
Developing and Managing Software Components
in an Ontology-based Application Server

Daniel Oberle, Andreas Eberhart, Steffen Staab, Raphael Volz
Institute AIFB, University of Karlsruhe, Germany

lastname@aifb.uni-karlsruhe.de

Abstract

Application servers provide many functionalities com-
monly needed in the development of a complex distributed
application. So far, the functionalities have mostly been de-
veloped and managed with the help of administration tools
and corresponding configuration files, recently in XML.
Though this constitutes a very flexible way of developing
and administrating a distributed application, e.g. an appli-
cation server with its components, the disadvantage is that
the conceptual model lying behind the different configura-
tions is only implicit. Hence, its bits and pieces are difficult
to retrieve, survey, check for validity and maintain. To rem-
edy such problems, we here present an ontology-based ap-
proach to support the development and administration of
software components in an application server. The ontol-
ogy captures properties of, relationships between and be-
haviors of the components that are required for develop-
ment and administration purposes. The ontology is an ex-
plicit conceptual model with formal logic-based semantics.
Therefore its descriptions of components may be queried,
may foresight required actions, e.g. preloading of indirectly
required components, or may be checked to avoid inconsis-
tent system configurations — during development as well
as during run time. Thus, the ontology-based approach re-
tains the original flexibility in configuring and running the
application server, but it adds new capabilities for the de-
veloper and user of the system. The proposed scheme has
been prototypically implemented in KAON SERVER, an ap-
plication server running Semantic Web components.

1. Introduction

Application Servers are component-based middleware
platforms that offer an environment in which users can de-
ploy components developed by themselves or by third-party
providers [1]. As a sophisticated middleware, application
servers provide functionality such as dynamic loading, nam-

ing services, load balancing, security, connection pooling,
transactions, or persistence.

Despite the bundled functionality, realizing a complex
distributed application remains all but an easy task. For in-
stance, managing component dependencies, versions, and
licenses is a typical problem in an ever-growing repository
of programming libraries. In Microsoft environments, this
is often referred to as “DLL Hell”. Configuration files, even
if they are more or less human-readable XML, do not pro-
vide an abstraction mechanism to tame the complexity is-
sues arising in such systems.

As a way to abstract from many such low-level and often
platform-specific problems, the paradigm ofModel-Driven
Architectures (MDA) has gained wide-spread influence. The
principal idea of MDA is to separateconceptual concerns,
such as which component is using which other component,
from implementation-specific concerns, such as which ver-
sion of an application interface requires which versions of
windows libraries. MDA achieves this separation by fac-
torizing the two concerns, specifying them separately and
compiling them into an executable.

Notwithstanding that MDA already provides conceptual
modelling in order to improve management of complex sys-
tems, MDA is disadvantaged in two ways. First, MDA re-
quires a compilation step preventing changes at run-time
which are characteristic for application server software.
Second, an MDA itself cannot be queried or reasoned about.
Hence, there is no way to ask the system whether some
configuration is valid or whether further components are
needed.

Therefore, the logical next step in developing and man-
aging complex applications is the use of anexplicit con-
ceptual model that is executable, too, meaning it may be
queried and reasoned with, i.e. an ontology and correspond-
ing semantic metadata (descriptions of components in terms
of the ontology). The goal of this paper is to show how on-
tologies may be defined that support the developer in cre-
ating new software or in running new components in the
complex environment of an application server. For exam-
ple, the ontology allows for finding APIs that come with



certain capabilities (development time support) or for pre-
loading components that are required by other components
(run time support).

The reader may note that though an application server is
not the only software that may be supported in that way, it is
a very worthy challenge. The reasons are that the needs are
huge in this area and at the same time ontologies may fruit-
fully contribute to this complex, but nevertheless reasonably
restricted domain of application.

We present some motivating use cases for our approach
of an explicit conceptual model (Section 2). We embed our
approach into a generic architecture for an ontology-based
application server and briefly refer to its prototypical im-
plementation that supports building Semantic Web applica-
tions [14] (Section 3). As a major contribution of this pa-
per, we describe the ontologies that have been developed
since the inception of the architecture implementation (Sec-
tion 4) and highlight some of the new management capabil-
ities provided to developers of the application server (Sec-
tion 5). Finally, related work and conclusions are discussed
in sections 6 and 7.

