
Uniform Variable Splitting

Roger Antonsen

Department of Informatics, University of Oslo, Norway

This extended abstract motivates and presents techniques for identifying
variable independence in free variable calculi for classical logic without equality.
Two variables are called independent when it is sound to instantiate them dif-
ferently. The goal of the uniform variable splitting technique, first presented in
[14], is to label variables differently (modulo a set of equations) exactly when
they are variable independent.

The overall motivation is to have a calculus which simultaneously has: (1)
invariance under order of rule application (to enable goal-directed search, since
rules then can be applied in any order), (2) introduction of free variables instead
of arbitrary terms (to reduce the instantiation problem to a unification prob-
lem), and (3) a branchwise restriction of the search space (to allow branchwise
termination criteria and early termination in cases of unprovability). Following
the notation of Smullyan [11], both formulae and inferences will have type �, �,
 or �. A �-inference always has a principal formula of type �; atomic formulae
have no type.

Pu ` Pa Pu ` Pb

Pu ` Pa ^ Pb

8xPx ` Pa ^ Pb

(a) below �.

u is rigid.

Pu ` Pa

8xPx ` Pa

Pv ` Pb

8xPx ` Pb

8xPx ` Pa ^ Pb

(b) � below .

Variable-pure.

Pu ` Pa

8xPx ` Pa

Pu ` Pb

8xPx ` Pb

8xPx ` Pa ^ Pb

(c) � below .

Variable-sharing.

Pu1 ` Pa Pu2 ` Pb

Pu ` Pa ^ Pb

8xPx ` Pa
1
^ Pb

2

(d) below �.

With splitting.

Pu1 ` Pa

(8xPx)1 ` Pa

Pu2 ` Pb

(8xPx)2 ` Pb

8xPx ` Pa
1
^ Pb

2

(e) � below .

With splitting.

Fig. 1. Examples over 8xPx ` Pa ^ Pb.

Examples of variable independence. In Fig. 1 there are five different
derivations over the same sequent. In (a) the variable u occurs in both branches,
and it is commonplace to require that both occurrences are instantiated rigidly,
i.e. with the same term. However, in this case, it is sound to instantiate the
leftmost occurrence with a and the rightmost with b. The two occurrences are

variable independent. In a calculus with universal variables this is easily recog-
nized, but there are cases where a variable is not universal, but still independent
of many other occurrences of the same variable. Now, let us reverse the order of
rule application such that the �-inference is below the -inference. If the calcu-
lus introduces a new free variable with every -inference, then the derivations
are variable-pure [13]. This is exemplified in (b), where the above variable in-
dependence is revealed due to the difference in inference order. In order to have
goal-directed search and keep a tight relation to matrix systems [15, 13, 7], it
is desirable to have invariance under order of rule application, which is not a
property enjoyed by variable-pure calculi. (The leaf sequents in (a) differ from
those in (b).) To obtain this invariance, one can employ a way of reusing free
variables. If the different occurrences of the same -formula introduce the same
free variable, then the derivations are variable-sharing [13]. This is exemplified
in (c). Again, the occurrences are variable independent even though they are
syntactically indistinguishable. The derivations in (d) and (e) are the respective
variants of (a) and (c) in a calculus with variable splitting. Regardless of infer-
ence order, the leaf sequents are the same and variable independent occurrences
are labeled differently. The derivations in (d) and (e) are called permutation
variants, since the leaf sequents are identical.

Free variable sequent calculus with variable splitting. For most def-
initions we refer to [14]. Essential to the variable labeling system is that every
formula occurrence is associated with an index. To achieve this we adopt an
indexing system for formulae similar to that used by Wallen [15]. When a set
of formulae is given, typically in the root sequent of a derivation, every possible
formula obtainable from this set, including those created by implicit contraction,
will have a unique index. Technically, all formulae from the set will be associated
with an indexed formula tree, containing all possible indices. (Note that an in-
dexed formula tree is infinite whenever it contains a -formula.) In a derivation,
two different formula occurrences have identical indices exactly when they are
instances of the same formula occurring in different branches due to one or more
�-inferences below in the derivation. The notation 'x is used when ' has index
x .

Definition 1. If 'x and y are formulae, let x � y mean that x is below y

in the indexed formula tree. (� is essentially the subformula ordering.) Two
different indices, x and y , are �-related if they are not �-related and they have
a greatest common descendant of principal type �. Otherwise, they are �-related.
A splitting set is a set of indices such that no two indices are �-related. A formula
occurrence is decorated when it is labeled with a splitting set. From now on all
formulae will be decorated. The notation 'xS is used when the formula is labeled
with a splitting set S.

