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Abstract

We present a coherence condition for a boolean complete description
logic with feature inversions and a very general form of uniqueness con-
straint that enables, among other things, the capture of unary functional
dependencies. The condition is sufficiently weak to allow the transfer of
relational and emerging object-oriented normalization techniques while
still ensuring that the associated logical implication problem remains
DEXPTIME-complete.

1 Introduction

For many applications, there is considerable incentive to enhance the modelling
utility of a description logic (DL) with an ability to capture richer varieties of
uniqueness constraints such as keys and functional dependencies [6, 9, 13, 15].
Unfortunately, in combination with role or attribute inversions, the associated
logical implication problem quickly becomes undecidable [5]. We present a coher-
ence condition for a boolean complete DL with feature inversions which allows
unrestricted use of path functional dependencies [17]. The condition ensures
that the associated logical implication problem remains DEXPTIME-complete,
but is sufficiently weak to allow the formal specification of arbitrary relational or
object-oriented schema, including those that fail to satisfy normalization con-
ditions. This latter observation is important since it enables an incremental
development of terminologies that encode schema. One can begin, for example,
with a “relational” terminology that fails to satisfy the conditions of Boyce-
Codd Normal Form. (Note that the approach used in [5] is not generally capa-
ble of handling such anomalous cases.) Standard normalization algorithms and
methodology can then employ reasoning services based on our results. Thus,
our DL is better equipped to enable the transfer of results in normalization and



emerging object design theory for relational and object-oriented data models
[2, 3]. We also show that relaxing this coherence condition leads to undecidabil-

1ty.

1.1 Related Work

Our coherence condition derives from a similar condition proposed in [4] to
enable the development of a sound and complete axiomatization for an object-
oriented data model, which essentially adds inclusion dependencies to an earlier
data model [17]. The DL we consider in this paper is a further generalization;
thus, our DEXPTIME-completeness result settles an open problem on the de-
cidability of the implication problem for their model.

In [5], the authors consider a DL with (relational) functional dependencies
together with a general form of keys called identification constraints. They show
that this dialect is undecidable in the general case, but becomes decidable when
unary functional dependencies are disallowed. Our coherency condition serves
as an alternative method for regaining decidability.

A form of key dependency with left-hand-side feature paths is considered for
a DL coupled with various concrete domains [12]. The authors explore how the
complexity of satisfaction is influenced by the selection of a concrete domain
together with various syntactic restrictions on the key dependencies themselves.
We consider a DL that admits more general kinds of key constraints (and func-
tional dependencies) for which identifying values can be defined on arbitrary
domains.

The remainder of the paper is organized as follows. Definitions of the DL dialect
DLFAD and the above-mentioned coherency condition are given next in Sec-
tion 2. In Section 3, we show that failure to satisfy the coherency condition leads
to undecidability of the implication problem for DLFAD. For cases satisfying
this condition, we show in Section 4 that the problem is DEXPTIME-complete.
To do this, we first consider the problem for DLF A, a fragment of DLF AD that
excludes uniqueness constraints. Although DLF A is less expressive than, e.g.,
DLR, we gain the opportunity of presenting encoding schemes for reductions in
a more incremental fashion. Our summary comments follow in Section 5.

2 Preliminaries

Definition 1 (Description Logic DLFAD) Let F and C be sets of attribute
names and primitive concept names, respectively. A path expression is defined by
the grammar “Pf .= f.Pf|Id” for f € F. We define derived concept descrip-
tions by the grammar on the left-hand-side of Figure 1. A concept description



SYNTAX SEMANTICS: DEFN OF “(-)1”
D :=C )y ca
| DN D,y (D)t N (Dy)*
| -D A\ (D)
| Vf.D {z: (f)*(x) € (D)}
| Daf {(H)F(2) 12 € (D)}
E =D

| D:Pfy,...Pfy = Pf {z:Vye (D?Z.
N (P (2) = (PRYE (y) = (PH(2) = (P ()}

Figure 1: SYNTAX AND SEMANTICS OF DLFAD.

obtained by using the final production of this grammar is called a path functional
dependency (PFD).

An inclusion dependency C is an expression of the form D T E. A termi-
nology T consists of a finite set of inclusion dependencies.

The semantics of expressions is defined with respect to a structure (A, 1),
where A is a domain of “objects” and (.)* an interpretation function that fizes
the interpretations of primitive concepts C to be subsets of A and primitive
attributes f to be total functions (f)* : A — A. The interpretation is extended
to path expressions, (Id)T = \z.x, (f.PH)T = (PH)YT o (f)* and derived concept
descriptions D and E as defined on the right-hand-side of Figure 1.