2. Motivation

The first subsection considers use cases for semantic
metadata of components and APIs that target development
time support. Subsection 2.2 focusses on the run time use
cases.

2.1. Use Cases of Semantic Metadata for Develop-
ment Time Support

Today, the introspection feature of object-oriented lan-
guages provide syntactic metadata of classes, fields, and
methods along with their parameters, return types, and
possible exceptions. Similar information is available from
WSDL Web Service metadata, whereas component libraries
such as dynamic linked libraries or Java archives only carry
very little information. We believe that rich, semantic meta-
data can provide added value to the user. Consider the fol-
lowing use cases:

Component dependencies and versioning. Li-
braries often depend on other libraries and a certain archive
can contain several libraries at once. Given this information,
a system can assist the developer in locating all the required
libraries1. Furthermore, the user might be notified when two
libraries require different versions of a certain third compo-
nent. For instance, the multitude of versions of XML parsers
causes a lot of trouble. We envision a system, which reasons

1 This idea is already realized in the RPM package manager:
http://www.rpm.org/. Our goal is to generalize this approach and inte-
grate it with other tools and services for the end user.

with this kind of information in order to make an educated
suggestion or to display inconsistencies.

Licensing. Similar to the component dependencies, we
can describe licensing, trustworthiness and quality. Using
an external module in one’s software has effects on the li-
censing. Using external GPL licensed code prohibits dis-
tributing the bundle under a LGPL license. Along the same
lines, ISO software certification or a security guideline of a
government agency might prohibit certain external compo-
nents to be used in software to be deployed. In all of these
cases, it would be useful to model development constraints
and reason with these and semantic metadata to avoid li-
censing problems.

Capability descriptions. Database interfaces typi-
cally offer some method to execute an SQL command.
However, the behavior of specific database implementations
can vary dramatically. Earlier versions of MySQL do not
support transactions or subqueries. Component capabilities
adhering to standard interfaces can be made explicit to the
developer.

Service classification and discovery. Given APIs
with similar functionality, one will find different methods
and services with essentially the same functionality. We
suggest associating these implementations with a common
service taxonomy. This will allow the user to discover im-
plementations for a certain taxonomy entry and to classify
a given service.

Semantics of parameters. Parameters and return
types of methods and services are often implicitly encoded
in the respective names. Providing meaningful names is
considered to be an important practice when developing
software systems. However, it will be desirable to asso-
ciate the names with concepts and relations of a common
agreed-upon domain ontology. This will allow more power-
ful searches over a large unfamiliar API. These descriptions
can even be used to generate a sequence of method invoca-
tions in order to achieve a goal specified [6].

Automatic generation of component and ser-
vice metadata. Development toolkits usually pro-
vide functionality for creating stubs and skeletons or
for automatically generating interface metadataà la
java2wsdl. With an entire set of new markup languages like
BPEL4WS2 or OWL-S3 emerging, tool support for these
new languages is needed. Whereas WSDL tools can ob-
tain almost all of the required input directly from the
source code, more powerful languages require addi-
tional semantic metadata as the source of the more complex
metadata. If the respective metadata are already avail-
able within the system, automatically generated BPEL4WS

2 http://www.ibm.com/developerworks/library/
ws-bpel/

3 http://www.daml.org/services/owl-s/1.0/



or OWL-S metadata can be a side product of a uni-
fied framework.

2.2. Use Cases of Semantic Metadata for Run
Time Support

Application servers handle issues like load balancing,
distributed transactions, session management, user rights or
access controls. All of these tasks are orthogonal to spe-
cific application issues in that they reappear in just about
any scenario. Consequently, it makes sense for an applica-
tion server to manage these issues in an application inde-
pendent way. This means that the responsibility is shifted
from the coding to the deployment process.

