
The Interactive Databases Approach to the User

Interface Modeling

Egor Bugaenko

MIKA Corporation

Ukraine, 320044,

g.Dnepropetrovsk,

ul.Dzershinskogo, 7/33

phone: (380 562) 461 058

fax: (380 562) 461 136

Email: egor@acm.org

March 14, 1998

Abstract

The proposed principle of Interactive Databases (IDB) is intended to improve

client-server interaction and to avoid database integrity constraints violation. In

order to make the client more clever and give it the opportunity to make prelim-

inary decisions regarding the correctness of the transactions without the server,

we de�ne the formal mechanism of \step-queries" de�nition. This mechanism

is used as a tool for the conversion of the knowledge the DBMS has into the

concrete collection of DML queries. Step-queries are used by the client. It sends

them to the server before the transaction and the retrieves lists of possible val-

ues for the �elds of the visual form. Then, these lists are used in order to give

the user an opportunity to choose correct value for the given �eld. After the

form has been completed the transaction could be �lled with entered data.

After the formal description of step-queries they must be mapped to DML.

Here we will de�ne the algorithm of such mapping into SQL and show how it

could be used in order to implement the IDB principle.

Keywords: transactions veri�cation, client-database interaction, visual form,

predicate calculus, SQL, step-query.

1 Introduction

Consider the process of interaction between a client and a database server.

In our case interaction means adding and retrieving information to/from the

database. In order to add some data to the database, the following operations

must be accomplished: 1) the client obtains data from the user and prepare

it; 2) the client expresses the transaction in some data manipulation language

(DML); 3) the client sends a transaction to the server; 4) the server commits

or aborts the transaction; 5) the server returns a result or an error code to the

client.

Database management systems (DBMS) can have data integrity constraints

expressed in the schema which can restrict the addition of new data to the

database. Not having the information which the DBMS has, the client can do

almost nothing to avoid cases when data is not accepted by the server because

of an integrity constraint violation.

The client interacts with the user by means of the visual form - the window

with several �elds for the information entering. The user can enter data by

means of \edit boxes", \list boxes" or \combo boxes". It means that the value

of the �eld could be new or may be selected from the \prede�ned" list.

For this reason the only way the client can work is to process error codes

returned by the server and to rebuild the transaction, or to re-ask the user

to enter the visual form. The latter way is not appropriate if the process of

entering information has many steps and needs active interaction with the user

(e.g., visual form has many interdependent �elds).

For instance, we need a batch of add-operations to be submitted by the

DBMS. Each operation of the batch concerns di�erent objects of the database,

e.g., several tuples must be added to di�erent tables in the relational database.

The batch is to be accepted as one transaction: everything or nothing will be

processed. The client gets the data for each operation from the user in a visual

form. At the same time, the server checks the conformity of the data only after

the transaction has been built. With a large amount of data and a large number

of operations in the batch it would be rather di�cult to reenter the whole visual

form by the user. Thus, it would be better if the client was aware of whether

or not the data is appropriate during the creation of the transaction.

We give it such awareness by means of step-queries de�nition mechanism.

The client could interact with the server during the period of the visual form

completeness. We name the system which uses this paradigm Interactive Data

Base (IDB). The algorithm of interaction, formal approach to step-queries def-

inition and examples are discussed further.

The paper is organized as follows. In the second section we overview the

background of the problem and related works. The third section gives several

formal de�nitions. The forth section is dedicated to the general description of

the IDB principle. The �fth section gives a short description of the client's

algorithm in the IDB systems. Advantages and performance of the example are

described in the sixth section. Then we conclude.

1

2 Background and Related Works

The database is a collection of objects also called data [7]. The database has

a conceptual schema | data model. There are several modern data models:

relational citecodd, object-oriented [3], object-relational and others.

Besides data objects the data storage always contains meta information,

concerning data structure and logical constraints | knowledge. In order to

represent them di�erent approaches were proposed. KIF [10] as a format for

knowledge interchange is based on Lisp and �rst-order predicate calculus. It

provides the ability for disparate programs to communicate [13]. We propose

the method of knowledge representation which has much in common with KIF

because predicate calculus is used in both. There are many other systems for

knowledge processing: LOOM [17] (a KL-ONE style system), Epikit [9] (a pred-

icate calculus system), Algernon [6] (a frame system), CycL [16], KEE [8], and

others. Almost all of them use predicate calculus as a tool to express meta

information.

