
W.A. Andersen, B.J. Peterson, J.F. Engel 2-1

Knowledge Bus: Generating Application-focused Databases from

Large Ontologies

Brian J. Peterson William A. Andersen Joshua Engel
SAIC US Department of Defense and SAIC

peterson@cs.umbc.edu Department of Computer Science, engel@cs.umbc.edu
University of Maryland, College Park

andersen@cs.umd.edu

Abstract

As well as being useful for semantic integration
of information systems, large shared ontologies
may be applied as specifications for new systems.
In this paper we discuss the design of Knowledge
Bus, a system which generates information sys-
tems - databases and programming interfaces -
from application-focused subsets of a large on-
tology (Cyc). The generated systems are seman-
tically interoperable at the level of their shared
representations. In addition, constraints and axi-
oms contained in the ontological specification
are encapsulated in the generated systems by an
object-oriented (Java) API. This API makes the
databases easily accessible to application pro-
grammers while preserving the intended seman-
tics of the ontology.

1 Introduction

The use of a shared vocabulary or ontology to enable
semantic interoperability of existing databases and other
software is gaining acceptance. Even greater benefits can
be achieved by using the same ontologies as formal speci-
fications for new systems. The costs of reverse-
engineering the semantics of legacy systems and ex-
pressing those semantics in terms of an ontology are high.
By building information systems from a formal founda-
tion which is shared across many such systems, we hope
to reduce the effort involved in ensuring interoperability
between them.

A fundamental problem in building cooperative infor-
mation systems is that it is generally difficult to under-
stand the semantics of any system you did not build. The
use of large, general ontologies has been proposed as a
solution to this problem. By mapping the semantics of
independently developed components to concepts in an
ontology, the hope is to use the ontology, along with ap-
propriate middleware, as an interlingua enabling commu-
nication between the systems.

Rather then attempting to reverse-engineer a shared
model of the databases, we propose an alternate solution:
generate the databases (including APIs) directly from
focused subsets of a large, general purpose ontology. Be-
cause these systems are derived from a common repre-
sentation, interoperability at the semantic level can be
achieved without an expensive level of hand-crafting.
Extracting only the subset of the ontology needed to sup-
port representation and reasoning in a focused application
domain enables the resulting systems to be much smaller,
more efficient, and more manageable than if the entire
ontology were present in each system.

Using traditional database construction techniques, the
cost of programming and maintaining a complex schema
and thousands of types, rules (views), and integrity con-
straints would be prohibitive. This process of automatic
generation will make the generated systems easier to
maintain.

For the past two years, we have been developing a
prototype system, called Knowledge Bus, to explore this
approach to constructing information systems. Knowl-
edge Bus has been used to develop databases for the De-
partment of Defense which are now in operational use in
complex decision-support applications.

We start with a very large ontology (Cyc) which uses a
first-order based language (CycL) with an expressiveness
which subsumes relational and object-oriented models.
The system for generating databases consists of four ma-
jor components: The sub-ontology extractor identifies a
domain-relevant section of the ontology. The logic pro-
gram generator takes the extraction and translates it into a
logic program which can be evaluated by a deductive
database query engine such as XSB ([Sag96]).

The copyright on this paper belongs to the paper’s authors. Permis-

sion to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial

advantage.

Proceedings of the 5
th

 KRDB Workshop

Seattle, WA. 31-May-1998
(A. Borgida, V. Chaudhuri, M. Staudt, eds.)

http://sunsite.imforkatic.rwth-aachen.de/Publications/CEUR-WS/Vol-10/

W.A. Andersen, B.J. Peterson, J.F. Engel 2-2

The API generator takes the logic-based model and
exposes it to application developers as an object model
through strongly typed object-oriented APIs
(implemented in Java). The runtime system supports ac-
cess to the generated databases.