While it is always a good idea to reduce the amount
of source code that has to be written, the deployment pro-
cess can be quite tricky in itself. Consider the J2EE plat-
form as an example. The specification describes the struc-
ture of XML deployment metadata. J2EE implementations
like JBoss (cf. [7]) provide a set of tools, which help the user
to generate such metadata. However, the tools merely act as
an input mask, which generates the specific XML syntax for
the user. This is definitely a nice feature, however, she or he
must fully understand the quite complicated concepts that
lie behind the options for the transactional behavior for in-
stance. The current deployment tools do not help to avoid
or even actively repair configurations that may cause harm-
ful system behavior. Consider the following situations:

Access Rights. The access control mechanisms of ap-
plication servers are based on users and roles to whom ac-
cess can be granted for certain resources and services. In
addition, services can be run using the credentials of the
caller or those of another user that runs the service on be-
half of the caller. This is often referred to as the authen-
tication problem [8]. It is quite evident, that access rights
within a large business process can be very complex. A sys-
tem should be able to assist the user in suggesting suitable
settings and in determining potential flaws in the security
design. We believe that formal reasoning over group mem-
berships or resources being accessed by processes running
on behalf of other users will prove to be valuable here.

Error handling. Modern programming languages
make heavy use of exceptions. Exceptions are raised and
propagated along the calling stack in order to be han-
dled at the appropriate level. In order to avoid the embar-
rassing situation that an exception is not handled at all
and simply passed to the user interface or business part-
ner, a consistency check can be put in place. Similar to
the argument made in the previous example, rules describ-
ing how exceptions are thrown, passed across the calling
stack, and being caught or not can be applied in this sce-
nario.

Transactional settings. Resources such as databases
and message queues offer transactional recovery. This no-
tion is extended to regular software components, which ac-
cess transactional resources. Methods can be declared to not
support transactions, to initiate a new transaction, or to par-
ticipate in the caller’s transaction. Again, a chain of calls
across many components can contain inconsistent settings
such as a component which requires a transaction calling
one that does not support transactions. A formalization of
invocations and the possible transactional settings can be
applied here.

Secure communication. Confidential data might be
made accessible to business partners only. Settings on the
application server typically determine that a digital signa-
ture has to be checked before the request is passed along
and that a service can only be bound to a secure communica-
tion line or protocol. Similar to the arguments made above, a
system should be able to detect, that a confidential resource
is accidentally made accessible via a non-encrypted com-
munication channel.

The contribution of this paper is to show how some of
these use cases of semantic metadata work. The claim that
we make is that all of them — and many more — can be
handled in a generic way using an ontology and correspond-
ing semantic metadata.

3. An Ontology-based Application Server

The various examples make it evident that there is a need
for a conceptual model. The advantage of such a model is
twofold. The model abstracts from the specifics of imple-
mentations such as J2EE with their proprietary configura-
tion and deployment formats. Instead it focuses on and re-
flects the underlying, well defined and agreed-upon con-
cepts such as users, access rights or transaction settings.
Furthermore, general domain knowledge about these con-
cepts can be formalized and reasoned with. This is a valu-
able basis for a variety of value-added services.

We use ontologies as a representation of the concep-
tual model. Like schemata, ontologies define concepts and
concept relationships (associations). Ontologies differ from
schemata mainly in two ways. First, ontologies aim at cap-
turing theshared understanding, which often includes lin-
guistic issues as well. Issues such as performance, compact
storage, and other application specific features do not play a
role. Second, ontologies contain axioms, which further de-
fine domain concepts and allow to reason with them. Com-
ponents are described in terms of the ontology what results
in semantic metadata.

Ontologies play a key role in area of the Semantic Web
[2] and based on this work, several representation languages
have been standardized within the World Wide Web Con-



sortium (W3C). Consequently, we have chosen these lan-
guages as the basis for our work.

The following subsections survey both the overall sys-
tem architecture of an ontology-based application server
and our implementation called KAON SERVER.

3.1. Architecture

Figure 1 shows the overall system architecture. The left
side outlines potential sources, which provide input for the
framework. This includes web and application server con-
figuration files, annotated source code, or metadata files.
This information is parsed and converted into semantic
metadata, i.e. metadata in terms of the ontology. The seman-
tic metadata and the ontology are fed into the inference en-
gine which is embedded in the application server itself. The
reasoning capability is used by an array of tools at devel-
opment and at run time. The tools either expose a graphical
user interface (e.g. security management) or provide core
functionality (e.g. the dynamic component loader).