First-order predicate calculus [22, 12, 4] is used as a formal ground in the

majority of meta data manipulating systems [15]. At the �rst part of the IDB

principle the mechanism of knowledge representation is used for the expressing

of the meta information. We use a \one moment" insight to the database.

Thus we miss the information about temporal properties of the database [7]

and we do not take into account triggers and rules within the DBMS [27]. The

�rst disadvantage could not be avoided by means of the IDB approach. The

second one is a problem for the future work.

After the formal de�nitions are completed we propose the interaction with

the database in transaction mode. The domain of transaction processing [11] is

used as a ground for the IDB principle. While the client enters information in

the visual form it interacts with the server by means of SQL queries [18, 14].

Transaction management is not in the frame of the IDB principle and thus not

discussed.

SQL is used in the example to show how step-queries could be mapped from

predicate calculus to the real data manipulating language. Several approaches

to the problem, concerning this translation, were given [21]. Any of them could

be used in concrete IDB principle implementation system. In the industrial

application \N96" we use simpli�ed algorithm of the predicate calculus to SQL

mapping described below. Complete description of the algorithm could be found

in [2].

Besides data management the IDB principle concerns human-computer in-

teraction [19] and bases the idea of \step-queries" upon the Dynamic Queries [24]

and Dynamic Query Interfaces [25] approaches. The main goal of these paradigms

is to design the communication with the user clearly and improve the cost of

access to large data repositories. The same result must be accomplished by

means of the proposed IDB principle.

3 Formal De�nitions

In this section several formal de�nitions are given. Data schema, transaction,

invariant and step-query are de�ned in terms of predicate calculus [22]. The

2

following de�nitions express simple approach to the formal database theory [7].

Here we do not take into account temporal properties of the database and predict

that everything is done at once. At the end of the paper we will describe the

situation when the database is changeable in time.

The section contains only de�nitions without any concretization. The de�-

nitions are given for the sake of uniformity within the problem. Many of them

are not identical with the well know existing de�nitions.

3.1 Data Schema

The database is a collection of objects, along with some invariants or integrity

constraints on these objects. Data schema is logical equivalent of the database.

Both database and data schema contains objects. But the object of the database

is an element of data, when the object of data schema is a piece of knowledge.

For example, the database objects are: string \Egor Bugaenko", number

$25.000, table suppliers, domain names, constraint has name, etc. The data

schema objects are: the description of the relation suppliers, the de�nition

of the domain names. Only data integrity constraints are at the same time

elements of data and of knowledge.

De�nition 1. We de�ne data schema as an aggregate:

Sch(A; T;C), where

A | is a set of objects of schema, which include data objects:

A = fa

1

; a

2

; : : : ; a

n

g;

T | is a collection of structures of data schema;

C | is a collection of integrity constraints.

In the relational database a

i

is a domain or a data type. In an object-oriented

database a

i

could be an abstract data type (ADT) or a class. Obviously, each

element of A is a set:

a

i

= f�

1

; �

2

; : : : ; �

D

i

g, where

�

1

; �

2

; : : : ; �

D

i

| are concrete data elements, e.g. integer and real numbers

or strings.

D

i

| is a size of the i-th domain or the number of objects in class \i".

Endless set

T = ft

1

; t

2

; : : : ; t

i

; t

i+1

; : : :g

is a collection of sets, which include all structures of the schema. Each

element t

i

of T consists of i-arity structures. Thus,

t

i

= f�

1

; �

2

; : : : ; �

j

; : : : ; �

K

i

g;

where

3

�

j

= fa

x

1

; a

x

2

; : : : ; a

x

i

g:

Again, set t

1

contains all unary relations (relational database) or all classes

(object-oriented database). Set t

2

consists of all binary relations or unary at-

tributes etc. K

i

is a number of structures of arity i in the schema (e.g., K

1

is a

quantity of unary relations). Indexes x

1

; x

2

; : : : ; x

i

de�ne which schema objects

are used in the structure �

j

.

The third component of the schema de�nition is a collection of integrity

constraints C = fc

1

; c

2

; : : : ; c

Z

g. C is a set of predicate calculus expressions

(invariants). The necessary condition of the database integrity could be de�ned

as follows:

8�(8c((c 2 C)! c(A

�

)));

where

A

�

= A(time)

It means that every time � all elements of C must be true on the set A.

3.2 Transaction

A transaction is an operation that transforms one database state to another.