2 Cyc and XSB

We chose to start with Cyc ([Guh94]) as our ontology
because of its large size and broad coverage: 500,000
axioms (rules and assertions) and 40,000 constants.
Whatever its merits as an ontology, Cyc is not a good
choice for a database system. First, it lacks the ACID
properties one would expect from an industrial-strength
DBMS. More seriously, we did not view the Cyc infer-
ence engine as an appropriate query processor for a data-
base system because it is based on classical first-order
semantics. We chose the XSB system ([Sag96]) as the
basis for the underlying database because it evaluates
logic programs according to the Well-Founded Semantics
(WFS) ([Gel91]) and has a fast and efficient inference
engine. XSB has interfaces to commercial RDBMS sys-
tems, which will enable us to build transaction and recov-
ery services in future implementations.

2.1 Cyc

Cyc is a FOL-based ontology which maintains its axioms
in conjunctive normal form (CNF). Its features include a
context hierarchy, an event calculus and sub-abstraction
temporal model, and an argumentation-based non-
monotonic reasoning formalism. Reference [Guh94] for
more details on Cyc.

2.1.1 The structure of the Cyc ontology

The Cyc ontology is organized into a set of contexts,
called microtheories or Mts. Each Mt consists of a set of
axioms and a set of domain assumptions1. Mts are related
in Cyc by the predicate genlMt, which imposes a lattice
on the Mts in the Cyc KB2. If A and B are Mts and
genlMt(B,A) then all axioms true in A are also true in B.

Concepts or types in the Cyc KB are called collec-
tions

3. Subsumption in Cyc is explicit and is indicated by
the relation genls. Each constant in the Cyc KB is a
member of one or more collections. Membership is indi-
cated by the relation isa. Some Cyc collections (e.g.,

1 Domain assumptions are axioms which constrain the

meaning of all axioms occurring in an Mt. If j is a do-
main assumption of Mt C, then, for all axioms y in C, y is
equivalent to j®y when "lifted" from or removed from
the context of C. We currently make no use of this infor-
mation.

2 Any subset of the Mts in the Cyc KB is guaranteed to
have a maximal element (the Mt BaseKB) and a minimal
element (the Mt BrowsingCntxt).

3 We will use the terms "collection" and "type" inter-
changeably.

CycSystemInteger) denote "primitive" types. The
primitive types ground out the representation of Cyc con-
cepts into data types directly representable on the under-
lying hardware.

Relations and functions in Cyc are strongly typed. That
is, for a k-ary predicate p:T1´…´Tk and an instance of
the predicate <a1,…,ak>, the following must be provable:
isa(ai,Ti), 1£i£k, where the ai are terms and the Ti
are collections (types) in the KB. Functions are defined
analogously.

2.1.2 Nonmonotonic reasoning in Cyc

Cyc’s non-monotonic formalism is centered around an
argumentation axiom, where j is considered to be true if
for each argument concluding Øj there is an argument for
j which is preferred. Preference for one argument over
another can be determined by various methods. One such
method is to see if an argument relies on an invalid de-
fault inference, which can be establish using Cyc’s Ex-
ceptWhen and ExceptFor predicates. ExceptWhen(j,
y) declares that y can be used in an argument except
when j can be proven. ExceptFor(t,y(x)) is similar,
saying that y can be used in an argument except for x
bound to term t.

2.1.3 Cyc’s temporal model

Cyc’s event calculus temporal model is based on the
holdsIn predicate, where holdsIn(E,j) has the in-
tended interpretation that j is true during the time bounds
of E (E is something with temporal extent, like an event, a
person, or just a time interval). The sub-abstraction
mechanism works by relating two constants together, as-
serting that one is a temporal portion of the other. So
FredTheStudent would be a sub-abstraction of Fred,
representing Fred from 1990 to 1996.

2.2 XSB

XSB is a Prolog-based logic programming system being
developed at the State University of New York, Stony
Brook. It evaluates according to the WFS using tabling
and an SLG-WAM ([Sag96]) implementation, and has an
impressive speed, coming within a small factor of com-
mercial Prolog systems ([Sag96], [Swi94]).

2.3 WFS/XSB instead of FOL/Cyc

We believe that classical first-order semantics is inappro-
priate for a deductive database because of its computa-
tional complexity, inability to define desired relations
(like the transitive closure of an arbitrary relation), and
because of its treatment of negation. [Pry88] and [She88]
discuss various semantics for negation; [Aho79], and
[Imm89] discuss the expressiveness and computational
complexity of classical semantics and first-order logic.