Applications

J2EE Core Services

WEB-INF.xml

ejb-jar.xml

.htaccess

Annotations in
source code

Other metadata

...

...

Inference
Engine

Ontology

Application
1

(eBank)

Application 2

(Pet Store)

Naming

Transaction
Manager Security

...

Administration

Security
Management

Version
Management

...

Component
Loader

Figure 1. System architecture.

3.2. Implementation

This section gives a concrete example of how the over-
all system architecture can be realized. For a detailed dis-
cussion the reader is referred to [14].

The aforementioned architecture is implemented in a
system called KAON SERVER which is part of the KArl-
sruhe ONtology and Semantic Web Toolsuite (KAON). We
made use of the Java Management Extensions (JMX [9])
— an open technology for component management. With
JMX it becomes possible to configure, manage and mon-
itor Java applications at run time, as well as break appli-
cations into components that can be exchanged. Basically,
JMX defines interfaces of managed beans (MBeans) which
are JavaBeans that represent JMX manageable resources.

JMX only provides an API specification with sev-
eral available implementations. We have chosen JBossMX

which is the core of the open-source JBoss application
server [7] that augments J2EE by dynamic component de-
ployment. This choice allows us to inherit all the function-
ality provided by JBoss in the form of its MBeans (Servlet
Containers, EJB Containers etc.). We deploy our infer-
ence engine as an additional MBean and augment the
existing component loader and dependency manage-
ment to exploit the inferencing. A version and security
management tool allows to browse and query the ontol-
ogy at run time. Thus, it is possible to use the KAON
SERVER as a “semantically enhanced JBoss” .4

4. The KAON SERVER Ontology

This section details the ontology used in the KAON
SERVER. It is subdivided in an ontology dealing with de-
velopment use cases and run time use cases. Both are inter-
related and split into several modules. They are further dis-
cussed in subsections 4.1 and 4.2.5

4.1. Ontology Modules for Development Use Cases

In this section we present our ontology, which allows
to conceptualize the development use cases introduced in
section 2.1 by semantic metadata of components and their
APIs. Note that we only give a short overview due to the
lack of space. The interested reader is referred to [13].
The ontology is divided into several modules (cf. Figure 2)
which are explained in the following6:

API Description The API Description module offers a
framework for taxonomically describing the functionality
offered by methods of APIs (e.g. setter methods of an Enti-
tyBean would be instances of a method “AddData” ) and ac-
cordingly several types of APIs (e.g. StoreAPI). It also al-
lows to express the semantics of parameters. This kind of
information is used to perform service classification and
discovery as well as for automatic generation of com-
ponent and service metadata. Semantically enriched in-
formation, in this case specifying that the argument is infor-
mation like a Person or an Address, facilitates discovery and
can also be used to enrich automatically generated Web Ser-
vice metadata.

Component Simply consists of one concept that groups
together Profile and Grounding information (explained be-
low) about every kind of component.

Profile We use the Profile module to express capabil-
ity descriptions of a component. For example, a database

4 The KAON SERVER can be obtained at http://kaon.
semanticweb.org.

5 Note that the ontologies are expressed in the KAON language [12]
that is equivalent to Datalog. For the sake of readability, we will ex-
press axioms in First Order Logic syntax throughout the paper.

6 The uses cases’ names introduced in 2.1 are written in sans serif.



adapter component would have an attribute specifying the
SQL dialect used. Information of this type might be used
for service classification and discovery.

Grounding Basically, the Grounding module allows to
express the mapping between the existing syntactic meta-
data (e.g. J2EE descriptor files like ejb-jar.xml) and the se-
mantic metadata. In order to express the mapping between
the API Description and the source code we came up with
a conceptualization of IDL terms which is grouped together
in the Implementation module (see below).