Transaction consists of several operations which must be committed or rejected

atomically (as one unit of job). We do not take into account the state before the

transaction. We treat the transaction as a condition which the database must

satisfy after the execution of the operations. The conditions must be expressed

in predicate calculus.

De�nition 2. The transaction E is a couple consisting of a collection of

variables (set V) and a conjunction of predicates (expression D). Each element

is an element of T with variables from V as arguments:

E(V;D);

where

V = fv

1

; v

2

; : : : ; v

F

g;

and D is an expression in predicate calculus and must be a conjunction of

predicates. F is a number of variables.

Thus, D must be a function of F arguments. We could state that the

transaction will be accepted i� D is true. Certainly, if the database is stable in

time. The result of the transaction is a logical value, which is equal to:

E(V;D) =

�

true if D(v

1

; v

2

; : : : ; v

F

) is true;

false otherwise.

Moreover, the transaction is a formal equivalent of the visual form. The

transaction represents the sequence of �elds of the form and logically de�nes

the procedure of data insertion. Thus, F is a number of �elds within the form.

4

3.3 Invariant

De�nition 3. Invariant is an expression in predicate calculus which must be

a true for all objects of some set.

For example, the following invariant requires, that each element of set boys

must also be a member of set children:

I = 8x(boys(x)! children(x)):

Further the following abbreviation is used to state that the element belongs

to some set:

S(x), x 2 S, where

S | is a set, e.g., a member of set A or one of sets t

1

; t

2

; : : : ; t

i

; : : : of set T .

3.4 Step-query

The query to the database is a declarative de�nition of a set. Step-query does

not di�er from the usual query. Step-queries are used in order to show the

di�erence between alone queries and queries within the IDB principle. Further,

it is shown how they distinguish.

De�nition 6. Step-query is a formal de�nition in terms of predicate

calculus of a set:

Q

S

= fx : P (x)g;

where

S | is a result of the step-query Q

S

;

P (x) | is a predicate calculus expression with one unbounded variable.

For example, the following expression is a step-query:

Q

guys

= fx : children(x) & boys(x)g;

and the result of this step-query is a sequence of all elements of set children,

which at the same time are elements of the set boys. Moreover, the result of

the step-query could contain elements of di�erent sets.

4 The IDB Principle

Consider the example of an information system, consisting of one server and

several clients, which send and receive data. Each client prepares data for the

server and sends it as a transaction. The server accepts either all operations in

the batch or none of them. The source of information is a user, who in interactive

mode enters data into the relative �elds of the visual form. The client interprets

the form and converts it to the transaction of some data manipulation language

(e.g., SQL).

5

The transaction contains several simple independent operations, which con-

cern di�erent structures in the database. For example, the transaction could

consist of two operations, which add data to di�erent tables of the relational

database. Operations are independent only from the clients' point of view,

because the DBMS can contain structures which bind these two tables.

After populating the form, the client builds the transaction and sends it

to the DBMS. The server checks whether it is possible to accept the entire

transaction. If it is not acceptable for any reason (e.g, violation of at least one

of the integrity constraints, blocking of some structure, permission denying etc.)

the server returns an error code. According to the error code, the client returns

a message to the user and proposes either to correct the form or to eject it.

4.1 The Solution

We propose the following idea: we give the client the possibility to check data

at each step when populating the form and before sending the information

to the server. This can be achieved by duplicating the meta information of

the database (data schema and integrity constraints) within the client's local

memory and exploiting this information to build step-queries at each step of the

data entry.

As a result, we provide the client with the ability to decide at each step

which data is correct and correlative to the other information in the database.

To do this, we de�ne the principle of Interactive Data Bases (IDB) which

is based on the paradigm above. The decision concerning data correctness and

correlativeness is done at each step of the form completion by sending step-

queries to the server and obtaining lists of acceptable values which can be entered

into the given �eld. Step-queries are built using the formal de�nition of the data

schema, including integrity constraints which the client has.

Thus, the interaction between the client and DBMS consists of the following

steps:

� Formal de�nition in predicate calculus of the data schema of the database,

with which the interaction will be done. The de�nition is needed to obtain

the necessary meta information for building step-queries.

� Formal de�nition of the transaction.

� Formal de�nition of step-queries for each step of the form completion.

These de�nitions will provide the possibility to formally process queries

and eliminate redundancy.

� Mapping the step-query expression in predicate calculus into the query

with a data manipulation language (e.g., SQL).

� Sending the query to DBMS and translating the result.