An interpretation satisfies an inclusion dependency D C E if (D) C (E).
The logical implication problem asks if T |= D E E holds; that is, if (D)t C
(E)Y for all interpretations that satisfy all constraints in T .

The coherency condition on which our decidability results depend is defined as
follows. (Recall that a similar condition is introduced in [4] to ensure that an
axiomatization for their data model is complete.)

Definition 2 (Coherent Terminology) A terminology T is coherent if
T E(Dafyn(Eaf)C(DNE)af

holds for all descriptions D, E and attributes f.

Note that we can syntactically guarantee that T is coherent by adding the
(Dafyn (EQf) C (DM E)af assertions to T (for all descriptions D, E that
appear in 7).



3 Undecidability for General
DLFAD Terminologies

We show a reduction of the unrestricted tiling problem to the DLFAD im-
plication problem using a construction similar to that presented in [5]. An
unrestricted tiling problem U is a triple (T, H, V') where T is a finite set of tile
types and H.V C T x T two binary relations. A solution to T is a mapping
t: N XN — T such that (¢(i,7),t(i +1,5)) € H and (¢(¢,7),t(¢e,7+ 1)) € V for
all i € N. This problem is II3-complete [1, 16]. The first step in the reduction
is to establish an integer grid. This can be achieved, for example, as follows.

1. Introduce four disjoint concepts, A, B, C and D, denoting cell edges.
ANBC L, ANCC 1, ..., CNDC L

2. Grid cells are mapped to concepts X and Y that have four incoming f and
g attributes, respectively.

XL (Aaf)n(Baf)m(caf)n(baf),
Y C (AQg) M (B@g) n (Cag) n(Dag)

3. To ensure that squares are formed, add the following.
ACB:f—h, BEC:f—¢, CED:f—h, DCA:f—q,
ACB:h—f BCC:i—f, CCD:h—f, DCA:¢—f,
ACB:g—i, BCC:g—h, CED:g—1, DEA:g—h,
ACB:1—g9, BCC:h—g9, CCD:1—g9, DCA:h—yg

4. And to force squares to extend to the right and up, include the following.
ACVyY, BLVeY, CLCVfX, DLCVfX
The adjacency rules from the instance U of the tiling problem are defined as

follows:

A |_| Vle E Vg I_l(ti,tj)EV T]7 C |_| Vng E Vf I_l(ti,tj)EV T]
BOVITLEVg. Upnen T, DNVeTiEVF U, aen Tis
where T; corresponds to a tile t; € T'; we assume T; 11T; £ L for all 7 < j. The

above constraints form a terminology T associated with an unrestricted tiling
problem U.

Theorem 3 A tiling problem U admits a solution iff Ty = X1 (Us.er Ti) C L.

Thus, the DLFAD implication problem is undecidable for unrestricted termi-
nologies.



4 Coherency implies Decidability

By restricting logical implication problems for DLF AD to cases in which ter-
minologies are coherent, it becomes possible to apply reductions to satisfiability
problems for Ackerman formulae. After we introduce the latter, we begin by
defining reductions for the fragment DLFA. An essentially incremental elab-
oration of these reductions is presented in the final subsection in which we es-
tablish our main result: decidability with coherency of the logical implication

problem for DLF AD.

Definition 4 (Monadic Ackerman Formulae) Let P; be monadic predicate
symbols and x,y;, z; variables. A monadic first-order formula in the Ackermann
class s a formula of the form zy...3zVaedy, ... Jy.p where ¢ is a quantifier-
free formula over the symbols P;.

Every formula with the Ackermann prefix can be converted to Skolem normal
form: by replacing variables z; by Skolem constants and y; by unary Skolem
functions not appearing in the original formula. This, together with standard
boolean equivalences, yields a finite set of universally-quantified clauses con-
taining at most one variable (). It is known that an Ackerman sentence has
a model if and only if it has a Herbrand model; this allows us to use syntactic
techniques for model construction. To establish the complexity bounds we use
the following result for the satisfiability of Ackermann formulae:

Proposition 5 ([7]) The complexity of the satisfiability problem for Ackerman
formulae is DEXPTIME-complete.

