}), Mgt02 = {Hotel, B&B, Place-
WithBeach, Island, NoBeachPlace} and the displayed set of refinement axes is {Hotel 2, B&B 1, PlaceWithBeach
2, Island 2, NoBeachPlace 1}.

5.4 Interaction with the user

If the user decides to iterate the process, he chooses both a node and an axis of
refinement. A new more precise query is built. The subset of documents with a
current description including the chosen axis is identified. Then the algorithm
goes back to step 1 in order to propose new refinements of the current query.

To create the new current query Qi+1 from user choices

10. Given a node Cij and an axis tk ∈Mgtij, Qi+1 ← Tij ∪ tk
11. Di+1 ← {d ∈ Dij | Qi+1 ⊆ Cdesc(d)}, the set of documents whose

description maps all the terms of the query Qi+1.

Example 14 Let us suppose that the user chooses the node C02 = (123, {AlwaysSunny, OutOfEurope}),
and the axis of refinement PlaceWithBeach. 1 and 2 are the only documents with a description including this
term. Then the algorithm goes back to step 1 with these documents and their current descriptions.

If the user decides to stop the refinement process, he selects a node among all
the displayed ones. The refined query is then built in a two-step process. First,
we compute the union of the intent of the chosen node and of the intent of its
parents in the lattice. Second, we compute the desaturated of the set previously
obtained.

Example 15 If the user chooses to stop with the node C02 = (123, {AlwaysSunny, OutOfEurope}), the
refined query Q1 is {ResidencePlace, AlwaysSunny, OutOfEurope}.Indeed, T02 = {AlwaysSunny, OutOfEurope},
T0 = {ResidencePlace, UnderTheSun, GeoPlace, PhysicalPlace} and DeSat(T02 ∪ T0) = {ResidencePlace,
AlwaysSunny, OutOfEurope}.

If the user is not satisfied with the proposition of the system, he can backtrack in
order to explore alternative nodes. This process allows him to make refinement
step by step as he could do in a whole Galois lattice.

6 Experimental Results

We tested the algorithm in the setting of the Picsel project [10]. We built a
repository which groups 80,000 descriptions of documents in the tourism domain.
The domain ontology has been composed of a hierarchy of about 250 terms. The
documents have been acquired using the search engine Google. Queries to Google
were conjunctions of terms, these terms being the most specialized terms in the
hierarchy. Answers given by Google were URLs of documents with a match
between their description and the terms in the queries. As a same URL may be
a result of different queries, the description of the documents in the repository
was composed of the union of the terms belonging to all the queries with their
URL as results. Moreover, our aim was to acquire documents with the most
precise descriptions as possible. So, the repository only stores URLs obtained as
results of at least two queries.

Example 16 If URL1 is a result of both Q1= {Hotel, Corsica, FiveStars, ViewOnToTheSea, BabyClub}
and Q2= {Hotel, Corsica, SwimmingPool, Golf, ArcheologicalSite}, its description in the repository will be
{Hotel, FiveStars, Corsica, ViewOnToTheSea, BabyClub, SwimmingPool, Golf, ArcheologicalSite}.

Once the URLs and their description have been acquired, we built queries in
order to interrogate the repository and to evaluate the algorithm. We studied
the first level of nodes and analysed OntoRefiner’s runtime according to the
number of answers. The aim is to help the user to refine a query, step by step, in
an acceptable time and to provide him with acceptable interaction conditions.
We made several experiments. For each experiment, we noted time, the current
OntoRefiner version took, at precise points in the algorithm which were the fol-
lowing:
• At the end of step 4 (cf. section 4.2). This time includes querying the repos-

itory, saturation, active node computation, identification of the most general
terms. This point in the algorithm will be called further phase 1.
• At the end of step 6. This time includes time of phase 1 and computation

of the most general nodes. We will call this point phase 2 in the following.
• At the end of step 9. It includes time of phase 2 and computation of the re-

finement axes corresponding to each child node. This point will now be referred
to as phase 3 in the following.

Fig. 8. Time of phase 1 to 3 according to the number of returned answers

We analyzed the experimental results giving by figure 8. This allowed us
to specify the conditions where the algorithm is completely satisfactory and
applicable as it is. Then we were able to identify the most costly phases and
to propose optimizations depending on the number of answers, limited to some
specific situations. That way, acceptable interaction conditions are proposed to
the user whatever the number of answers is.

The results of the analysis that we have done are the following. First, we
noticed that when the number of answers is smaller than 6,000, the algorithm
is very efficient. It provides the user with very precise criteria, limiting greatly
the number of answers. Time of each iteration is less than 10 seconds. It is very
reasonable and quite acceptable for the user.

However, when the number of documents is greater than 6000, we noticed
that runtime increases rather considerably. OntoRefiner spends most of the time
computing the most general nodes (phase 2 Fig. 8). Consequently, we have an-

alyzed the number and the content of the created nodes, centered around the
most general terms (child nodes C0i of the first node C0), when queries are gen-
eral and when results are numerous (greater than 6000). Our analysis brought
to the fore two significant phenomena.

First, the intent of the first child nodes is usually composed of a unique term.
This term is the most general term t0i around which the node C0i is centered.
This point is very interesting because, when computing the node centered around
a term t0i, C0i = (D0i, T0i), the running cost is mainly the result of calculation
of T0i, the set of terms shared by all current descriptions of documents in D0i,
such that T0i ← f1(D0i). To make OntoRefiner usable in such a situation, we
propose an optimization. The proposed solution is to limit the computation of
the child nodes C0i of the first node C0, by giving only an approximation of

these nodes. All the documents D0i which are annotated by a most general
term t0i will be identified. However, the intent T0i of the associated node will
not be precisely computed. We will consider (by approximation according to our
heuristic) that it is only composed of t0i as it is most of the time.