The step-query is sent to the DBMS to be processed. The result is used

as a list of possible values for the �rst �eld of the form. The user selects an

item from the list and the program �lls the �rst �eld of the form with its value.

Then this value is taken into account when creating the other step-queries. The

6

transaction is completed as a result of consecutive requests to the DBMS and

the insertion of these values from the form into the text of the transaction.

All formal de�nitions are done in �rst-order predicate calculus. Data schema

and transaction must be de�ned in logic because of the necessity of formal

translation method, which could be based only upon formal de�nitions. Step-

queries are de�ned in predicate calculus for the following two reasons: 1) the

use of uni�ed tool for the description of the step-query allows us to make many

di�erent translators into di�erent data manipulation languages (e.g., SQL, OQL

etc.); 2) data schema and transaction are de�ned in predicate calculus and thus

the most appropriate for step-queries de�nition language is �rst-order predicate

calculus.

Very important to note, that the proposed IDB principle does not have any-

thing in common with the multilevel transaction model found in object-oriented

DBMS. In advanced database systems such mechanism allow to commit or abort

a sub-transaction without committing or aborting the whole transaction. We

do not propose to divide the transaction into smaller ones and to proceed them

independently. The IDB principle improves the process of transaction veri�ca-

tion at the time of the visual form populating. While the user enters data into

the given �eld the system (client) checks whether the information is correct. At

that time the client does not have rights to enter anything into the database.

Only to check the conformity and relativeness.

4.2 Formal Schema and the Transaction De�nition

For the description of the IDB principle we will use the following simple example.

Data schema and the visual form follow (in the relational database).

waybill supplier

waybill supplier

waybill truck supplier truck

truck

The de�nition of the transaction follows from the de�nition of the visual

form. Note that the succession of �elds in the form is important.

Waybill number: waybill

Truck number: truck

Supplier name: supplier

Formal schema de�nition Sch(A; T;C) consists of the de�nition of A, T ,

and C. Set A must be de�ned as a sequence of objects of schema and include

domains of all relations and data types used in the schema:

A = fa

1

= string;

a

2

= twaybill;

a

3

= tsupplier;

a

4

= ttruckg:

Set T must be de�ned as an in�nite aggregate of sets, which include all

structures of the schema:

7

T = ft

1

= f;g;

t

2

= f�

2

1

= waybill(id : twaybill;name : string);

�

2

2

= supplier(id : tsupplier;name : string);

�

2

3

= truck(id : ttruck;name : string)g;

�

2

4

= ws(w : twaybill; s : tsupplier);

�

2

5

= wt(w : twaybill;t : ttruck);

�

2

6

= st(s : tsupplier;t : ttruck);

t

3

= f;g; : : :g

Further, we consider only those elements of T which are not equal to ;. Set

C must be de�ned as a collection of invariants in predicate calculus which are

equivalents to data integrity constraints of the database:

C = fc

1

= 8t(truck(t;tname)! (9s; w((st(s; t) &wt(w; t))! ws(w; s))));

c

2

= 8s(supplier(s; sname)! (9m;w((st(s; t) &ws(w; s)) ! wt(w; t))))g:

The transaction must be de�ned as E(V;D), where V = fv

1

; v

2

; : : : ; v

F

g.

From the de�nition of the visual form follows the consequence of �elds and

variables in V :

V = fw : twaybill; t : ttruck; s : tsupplierg:

In order to de�ne D we must select from t

1

; t

2

; : : : ; t

i

; t

i+1

; : : : those elements

which include at least one element from V as an argument and insert them all

into D as conjunctors:

D = ftruck(t;tname) & supplier(s; sname) &waybill(w;wname) &

ws(w; s) &wt(w;m) & st(s;m)g:

4.3 Step-queries de�nition

Step-queries are de�ned while the client program is being developed and must

be used at run-time. They are de�ned by means of the proposed IDB principle

on the base of the de�nitions of data schema and transaction as described above.

Step-queries must be de�ned according to the necessity of using the relative

�eld in the visual form. Preliminarily, the query must be de�ned as a predicate

calculus expression. This formulae must contain one of the elements of set V as

bounded variable under universal quanti�er and a conjunction D, which follows

the quanti�er. For example, the de�nition of the query for the list of possible

values for �eld truck looks like the following:

Q

ttruck

= ft : P (t)g;

where

P =truck(t;tname) &

supplier(s; sname) &

waybill(w;wname) &

ws(w; s) &wt(w; t) & st(s; t):

After this, the predicate P must be expanded taking into account all expres-

sions from the collection C.