4.1 Decidability for Coherent DLF A Terminologies

We construct an Ackerman-class sentence whose satisfiability is equivalent to
a given DLF A implication problem. In the simulation, DLF A’s concept de-
scriptions D are modeled by monadic predicates Pp(x). The function symbols
f and f are used in sentences to stand for the attribute f; the symbol f stands
for the reverse of the attribute f in cases where an object is in the range of
multiple attributes (this situation can be introduced, e.g., by the description
(D1@f;) M (Dy@fy)). This arrangement, in the case of coherent terminologies,
allows us to represent DLF A interpretations as Herbrand interpretations (in
the extended language). The construction proceeds in two steps. First, the
structural properties of DLF A are encoded using the following assertions.

e Node existence assertions:

Va.N(z) < N(fi(x)) for «# fily), VYa.N(fi(z)) & N(z)



e Functionality of attributes and Coherence:
Vao(N(2) AN(f(F(2)), Yoo (N(z)AN(F(f(z))
e Concept formation assertions for boolean constructors:

Va.N(z) = (Pp(2) V Pop(z)), Va.=(Pp(x) A Pop(z)),
Va.N(x) = (Pp,np,(x) < (Pp,(x) A Pp,(z)))

e Concept formation assertions for attribute constructors:

Ve N(z) — (Pysp(z) < Pp(fi(x))) for @ # fi(y)
Ve N(fi(x)) — (Resn(fi(z)) & Pp(z))

Va.N(z) — (Ppays(z) = N(fi(x))) for = # fi(y)

Vae.N(z) — (Ppag(z) < Pp(fi(x))) for = # fi(y)
Ve N(fi(x)) — (Ppas(fi(x)) < Pp(x))

The collection of the assertions above is denoted Ilpsr4. This set captures the
structural relationships between DLF A concepts. Although this set is infinite
in general, the set of concepts appearing in a particular implication problem,
T E C, is finite. Hence, one can restrict the set of assertions Ipgsra to a
finite subset HgffA that contains only the predicates that define concepts in
T U{C}. (In the rest of the paper we omit the superscript whenever clear from
the context.) To complete the translation of a DLFA implication problem,
what remains is the translation of the inclusion constraints.

Definition 6 Let 7 and C = D T E be a DLF A terminology and an inclusion
constraint, respectively. We define

o Il ={N(x) = (Va.Pp(x) = Pg(z)) : DC E €T} and
o e = {N(0), Pp(0), P~5(0)},

The three clauses II¢ represent the skolemized version of =Va.Pp(x) — Pg(x);
0 is the Skolem constant for x. As usual, a model “containing” Il¢ is a coun-
terexample for C. To show the correspondence formally we need the following
definition and lemma:

Definition 7 An interpretation (A, (.)%) is coherent if (f;)%(x) = (f)*(y) —
x =y forall x,y € A and f; an attribute name.

Lemma 8 Let T be a coherent terminology, C a subsumption constraint, and
Z an interpretation such that T |= T and T = C. Then there is a coherent
interpretation I' such that ' =T and I' £ C.



Proof: (sketch) Consider distinct x,y € Az such that (i) « € (Dy)f, (ii)
y € (Dy)f, and (iii) (f;)* (=) = (fi)*(y). Then, since T is coherent, x € (D; I
Dy)E. For, x € (D M =Dy)* leads to (fi) () € ((Dy M —=Dy)Qf; M Dy@fi)t,
a contradiction. Thus, as models of DLFA have the tree model property, we
can remove the farther of x or y and all its descendants, where the distance
1s measured from the node falsifying C in Z. The resulting interpretation still

satisfies 7 and falsifies C. Repeating this process yields a coherent interpretation.
O

Theorem 9 Let T and C be a terminology and inclusion dependency in DLF A,
respectively. Then T EC <= Ilpera UIly Ulle is not satisfiable.

Proof: (sketch) Consider a Herbrand model M such that M = Ipera Ul U
[lc. We construct an interpretation Zyy = (A, (.)F) where:

e A=fo: ME N(o)},
o (DY = {x: M E Ppe)}, and (£} = {(2,y) 1y = fle) or Fly) = <}.

It is easy to verify (by cases analysis) that Zy =T but Za = C.

For the other direction we take any coherent interpretation Z, such that Z =T
and Z £ C. This interpretation must exist by Lemma 8 whenever 7 }= C. Let
0 € A be an object that falsifies C in Z. We construct a Herbrand universe as
the set of all terms that correspond to undirected paths of attributes originating
in 0; we use f; for every attribute f traversed “backward” along this path.
Each of these terms, t,, due to the coherence condition, corresponds to exactly
one element of * € A. On top of this universe we define a Herbrand model
Mz = {Pp(t,) : z € (D)*} U{N(t,)} The remainder is verification of Mz =
Mpera UIly U Ile by cases analysis. O

The translation therefore provides a DEXPTIME decision procedure by appeal-
ing to Proposition 5. Completeness follows from DEXPTIME-hardness of the
implication problem for the {D; M Dy, Vf.D} fragment [14, 15].