Implementation This module contains implementation
level details of a component responding to the use case of
component dependencies and versioning. Code details
are described, like the class name or required archives. Be-
sides, each component has a certain version and potentially
depends on others. Along the same lines, some components
will not work properly, if a conflicting component is loaded
at the same time. These relationships are modelled by de-
pendsOn and conflictsWith which are transitive and sym-
metric associations, respectively7. Components can be in
different states (active, available, serialized, etc.) that are
captured by an attribute of the same name. We also model
the signature whose methods and parameters are expressed
according to the IDL module (see below).

IDL We have conceptualized a small subset of the IDL
(Interface Description Language [15]) specification into an
ontology-module that allows describing signatures of inter-
faces. The ontology module features concepts like Inter-
face, Operation, Parameter and so on.

Domain Ontology Modules While the ontology mod-
ules presented so far formalize generic knowledge only, do-
main ontology modules grasp knowledge specific to a cer-
tain application. For a new domain it can be easily replaced.
First, Domain Profiles may distinguish component types
in a particular application server. While most J2EE servers
Servlets and EJBs, newer ones also introduce MBeans and
Microsoft’s .NET world introduces further idiosyncracies.
Second, Domain API Descriptions contain sets of APIs and
functionality types (methods) that are typically offered by
components in a certain domain. An analysis of an online
store results in a domain ontology conceptualizing Orders,
Suppliers and Products, for instance.

Like discussed in [11, 13] we used OWL-S as a start-
ing point for building the ontology. OWL-S is an ontology
expressed in the Ontology Web Language (OWL). Its aims
are to enable automatic Web Service discovery, invocation,
composition and execution monitoring. Several interesting
design principles are realized by OWL-S that inspired our
work: separation of semantic and syntactic metadata, sep-
aration of generic and domain knowledge and modulariza-

7 That means ∀c1, c2, c3 : dependsOn(c1, c3) ←
dependsOn(c1, c2) ∧ dependsOn(c2, c3) and ∀c1, c2 :
conflictsWith(c1, c2)↔ conflictsWith(c2, c1).

Component

GroundingProfile

IDL

API Description

Implementation

Domain
API Description

Domain
Profiles

Generality

D
o

m
a

in
G

en
er

ic

S
em

a
n

tic
S

yn
ta

ctic
M

eta
d

a
ta

M
eta

d
a

ta

ontology module

uses module

application.xml
web.xml
ejb-jar.xml
...

Domain Ontology Modules

Figure 2. Ontology Modules for use cases
supporting development

tion. Our current state of work comprises a full analysis, yet
our formalization still lacks the individual groundings. The
Component, Profile, Implementation and Domain modules
are already used within the KAON SERVER.8

4.2. Ontology Modules for Run Time Use Cases

In this section we describe part of our ontology for
run time use cases. It conceptualizes interceptors, libraries,
archives, security aspects and their interrelationships. We
have modelled most of the modules. However, they are not
yet used within the KAON SERVER.

Due to space limitations, we focus on the security use
case. The J2EE specification distinguishes the key concepts
of realm, user, group, and role. We extend these basic no-
tions by introducing additional concepts and some impor-
tant associations and axioms in the following subsections.

4.2.1. Concepts

Resource The J2EE specification distinguishes security is-
sues on the web, application, and persistence tiers.
Even though the physical ways of accessing these re-
sources differ a lot, the notions of access control and
security are the same at all three levels. In our on-
tology, resources can be web resources, components
or databases (tables or SQL views). These are identi-
fied by URLs, class names and database URIs (usually
server URI augmented by table or view name), respec-
tively.

8 The ontologies ship with the KAON SERVER distribution and are also
separately available at http://kaon.semanticweb.org. The
site features a screenshot of browsing the ontologies with a graphi-
cal user interface.



Method Resources have methods, which constitute the
most fine grained level for access control. Meth-
ods are identified in combination with the resource.
Web methods are identified by the resource URL and
the protocol’s method such as HTTP GET. Meth-
ods of components are identified by their class name
and the method identifier consisting of name and sig-
nature9. In the case of database resources, methods
correspond to operations such as delete, update, se-
lect, send, or receive, which can be granted individu-
ally by the database management.

ResourceGroup Systems usually allow declaring security
settings for an entire set of resources. A web con-
tainer allows URL patterns such as <url-pattern>
/secure/*</url-pattern>. A similar wildcard
notation can encompass all methods of a class.