The sequent calculus is similar to G3c in [12]. The rules are: L^, L_, L!,
L9, L8, L:, R^, R_, R!, R9, R8, R:. One rule of each type is given in Fig. 2.
Due to the built-in contraction of the -rules, structural rules are not needed.

�; 'xS; yS ` �

�; ('x ^ y)zS ` �
L^ (�-rule)

� x ` 'xS;�x � y ` yS;�y

� ` ('x ^ y)zS;�
R^ (�-rule)

�; '[w=f z(u1; : : : ; ui)]S ` �

�; (9w')zS ` �
L9 (�-rule)

� ` (9w')z
0
S;'[w=uz]x

0
S;�

� ` (9w'x)zS;�
R9 (-rule)

Fig. 2. �-rules: � x denotes f'(S [x) j 'S 2 �g, the set of formulae in � where

the index x has been added to all the splitting sets. In a premiss of a �-rule, the

index of the active formula is added to all splitting sets in the sequent except for the

splitting set of the active formula itself. It is immediate that the property of being

a splitting set is preserved in this operation. Thus, it is possible to track which �-

inferences that caused the branching. -rules: The -rules introduce instantiation

variables of the form uz , where z is the index of the principal -formula. Two formulae

are created: one instance of the principal formula and one copy by means of implicit

contraction. �-rules: The �-rules introduce Skolem functions of the form f z , where z is

the index of the principal �-formula. (Actually, the same Skolem function is introduced

for all contracted copies of the same �-formula, but this is not so important here.) The

skolemization works in the following way: If (9w')zS is the principal formula in which

exactly the instantiation variables u1; : : : ; ui occur, then the Skolem term f z(u1; : : : ; ui)
is introduced and substituted for the variable w . (This �-rule lies somewhere between

a �+-rule [5] and a �+
+
-rule [2].)

In order to identify independent variables, instantiation variables are now
labeled with splitting sets. A colored variable is a pair hu; Si, where u is an
instantiation variable and S is a splitting set, called a color. We write uS for
hu; Si. The terms generated from function symbols (including constants and
Skolem functions) and colored variables are called colored terms. The terms gen-
erated from function symbols and instantiation variables are called instantiation
terms. Instead of performing unification on the level of instantiation terms, we
wish to do so on the level of colored terms. This provides an extra degree of
freedom, since two colored variables based on the same instantiation variable
can be instantiated differently. The labeling is done by means of an operator �,
which propagates a splitting set to all the instantiation variables in a formula
occurrence, i.e. '� S is the formula ' where all occurrences of an instantiation
variable u has been replaced with uS. (An instantiation variable is never bound
by a quantifier, so we can do this.)

Definition 2. An L-pair (“Leaf-pair”) a is a pair of complementary formulae,
written 'xS ` yT , from a leaf sequent. The corresponding colored L-pair,
denoted �a, is 'x � (S n T) ` y � (T n S). If A is a set of L-pairs, then �A is the
set f�a j a 2 Ag. A colored variable u(SnT) is called the pruning of the unpruned
variable uS. (The purpose of the pruning is to create a strong dependency between
a colored variable and the indices below or equal to the complementary formula.
E.g., if z 2 (S n T), then z 6� x and z � y (z = y).) A connection is an L-pair

in which the two formulae are atomic and contain the same predicate symbols
with the same arity. A set of L-pairs is spanning for a derivation if it contains
exactly one L-pair for each leaf sequent. (We assume that every root sequent
� ` � of a derivation is such that > 2 � and ? 2 �.) When A is a set of L-
pairs, VarA is the set of all colored variables occurring in �A. The set TermA is the
set of colored terms generated from VarA and the function symbols in A. An A-
substitution is a partial function � : VarA ! TermA. Now, let c be the connection
P (s1; : : : ; t1)S ` P (t1; : : : ; tn)T . The set of primary equations for c, Prim(c),
is the set fsi � (S n T) � ti � (T n S) j 1 � i � ng. For a set C of connections,
Prim(C) =

⋃
c2C Prim(c). A C-substitution � solves an equation sS � tT from

Prim(C) if (sS)� = (tT)�. It satisfies Prim(C) if it simultaneously solves all
equations from Prim(C).

In general, it is not sufficient to characterize provability by only requiring
the existence of a satisfying substitution for a spanning set of connections. This
is far too liberal and gives an inconsistent splitting mechanism due to the fact
that dependent variables can be labeled differently. In order to obtain consis-
tency, a notion of admissibility is introduced. A proof in the splitting calculus is
a derivation, a spanning set of connections and an admissible substitution satis-
fying all primary equations. There are several candidates for admissibility that
seems natural. However, most of them are inconsistent because too few colored
variables are required to be equally instantiated. (In particular, the one proposed
in [14] is inconsistent.) A full discussion of this, including a consistent definition
of admissibility, is beyond the scope of this abstract. Briefly, an admissible sub-
stitution can be defined such that for every proof with splitting there is a proof
of the same sequent in a variable-pure calculus without splitting.