Corollary 10 The implication problem for DLFA is DEXPTIME-complete.

4.2 Decidability for Coherent DLF AD Terminologies

For each implication problem T |= C, we define a satisfiability problem Ilpzr4pU
II7 UIle. There are two cases to consider depending on C.

Case 1: Cis a DLFA inclusion dependency.



Lemma 11 Let T |= C be a DLFAD implication problem in which T is co-
herent and for which C is a DLF A inclusion dependency. Let T' be the largest
subset of T that is also a DLFA terminology. Then T' | C if and only if
TEC.

Proof: Assume 7' [~ C. Then by Lemma 8 there must be a coherent inter-
pretation Z such that Z = 7' but Z }£ C. However, since Z is coherent, it also
satisfies 7. The other direction is immediate as 7' C 7. O

Thus, in this case, we can use Theorem 9 to decide the implication problem.

Case 2: C=D;C D,:Pfy,...,Pfp — Pf. To falsify such an inclusion depen-
dency, two objects (one in Dy and another in Dy) that satisfy the preconditions
of the dependency but fail to satisfy the conclusion are needed. We therefore
construct two copies of the interpretation for the DLF A constraints in 7 in
a fashion analogous to [8, 18]. However, as Herbrand terms are essentially the
same in the two copies, it is sufficient to distinguish them by renaming the pred-
icate symbols [10]. In addition, we need to model the “rules” of equality and
their interaction with concept descriptions. The structural rules for DLFAD
are thus defined as follows:

Mperap = Wppra Ul e U Ve (N(Fi(2) A E(F(2)) = E(z) a
Va.(N(z)A E(z)) = (Ph(z) « PR(x))

where II” is the set of assertions II in which every predicate Pp is renamed to
Pk (similarly for TI%). In addition, we use the following notation: we say that
Pf is a reverse prefiz of Pf iff Pf is a prefix of Pf in which each f; was replaced
by f; and the order of the attributes was reversed. We also define

LPfJ o { LPfl o szJ for Pf = Pfl 071, o fl o sz

Pf otherwise

We construct a set of assertions for a given terminology 7. Let 7' denote the
subsumption constraints in 7 without PFDs, and 7" =T — 7. Then we define

Iy = T4 uls
NE(Pf(z)) A NEB(Pf(2)) A
((Pp, (Pf(x)) A P, (PF(x))) V (P, (Pf(x)) A P, (PF(x)))) A
U A, E(|PfoPf;|(x) — E(|PfoPfo](x)
where Dy C D, : Pfy,... ,Pf, — Pfo e 7"
and Pf a reverse prefix of Pf;

and, for C =Dy C D, : Pfy,..., Pf, — Pfy we define
e = {N(0), P, (0), P, (0), E(Pf1(0)),..., B(Pf(0)), ~E(Pfo(0))}



Theorem 12 Let T | C be a DLFAD implication problem in which C is a
PFD. Then T |E C if and only if perap Uy UIle is not satisfiable.

Proof: (sketch) The proof proceeds analogously to the proof of Theorem 9 by
explicitly constructing a counterexample interpretation from a Herbrand model,
and vice versa. The crux lies in observing that, in addition to proper simulation
of DLF A descriptions, a path agreement (i.e., a precondition or a consequent
of a PFD) holds in a DLFAD interpretation if and only if a corresponding
E(t(0)) atom appears in the Herbrand model—this fact hinges on introducing

the f, function symbols and on representing a single PFD by multiple formulae.
O

5 Summary and Future Work

We have defined a coherence condition for a boolean complete description logic
with feature inversions and arbitrary path functional dependencies that ensures
the associated logical implication problem is DEXPTIME-complete; the problem
is undecidable otherwise. This resolves an open issue on decidability of an
analogous implication problem in [4].

A natural extension of the description logic presented here allows regular
languages (L) to replace path expressions, yielding the VL.D, 3L.D, DQL,
and D : L — L' constructors, and developing a decision procedure using the
approach in [15]. One of the main applications of such an extension we envision
is describing data structures for purposes of query optimization, extending [11]
to inductive data types.

Another direction of research considers weaker restrictions on DLFAD ter-
minologies that still guarantee decidability, e.g., relaxing our coherence condition
with respect to the unary PFDs actually present in a terminology.
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