ACL The right to access a ResourceGroup, Resource or
Method is formalized as a concept AccessRight. This
was necessary to circumvent ternary associations that
cannot be modelled in KAON and other Semantic Web
languages like RDF and OWL. Subsumption reason-
ing capabilities allow us to specialize AccessRight in
Read, Write, Modify and Execute. An Access Control
List (ACL) is comprised of one or more AccessRights.

Invocation and RequestContext The definitions so far
captured the static aspects of security. At run time,
any kind of resource is accessed by an incoming re-
quest. The request is associated with context infor-
mation, e.g. on whose behalf the request is carried
out. The context is propagated from tier to tier, un-
less an explicit context change takes place. We model
this situation by Invocation and RequestContext con-
cepts which are interrelated (cf. associatedWith be-
low).

4.2.2. Associations

definedOnx and grantedFory Like mentioned be-
fore, AccessRights might be defined on Resource-
Groups, Resources or even Methods, and they might
be granted for Roles, UserGroups or even Users.

executes and accesses During processing, resources can
use other resources. This might be “cart.jsp” invoking
the shopping cart EJB, the product entity bean access-
ing the respective database table, or also an SQL view
reading other tables and views. In our ontology, Re-
sources execute Invocations and Invocations in turn ac-
cess Resources.

9 Methods can be overloaded such that the same method name is used
with different parameter lists. Consequently, the signature needs to be
included in the method identification.

associatedWith Any kind of resource is accessed by an in-
coming request. The request is associated with context
information, e.g. on whose behalf the request is carried
out. The context is propagated from tier to tier, unless
an explicit context change takes place. We associated
an Invocation with a RequestContext, where each Re-
questContext carries information about authentication
or transactions.

4.2.3. Axioms

invokes For convenience we defined a transitive associa-
tion invokes by axioms. It abbreviates executes and ac-
cesses in the following way:

∀r1, r2, i : invokes(r1, r2) ← executes(r1, i) ∧
accesses(i, r2)

∀r1, r2, r3 : invokes(r1, r3) ← invokes(r1, r2) ∧
invokes(r2, r3)

Roles, users, and groups Further axioms are necessary to
fully model the domain described so far. As we men-
tioned before, users can be associated to groups and
access is granted via the role indirection. The effect of
the resulting relationships can be captured by the fol-
lowing rules:

∀ar, r, ug : grantedForUserGroup(ar, ug) ←
AccessRight(ar) ∧Role(r) ∧ UserGroup(ug) ∧
inRole(ug, r) ∧ grantedForRole(ar, r)

∀ar, r, u : grantedForUser(ar, u) ←
AccessRight(ar) ∧Role(r) ∧ User(u) ∧
inRole(u, r) ∧ grantedForRole(ar, r)

∀ar, u, ug : grantedForUser(ar, u) ←
AccessRight(ar) ∧ User(u) ∧ UserGroup(ug) ∧
member(u, ug) ∧ grantedForUserGroup(ar, ug)

A similar rule can be defined for permissions on
groups of resources:

∀ar, r, rg : definedOnResource(ar, r) ←
AccessRight(ar) ∧Resource(r) ∧
ResourceGroup(rg) ∧ partOf(r, rg) ∧
definedOnResourceGroup(ar, rg)

As we may recognize with this small example, it is
preferable to specify complex interactions with a few
logical rules rather than with extensive coding.

5. Example

This section introduces an example for a run time use
case. Since section 4.2 focused on security, we also take an
example from this use case.



Obtaining the semantic metadata There are several ways
of extracting the required information from configuration
files, source code, or registries. Our goal is not to provide
a complete set of parsers and extraction tools at this point.
Instead, we aim at demonstrating the feasibility of our ap-
proach in providing a proof of concept in extracting a rea-
sonable amount of information.