8

P =truck(t;tname) &

supplier(s; sname) &

waybill(w;wname) &

ws(w; s) &wt(w; t) & st(s; t) &

8t(truck(t;tname)!

(9s; w((st(s; t) &wt(w; t))! ws(w; s)))) &

8s(supplier(s; sname)!

(9m;w((st(s; t) &ws(w; s))! wt(w; t)))):

Still, the unbounded variables s and w are concretized relatively to the al-

ready entered �elds. Either they are changed to concrete values which have

been entered before. Or, if such values do not still exist, all predicates with

unde�ned variables as arguments must be deleted from the list of conjunctors

of the expression.

Then, all predicates without �eld variable within the list of arguments must

be excluded from the list of conjunctors. Thus, from P

truck

all predicates

without variable t in the list of arguments must be deleted. Consequently, the

predicate P

truck

must be transformed to the following:

P =truck(t;tname) &

wt(w1234; t) &

8t(truck(t;tname)!

(9s; w((st(s; t) &wt(w1234; t))! ws(w1234; s)))):

where w1234 is a concrete value from the domain twaybill.

When the formulae of the step-query contains only predicates with bounded

variables and constants as arguments, it is possible to prove the following the-

oreme:

Theorem 1. Any element from set R, received in the moment t as a result

of applying of Q

R

to the database with schema Sch(A; T;C), will be relevant

to all invariants of C in the moment t+ � i� A

t

= A

t+�

.

Proof. The theorem can be proved by induction. First, when C is equal

to ;, the result of the query will always be equal to R, and all elements will be

relevant to the empty set C.

Secondly, let any element r from the subset of set R be relevant to all in-

variants of the set C = fc

1

; c

2

; : : : ; c

Z

g. Thus, we should prove that r will be

relevant to all invariants of set C

1

= fc

1

; c

2

: : : ; c

Z

; c

Z+1

g, if it is relevant to the

invariant c

Z+1

.

De�ne J as a conjunction of all invariants of set C: J = c

1

& c

2

& : : : & c

Z

.

Then, exclude from J all invariants, which do not concern set R, (i.e are always

a true value whatever r is). We will obtain a conjunction J

1

which is a part of

the expression of the query Q

R

, except for static de�nitions.

By de�nition, r is relevant to Q

R

and thus is relevant to J

1

, too. Conse-

quently, r is relevant to J because all excluded invariants (J

1

� J) are always a

true value no matter what r is.

Because r is relevant to J and by the de�nition to c

Z+1

, it is also relevant to

J & c

Z+1

(i.e. r is relevant to all invariants of C = c

1

& c

2

& : : : & c

Z

& c

Z+1

).

As shown in the proof for the theorem, all elements of set R will satisfy all

invariants from C i� the data is constant. It means that the following event

could violate the correctness of the IDB principle and invalidate the proof: the

concurrent access to the given set. It could really happen, because we do not

9

lock the database while the user populates the visual form. If do it, than all

advantages of the IDB principle will be lost.

4.4 Predicate Calculus Queries Mapping to SQL

The predicate calculus expression of the query could be mapped to the data

manipulation language SQL. Further we assume that a relational database is

used. According to this assumption all elements of T are tables and all elements

of all �

i

are attributes. All elements of A are domains.

As was de�ned above, the query

Q

S

= fx : P (x)g

is a formal de�nition of the result set. The predicate calculus expression P (x)

must be converted to SQL conditional expression. Predicate calculus contains

several operators and quanti�ers, each of which could be expressed by means

of some another [22]. In order to describe the principle of \predicate calculus

to SQL" conversion, we must de�ne several rules for this \primitive" operators

and quanti�er mapping.

The de�nition of the formulae in predicate calculus follows:

1. Predicate is a formulae and looks like the following:

P (d

1

; d

2

; : : : ; d

n

);

where P is a table (element of T) and d

1

; d

2

; : : : ; d

n

are attributes of this

table;

2. If x and y are formulas then

x; x _ y; 8x(P (x))

| also are formulas;

3. Thus all formulas in predicate calculus are de�ned.

We treat x ^ y as an abbreviature for y _ y; 9x(P (x)) for 8x(P (x)); and

x! y for x_ x _ y. Using the rules above, any expression in predicate calculus

could be simpli�ed to the formulae with OR and NOT operators and a universal

quanti�er. Thus, we must de�ne the rule for the conversion of these \primitive"

constructs.