Second, we noticed in our experiments that axes of refinement computed for
each refined node are often very similar. More precisely, axes of refinement of
node C0i, for example, are: the set Mgt0 associated to its father node C0, without
the term t0i (the term around which the node C0i is centered), but including the
specializations of t0i which have no other subsumer in Mgt0.

Example 17 Given a node C0, which Mgt0 = {X, Y, Z, Leasure}, if ChildLeasure, CulturalLeasure,
SportLeasure are specializations of Leasure in the domain hierarchy, the axes of refinement computed for
the refined node centered around Leasure will be = {X, Y, Z, ChildLeasure, CulturalLeasure, SportLeasure,
. . .} if for each of these terms there is at least one document with a description including it.

From that observation, we propose to use a second heuristic in order to calcu-
late, once more, only an approximation. This time, the approximation is about
the Mgt0i which are associated to the approximated nodes C0i. The approxima-
tion of Mgt0i is obtained from the set Mgt0 associated to its father node C0,
without the term t0i (the term around which the node C0i is centered), but it
includes the specializations of t0i which have no other subsumer in Mgt0. To be
sure that the approximated result does not contain terms which are in no doc-
ument, the approximation process is followed by a verification phase. For each
term in approximate Mgt0i, we verify that there is at least one document in D0i

with a description including it.
So, to summarize, we studied the balance between runtime and acquisition

for the user of new criteria in order to obtain less but more relevant answers.
When the number of answers is smaller than 6,000 and leads to a time for phase
3 less than ten seconds, the algorithm is very satisfactory. It provides the user
with precise criteria to limit the number of answers.

On the contrary, when the number of answers is greater than 6,000, opti-
mizations techniques have been investigated. Two heuristics are proposed. That
way, phases 2 and 3 are less costly while the user is all the same provided with
useful and relevant filtering criteria which are approximations.

Thanks to these optimizations, OntoRefiner is now an interactive system,
usable whatever the number of retrieved documents is.

7 Conclusion

In this paper, we present OntoRefiner, a system helping the user to refine a query
posed onto a repository when the initial returned answers are too numerous. We
describe the Galois lattice structure, each node in the lattice being assimilated,
in our approach, to a query. We present the domain ontology, the description
of the documents in the repository and the way the domain ontology is used
to improve the refinement process. The four tasks of the refinement algorithm
are presented, each step being detailed. This algorithm has been implemented in
Java. It has been experimented to query a repository and also in the setting of
the Picsel mediator [10]. In this paper, we described the experiments coming
from refinements of queries posed onto a repository of documents in the tourism
domain. We analyzed OntoRefiner’s runtime according to the number of answers.
The experiments confirmed the feasibility of the approach and its efficiency up to
6,000 documents. To maintain acceptable conditions of user interaction beyond
that, we proposed two additional different optimizations which consist to do
approximations. The optimizations have been introduced in the approach and
the tests give quite satisfactory results.

References

1. A. Bidault, Ch. Froidevaux, B. Safar, Repairing Queries in a Mediator approach.
In Proc. of ECAI’00, 406-410, Berlin, August 2000.

2. J.P. Bordat, Calcul pratique du treillis de Galois d’une correspondance. In
Mathématiques, Informatiques et Sciences Humaines, 24, 31-47, 1986.

3. C. Carpineto and G. Romano, Information Retrieval through hybrid navigation of
lattice representations. Inter. J. of Human-Computer Studies, 45, 553-578, 1996.

4. C. Carpineto and G. Romano, Effective Reformulation of Boolean Queries with
Concept lattices. In Proc. of FQAS’98, 83-94, 1998.

5. P. Eklund and R. Cole, Structured Ontology and Information Retrieval for Email
Search and Discovery. In Proc. of ISMIS’02, LNAI 2366, pp.75-84, Lyon, June 2002.

6. R. Godin, R. Missaoui and A. April, Experimental comparison of navigation in
a Gallois lattice with conventional information retrieval methods. Int. Journal of

Man-Machine Studies, 38, 747-767, 1993.
7. R. Godin, R. Missaoui, H. Alaoui, Incremental Concept Formation Algorithms

Based on Galois (Concept) Lattices. Computational Intelligence,11(2), 246-267, 1995.
8. S. Kuznetsov and S. Obiedkov, Comparing performance of algorithms for generating

concept lattices. Journal of Exp. and Theor. Artif. Intell., 14, 189-216, 2002.
9. J. Minker, An overview of Cooperative Answering in Databases. In Proc. of

FQAS’98, 282-285, 1998.
10. M.-Ch. Rousset, A. Bidault, Ch. Froidevaux, H. Gagliardi, F. Goasdoué, C. Rey-

naud et B. Safar, Construction de médiateurs pour intégrer des sources d’information
multiples et hétérogènes : le projet Picsel, In Revue I3, Vol 2(1), 9-59, 2002.

11. N. Stojanovic, R. Studer, Lj. Stojanovic, An approach for ranking queries in
Semantic Web, In Proc. of ISWC’03, LNCS 2870, 500-516, 2003.

12. R. Wille, Concept Lattices and Conceptual Knowledge Systems. Computers and

Mathematics with Applications, 23, 403-515, 1992.