Information about the available resources is obtained by
reading the file system of the web container and the appli-
cation server. Database management systems often make
metadata on tables, users, and rights available via SQL.
In J2EE, the access control lists are specified in the ejb-
jar.xml and WEB-INF.xml deployment descriptors for the
web and the application server tiers. Various realms can
manage the user, group, and role information. We worked
with the JDBC realm, where the data is read from tables in
a database, making it also easily available to our tool. Ar-
guably the most complicated step is determining the invo-
cations from one resource to others. We performed a shal-
low analysis of the source code and SQL statements and
manage to pick up the commonly used patterns such as re-
solving a JNDI home interface reference. Furthermore, the
ejb-ref tag in the beans’ deployment descriptors provides
hints as to which other beans are used. Obviously, we are re-
stricted to static code analysis, which is also used by devel-
opment environments. Note that this is not really a problem
if the complete invocation graph is not extracted automati-
cally, since the system does not actively intervene in the de-
ployment process. It merely helps the user to assess the sit-
uation before making an educated decision.

Applying the inference engine An interesting example for
reasoning over security settings is to see which resources
a user gets indirect access to. For instance, a customer ta-
ble, accessible only by the database admin, may be indi-
rectly readable to other users via a customer entity bean,
since this bean performs a context switch. Thus, the call is
carried out using admin rights on behalf of the user. This
case is definitely not a bug; however, it might be useful to
assess the combined effect of various security settings by
analyzing the result of such a query. First, the axiom be-
low introduces a convenience predicate permission that is
true when an AccessRight is granted for a User u on a Re-
source r. Note that it captures permissions also when access
is granted for a UserGroup only but the User is a member
(because of the axioms introduced in 4.2).

∀ar, u, r : permission(u, r)← User(u)∧Resource(r)∧
AccessRight(ar) ∧ grantedForUser(ar, u) ∧
definedOnResource(ar, r)

Second, the following axiom recursively extends the def-
inition above that any User having permissions to a Re-
source, implicitly has indirect access to all resources, which
are indirectly invoked by it. The same can be expressed for

ResourceGroups, Methods and Roles, UserGroups or com-
binations.

∀u1, u2, r1, r2, i, ct : permission(u1, r2) ←
permission(u1, r1) ∧Resource(r2) ∧ invokes(r1, r2)
∧accesses(i, r2)∧Invocation(i)∧associatedWith(i, ct)
∧ RequestContext(ct) ∧ contextUser(ct, u2) ∧
permission(u2, r2)

Security management tool Our tool allows the user to query
the inference engine about any concept in the ontology. For
instance, one can retrieve the users who are able to indi-
rectly read a database table. As schematically introduced in
Figure 1, Figure 3 shows our version and security manage-
ment tool that allows to browse the ontology and execute
queries at run time. The users who are able to indirectly ac-
cess the customer table are retrieved by a query.

Figure 3. The security management tool

We plan to realize a more convenient user interface in
order to hide the base query language from the user. Fur-
thermore, we would like to develop a watchdog that ac-
tively checks for inconsistencies such as a role with no as-
signed users or groups, empty groups, or, as shown in sec-
tion 4.2, clashes in the security settings for inter-resource
invocations.

6. Related Work

The current generation of application servers uses XML-
based configuration files, some of which follow fixed XML
schemata. The individual schemata represent static concep-
tualizations of fragments of the complete configuration. Our
ontology-based approach aggregates individual aspects in a
platform-independent and extensible way.

Classical Software Reuse Systems also describe software
modules for efficient and precise retrieval. However, tech-



niques like the faceted classification [5] are limited to the
representation of the provider’s features. In analogy, soft-
ware reuse shares a representation of modules that is based
on functionalities achieved by the software, roles and con-
ditions [10]. [4] introduce a software repository system that
uses an ontological representation language for describing
information about requirements, designs and implementa-
tions of software. However, none of these approaches take
into account the run time use cases that occur in application
server settings. These efforts either describe different kinds
of components or concentrate solely on syntactic or seman-
tic metadata without blending them together like in our ap-
proach.

Microsoft’s System Definition Model (SDM)10 takes a
similar approach to ours in including information about
software, hardware, and network in a unified system model.
SDM targets design, deployment, and operation. The first
actual software tool implementing this strategy will be the
next version of the Visual Studio development environment.
Unfortunately, not much detailed information is available at
this point. Nevertheless, SDM illustrates the trend of repre-
senting different system aspects in a common framework.