The step-query must be converted to the select operator. Any domain

from any predicate of the query expression could be chosen as a table for the

selection. Then the following SQL construct must be built:

select attribute

from table

where other-attributes-conditions

and conditions-list.

10

Conditions-list is a list of conditions built from the predicate calculus for-

mulae P (x). Other-attributes-conditions are made according to the attributes

of the table, used in the selection. In the example the conditions should look

like

(w = \w1234");

if table ws was chosen as a table for the selection. The rules for the

conditions-list formulating are de�ned in several statements:

1. Predicate

P (d

1

= a

1

; d

2

= a

2

; : : : ; d

n

= a

n

)

must be converted to

(select d

1

from P

where not ((d

1

= a

1

) and (d

2

= a

2

) and : : :

and (d

n

= a

n

)) is null

2. Logical disjunction x _ y of two predicates must be converted to

x or y;

3. Negation x must be converted to

not x;

4. A universal quanti�er

8x(P

1

&P

2

& : : : P

i

(d

i

1

; d

i

2

; : : : ; d

i

j

= x; d

i

j+1

: : : ; d

i

m

) &P

i+1

& : : : &P

n

)

must be converted to

(select d

1

from P

where not ((d

i

1

= a

1

) and (d

i

2

= a

2

) and : : :

and (d

i

j

= x)and : : : and (d

i

m

= a

m

) and

P

1

and P

2

and : : : and P

i�1

and P

i+1

and : : : and P

n

))is null

Where a

1

; a

2

; : : : ; a

n

are attributes of the table P .

Although, these four rules completely de�nes the mapping of the predicate

calculus to the SQL expressions we de�ne the following additional rules for the

sake of convenience:

1. Logical conjunction x ^ y of two predicates must be converted to

x and y;

11

2. An existential quanti�er

9x(P

1

&P

2

& : : : P

i

(d

i

1

; d

i

2

; : : : ; d

i

j

= x; d

i

j+1

: : : ; d

i

m

) &P

i+1

& : : : &P

n

)

must be converted to

(select d

1

from P

where (d

i

1

= a

1

) and (d

i

2

= a

2

) and : : :

and (d

i

j

= x)and : : : and (d

i

m

= a

m

) and

P

1

and P

2

and : : : and P

i�1

and P

i+1

and : : : and P

n

)is not null

Thus, according to the rules above the query Q

ttruck

could be mapped

into the following SQL expression:

SELECT truck

FROM wt

WHERE

(w = w1234) AND

((SELECT id

FROM truck

WHERE NOT (id = truck)) IS NULL) AND

((SELECT t

FROM truck

WHERE NOT (

(SELECT s

FROM st

WHERE

(NOT ((t = truck.t) AND

((SELECT w

FROM wt

WHERE NOT ((w = w1234) AND (t = truck.t))) IS NULL))) OR

((t = truck.t) AND

((SELECT w

FROM wt

WHERE NOT ((w = w1234) AND (t = truck.t))) IS NULL))) AND

((SELECT w

FROM ws

WHERE NOT ((w = w1234) AND (s = st.s))) IS NULL)))

IS NOT NULL)

IS NULL)

Certainly, the expression is not perfect in sense of the compactness but

nevertheless it is absolutely correct in sense of logic (see Theorem 1). The

problem of the expression optimization is for the future work.

4.5 Query Results Processing

The client sends the query in SQL to the DBMS and obtains the result set.

This set will be used as a list of possible values for the relative �eld of the visual

12

form. Obviously, the form could contain �elds with the combined mode of value

selection (both from the list and edit box), e.g. combo-box. In such case, a new

value could be inserted into the transaction without a veri�cation. Meanwhile,

the client also could verify the value by means of step-query. The de�nition of

these queries is not in the frame of this paper.

5 The Client Algorithm

In this section we describe the example algorithm for the client. The IDB

principle must be used at the time of the program building, and used by the

developer of the program. Now we assume that all necessary step-queries have

been already built and that we have the de�nitions: Sch(A; T;C), E(V;D) and

Q

S

1

, Q

S

2

, . . . , and Q

S

n

.

After the preparation stage completed the client can use the IDB principle

by means of the visual form. The routine for the IDB processing must be built

in the "window function" of the form. It could look like the following:

1. to show the visual form with N �elds;

2. i = 1;

3. to send the step-query Q

S

i

;

4. to receive the list of possible values for the �rst �eld F

i

;

5. the user chooses the item (f);

6. F

i

= f ; i = i+ 1;

7. if i < N then goto 3;

8. to �ll the transaction with F

1

; F

2

; : : : ; F

N

.