The difficulty is illustrated in Fig. 3. The root sequent is falsifiable (a falsify-
ing model is one where Pb, Qa, Rb, Sa are true, and Pa, Qb, Ra, Sb are false.
A consistent splitting mechanism must at least identify u3 with u4 or v1 with
v2. Otherwise, a proof can be obtained by the substitution given over the leaf
sequents.

u3 = a
Pu3`Pv1

(Pu^Sa)3`(Pv_Rv)1

v2 = b
Rb`Rv2

(Qu^Rb)3`(Pv_Rv)2

(Pu^Sa)_(Qu^Rb)3`(Pv_Rv)

v1 = a
Sa`Sv1

(Pu^Sa)4`(Qv_Sv)1

u4 = b
Qu4`Qv2

(Qu^Rb)4`(Qv_Sv)2

(Pu^Sa)4_(Qu^Rb)`(Qv_Sv)

(Pu^Sa)_(Qu^Rb)`(Pv_Rv)^(Qv_Sv)

8x
u

((Px^Sa)︸ ︷︷ ︸
1

_(Qx^Rb)︸ ︷︷ ︸
2

)`9x
v

((Px_Rx)︸ ︷︷ ︸
3

^(Qx_Sx)︸ ︷︷ ︸
4

)

Fig. 3. Mutual splitting can give rise to inconsistency

(This extended abstract was rewritten due to the recommendation from one of the re-

viewers in order to be more suitable as an exercise in technical conference presentation.

Several topics for future research were therefore unfortunately left out.)

References

1. R. Antonsen. Free variable sequent calculi. Master’s thesis, University of Oslo,

Language, Logic and Information, Department of Linguistics, May 2003.

2. B. Beckert, R. Hähnle, and P. H. Schmitt. The even more liberalized �-rule in free

variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici, editors,

Proceedings of the third Kurt Gödel Colloquium KGC’93, Brno, Czech Republic,

volume 713 of LNCS, pages 108–119. Springer-Verlag, Aug. 1993.

3. W. Bibel. Automated Theorem Proving 2. Edition. Vieweg Verlag, 1987.

4. M. Giese. Incremental Closure of Free Variable Tableaux. In Proc. Intl. Joint

Conf. on Automated Reasoning, Siena, Italy, number 2083 in LNCS, pages 545–

560. Springer-Verlag, 2001.

5. R. Hähnle and P. H. Schmitt. The liberalized �-rule in free variable semantic

tableaux. Journal of Automated Reasoning, 13(2):211–222, Oct. 1994.

6. C. M. Hansen. Incremental proof search in the splitting calculus. Master’s Thesis

in progress, Department of Informatics, University of Oslo, 2004.

7. C. Kreitz, J. Otten, S. Schmitt, and B. Pientka. Matrix-based constructive theorem

proving. In S. Hölldobler, editor, Intellectics and Computational Logic. Papers

in honor of Wolfgang Bibel, number 19 in Applied Logic Series, pages 189–205.

Kluwer, 2000.

8. R. Letz and G. Stenz. Model elimination and connection tableau procedures. In

A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-

ume II, chapter 28, pages 2015–2114. Elsevier Science, 2001.

9. F. Pfenning. Analytic and non-analytic proofs. In R. Shostak, editor, 7th In-

ternational Conference on Automated Deduction, volume 170 of Lecture Notes in

Artificial Intelligence, pages 394–413, Napa, California, USA, May 1984. Springer

Verlag.

10. N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur, editor,

Proceedings of 11th International Conference on Automated Deduction, volume 607

of Lecture Notes in AI, pages 522–536, Berlin, 1992. Springer Verlag.

11. R. M. Smullyan. First-Order Logic, volume 43 of Ergebnisse der Mathematik und

ihrer Grenzgebiete. Springer-Verlag, New York, 1968.

12. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University

Press, 2 edition, 2000.

13. A. Waaler. Connections in nonclassical logics. In A. Robinson and A. Voronkov,

editors, Handbook of Automated Reasoning, volume II, chapter 22, pages 1487–

1578. Elsevier Science, 2001.

14. A. Waaler and R. Antonsen. A free variable sequent calculus with uniform variable

splitting. In Automated Reasoning with Analytic Tableaux and Related Methods:

International Conference, TABLEAUX, Rome, Italy, number 2796 in LNCS, pages

214–229. Springer-Verlag, 2003.

15. L. A. Wallen. Automated deduction in nonclassical logics. MIT Press, 1990.