[3] shows how description logics can be used to aug-
ment CORBA IDL specifications such that Compatibility
testing of IDL specifications, Local consistency checking,
More thorough treatment of exceptions is possible. How-
ever, this approach just augments the syntactic part of an
API’s description. It does not deal with semantic informa-
tion about method functionality and does not describe com-
ponent configurations.

7. Conclusions and Future Work

In this paper we have presented our approach, an on-
tology as an explicit, executable conceptual model for ad-
ministrating an application server. Though we are still deal-
ing with a preliminary version of the ontologies, we could
demonstrate small, sophisticated and yet very practical ex-
amples of how to improve the development and mainte-
nance of software components for and in an application
server.

Doing so, our intention was to substantiate a twofold
message: First, ontologies and corresponding seman-
tic technology provide huge, practical benefits for handling
middleware environments — which we think are heav-
ily underestimated. Second, the bread and butter issues
of developing and administrating services and compo-
nents will outlive the utmost fancy issues like automatic
composition of services — which we think are grossly over-
estimated in feasibility as well as with regard to practical
benefits.

10 http://www.microsoft.com/windowsserversystem/dsi/sdm.mspx

Acknowledgements We are indebted to Marta Sabou,
VU Amsterdam, as well as Debbie Richards, Mac-
Quarie University Sydney for their fruitful work on the on-
tology presented in section 4.1. This work is financed
by WonderWeb, an EU Information Society Technolo-
gies (IST) funded project (http://wonderweb.semanticweb.-
org) IST-2001-33052.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices. Springer, Sep 2003.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, pages 28–37, May 2001.

[3] A. Borgida and P. Devanbu. Adding more DL to IDL: to-
wards more knowledgeable component inter-operability. In
Proceedings of the 21st international conference on Software
engineering. IEEE Computer Society Press, 1999.

[4] P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vas-
siliou. The software information base: A server for reuse.
VLDB Journal, 4(1):1–43, 1995.

[5] R. P. Diaz. Implementing faceted classification for software
reuse. Communications of the ACM, 34(5):88–97, May 1991.

[6] A. Eberhart. Ad-hoc invocation of semantic web services.
In IEEE International Conference on Web Services, July 6-9,
2004, San Diego, California, USA, 2004.

[7] M. Fleury and F. Reverbel. The jboss extensible server. In
ACM/IFIP/USENIX International Middleware Conference,
2003, Proceedings, volume 2672 of LNCS, pages 344–373.
Springer, 2003.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[9] J. Lindfors and M. Fleury. JMX — Managing J2EE with Java
Management Extensions. Sams, 2002. The JBoss Group.

[10] P. Massonet and A. van Lamsweerde. Analogical reuse of
requirements frameworks. In 3rd IEEE International Sym-
posium on Requirements Engineering (RE’97), January 5-8,
1997, Annapolis, MD, USA, pages 26–39. IEEE Computer
Society, 1997.

[11] P. Mika, D. Oberle, A. Gangemi, and M. Sabou. Founda-
tions for service ontologies: Aligning owl-s to dolce. In Pro-
ceedings of the 13th International World Wide Web Confer-
ence. ACM, 2004.

[12] B. Motik, A. Maedche, and R. Volz. A conceptual model-
ing approach for building semantics-driven enterprise appli-
cations. In DOA/CoopIS/ODBASE 2002 Proceedings, vol-
ume 2519 of LNCS. Springer, 2002.

[13] D. Oberle, M. Sabou, and D. Richards. An ontology for se-
mantic middleware: extending daml-s beyond web-services.
Technical Report 426, University of Karlsruhe, Institute
AIFB, 76128 Karlsruhe, Germany, 2003.

[14] D. Oberle, S. Staab, R. Studer, and R. Volz. Supporting ap-
plication development in the semantic web. ACM Transac-
tions on Internet Technology (TOIT), 4(4), Nov 2004. to ap-
pear.

[15] Object Modelling Group. Idl / language mapping specifica-
tion - java to idl, Aug 2002. 1.2.