6 Advantages and Performance of the Example

We implemented the IDB principle in the program \N96" | a part of the

Automated System for Raw Materials Reception \EpMak-N96" [20].

The \EpMak-N96" system automates the processing of raw material recep-

tion at a factory by means of registration chip-cards with a re-programmable

device inside. All requisites of the load are stored onto the chip-card when the

truck arrives at the factory. Then, the gross weight is written onto the card

by the electronic truck scales. After the out-loading, the net gross is calculated

and written onto the card.

All information from the way-bill is moved to the card by the program \N96".

To enter it, the program uses the visual form, which contains over a dozen

�elds and has to be edited rather quickly. Almost all of these �elds have some

dependency on the others. As a result, the operator must enter these values, so

as not to violate these dependencies.

By means of using the IDB principle in the program \N96" we achieved

several important results. First, the time needed to complete the necessary

visual form was decreased. Secondly, a large amount of data sent from the

server to the client and vice versa was excluded. Third, the work-load of the

DBMS decreased due to the decrease in the number of rollbacks.

This section describes the advantages of using the IDB principle in the

\EpMak-N96" system. The program used in the system was written �rst in

13

a usual way, i.e. without improving any of the interaction process. In a very

short time of the system's exploitation the lack of the approach emerged. The

number of drivers became more than �ve hundred and the time of the selection

from the menu came close to the critical point. At the same time, the number

of suppliers was over one hundred.

We applied the IDB principle to the program and got the following results:

� The data
ow from the DBMS to the client was decreased due to the

decrease in the number of elements of domains. The data
ow from the

client to the DBMS was also slightly decreased, primarily because of the

decreasing of the number of retries.

� The server overloading was decreased because of rollbacks avoidance.

� The e�ectiveness of the interface was increased and the time it took to

populate the visual form was decreased.

Further, we explain each of these three items. As a result of applying the

IDB principle to the client-server interaction programming, we received a system

performance increase in the user interface and data interaction.

6.1 Data
ow

Data
owmeans the quantity of information sent to/from the server. The sources

of data are clients. They make the server process transactions and return result

codes. First, the data
ow consists of packets sent from the client to the server

(transactions). Each packet contains the text of the transaction with relative

�elds' values (e.g., strings, numbers etc.) Secondly, it consists of the result codes

returned by the server. The size of these packets is not valuable but the number

of them re
ects the number of rollbacks. Third, it consists of step-queries and

their results, returned by the server.

Without the IDB principle. Data
ow is increased considerably because

of rollbacks and step-queries result lists. At the same time the size of the

transaction is constant and step-queries are very small.

With the IDB principle. The number of rollbacks is much less and the

quantity of transactions falls. Data
ow also is decreased because of the decrease

in size of the step-queries results. The size of transaction is much bigger than

without the IDB principle, though, and step-queries are slightly larger.

6.2 The DBMS Overloading

The DBMS can process the transaction (commitment) or reject it (rollback),

depending upon whether all operations of the transaction are relevant to the

content of the database or not. The server wastes time while working with

rollbacks because no useful work is done during rollback processing. Thus,

decreasing the number of rollbacks signi�cantly decreases the overloading of the

DBMS.

14

6.3 The User Interface E�ectiveness

The user enters data by means of visual form. He or she populates �elds with

de�nite values and then sends the form for processing. In order to enter some

value into the �eld, the user must select it from the list. If the list was shorter

it would be more comfortable for the user. If it was necessary to populate the

form only once (without re-entering) it would more appropriate. We call it user

interface e�ectiveness.

7 Conclusion

The IDB principle was invented in order to simplify the process of transaction

processing and to provide the client with the ability to verify the information.

Before the data is sent to the server the client could obtain the list of possible

data values from the server and could compare. These lists could be retrieved

from the server by means of step-queries, which are generated using the IDB

principle.

Such approach provides developers with the opportunity to built intelligent

clients, vs. simple stubs without any knowledge about server database. The

principle was implemented and gave rather good results. The perspective of the

work re�nement and improving concerns on-line step-queries generation and

\any values" queries making.

References

[1] E.Bugaenko, IDB Principle as a Mechanism of Transactions

Veri�cation, to be published in Proceedings of the First International

Workshop on Veri�cation, Validation and Integrity Issues in Expert and

Database Systems in conjunction with DEXA98.

[2] E.Bugaenko, Predicate Calculus Step-Queries to SQL Mapping, MIKA,

IDB-97-08, 1997, Dnepropetrovsk.

[3] Edited by R.G.G.Cattell, The Object Database Standard ODMG-93:

Release 1.2, The Morgan Kaufmann Series in Data Management Systems,

1996.

[4] S.Ceri, G.Gottlob, and L.Tanca, Logic Programming and Databases,

New York, Springer-Verlag, 1990.

[5] E.F.Codd, A Relational Model of Data for Large Shared Data Banks,

CACM vol.13, no.6, 1970.

[6] J.M.Crawford and B.J.Kuipers, Toward a theory of access-limited logic

for knowledge representation, in Proceedings of the First International

Conference on Principles of Knowledge Representation, Morgan

Kaufmann, 1990.

[7] C.J.Date, An introduction to Database Systems, Reading Mass.,

Addison-Wesley, 6th edition, 1995.

15

[8] R.Fikes and T.Kehler, The role of frame-based representation in

reasoning, Communications of the ACM, vol.28, no.9, 1985, pp.904{920.

[9] M.Genesereth, The Epikit manual, 1990.

[10] M.R.Genesereth and R.E.Fikes, Knowledge Interchange Format.

Version 3.0. Reference Manual, Logic-92-1, Stanford University, Stanford,

June 1991.

[11] J.Gray and A.Reuter, Transaction Processing: Concepts and

Techniques, San Mateo, Calif., Morgan Kaufmann, 1993.

[12] P.M.D.Gray, Logic, Algebra and Databases, Chichester, England: Ellis

Horwood Ltd., 1984.

[13] T.R.Gruber, A Translation Approach to Portable Ontology

Speci�cations, KSL-92-71, Stanford University, Stanford, Calif., 1993.

[14] International Organization for Standardization, Database

Language SQL, Document ISO/IEC 9075, 1992.

[15] M.Kifer, G.Lausen, and J.Wu, Logical foundations of object-oriented

and frame-based languages, Journal of the ACM, vol.42, no.4, pp.740{843,

1995.

[16] D.B.Lenat and R.V.Guha, Building Large Knowledge-based Systems:

Representation and Inference in the Cyc Project, Addison-Wesley, 1990.

[17] R.MacGregor, The evolving technology of classi�cation-based knowledge

representation systems, In John Sowa, editor, Principles of Semantic

Networks: Explorations in the Representation of Knowledge, Morgan

Kaufmann Publishers, San Mateo, Calif., pp. 385{400.

[18] J.Melton and A.Simon, Understanding the new SQL: a Complete

Guide, Morgan-Kaufmann Publishers, Inc., 1993.

[19] B.A.Myer, J.D.Hollan, and I.F.Cruz, eds, Strategic Directions in

Human Computer Interaction, ACM Computing Surveys, vol.28, no.4,

1996.

[20] Automatized System for Raw Materials Reception \EpMak-N96", MIKA,

EM2501TO, Dnepropetrovsk, 1997.

[21] M.Negri, S.Pelagatti, and L.Sbattella, Formal Semantics of SQL

Queries, ACM TODS vol.16, no.3, September 1991.

[22] B.I.Plotkin, Universal Algebra, Algebraic Logic and Databases, Moscow,

Nauka, 1991.

[23] D.Sahlin, An Automatic Partial Evaluator for Full Prolog, The Royal

Institute of Technology (KTH), Stockholm, Sweden, May 1991, available at

�le://sics.se/pub/isl/papers/dan-sahlin-thesis.ps.gz.

[24] B.Shneiderman, Dynamic Queries for Visual Information Seeking,

IEEE Software, vol.11, no.6, 1994, pp.70{77.

16

[25] Egemen Tanin, Richard Beigel and Ben Shneiderman, Incremental

Data Structures and Algorithms for Dynamic Query Interfaces, ACM

SIGMOD Record, vol.25, no.4, December 1996, pp.21{24.

[26] P.Wegner, Why Interaction Is More Powerful Than Algorithms,

Communications of the ACM, vol.40, no.5, May 1997, pp.80{91.

[27] J.Widom and S.Ceri, Active Database Systems: Triggers and Rules for

Advanced Database Processing, Morgan-Kaufmann Publishers, Inc., San

Francisco, California, 1996.

17