Our goal is to use the WFS because it has a polyno-
mial data complexity, it can define desired relations (like
transitive closure), it treats negation in a way that we con-

W.A. Andersen, B.J. Peterson, J.F. Engel 2-3

sider appropriate for a deductive database, and it has
equivalence results with major non-monotonic formalisms
([Abi95], [Gel91], [Pry88], [Pry91], [She88]). We de-
cided on XSB because it is robust, dependable, and fast
([Swi94]).

3 The sub-ontology extractor

The database specification process begins by extend-
ing the Cyc ontology with concept definitions for a par-
ticular application domain. The job of the sub-ontology
extractor is then to extract from the ontology all of the
concepts required to support representation and reasoning
in the application domain.

3.1 Starting the process

We begin by specifying a single Mt, C, with respect to
which extraction is performed4. From C we obtain a
"seed" set, S0, of collections which are defined in C. S0 is
obtained by syntactically examining the axioms present in
C and gathering up any collections (instances of Collec-
tion) which appear.

Informally, the purpose of the extractor is to identify
all axioms which might contribute to proofs about in-
stances of concepts in the seed set S0. The intuition is that
the user has specified in C (and thus in S0) all of the con-
cepts which are of interest, and in not interested in
(details of) concepts not explicitly specified in S0.

3.2 Fixpoint relevance computation

The computation proceeds with the application of two
operators, P and G. The P operator maps a set of collec-
tions to a set of predicates. The G operator maps a set of
predicates to a set of collections. They are defined as
follows:

P(S)={p|p:T1´…´Tk Ù $i[TiÎS ÙØprimitive(Ti)]}
G(P)={T |p:T1´…´TkÎP Ù genls(Ti, T)}

Starting with the seed set S0, we apply P(S0) to obtain a
set of predicates P1 involving collections in S0. We then
apply G(P1) to obtain a (new) set of collections S1, and so
on until a fixpoint (S*=Si+1=Si, P

*=Pi+1=Pi) is reached:

P0 =Æ
Pi+1=P(Si)
Si+1=G(Pi)

At the end of the computation the sets S* and P* contain
the sets of "relevant" collections and predicates, respec-
tively. We then add to P* the set of functions whose sig-
natures include only collections in S*. Finally, we collect

4 It is always possible to supply a single context. If

multiple contexts are specified, then a single temporary
context is constructed which is the union of the specified
contexts.

the set of axioms in all Mts accessible from C which in-
volve only predicates occurring in P*.

Because the operators P and G are monotonic, the al-
gorithm is guaranteed to reach a fixpoint. However, the
fixpoint may be infinite due to the presence in Cyc of
"collection denoting functions" (CDFs). We prevent this
condition by only considering ground CDF instances
during the fixpoint computation. This guarantees that the
fixpoint is reached after at most the size of the Cyc
genls hierarchy.

3.3 Justification for the algorithm

One potential weakness of this approach is that it makes
the (unfounded) assumption that all collections are dis-
joint. An example will serve to clarify this point. Con-
sider the clause Øp(X,Y)ÚØq(Y,Z)Úr(X,Z). Say the
fixpoint computation has already identified p:T1´T2 as
relevant. Intuitively, we would also like q:T3´T4 to be
relevant to enable the inference of r(a,Z) given q(a,Y)
for some constant a. If genls(T2,T3) then we have what
we want by definition of the operator G. If however, T2
and T3 are unrelated by the genls relation, we have a
problem - we have no way of knowing a priori if some
constant, when substituted for Y, is not both of type T2
and of type T3. The current algorithm would not select
predicate q unless there were an independent reason for
doing so. To correct this we could incorporate constraint
information in Cyc about the relative disjointness of col-
lections. We plan to explore this improvement in future
work.

The question remains - does this algorithm compute
anything reasonable? This is partly an empirical issue.
However the use of the fixpoint computation ensures that
we have not left anything important out.

The algorithm has several advantages over the ap-
proach of [Swa96]. First, it does not rely on heuristics to
identify relevant concepts. Second, their work applied
only to an ontology with taxonomic structure (no axioms
or relations). Our method is general in that it can be ap-
plied to arbitrary KBs (such as one based on description
logic) which share the basic subsumption and typing fea-
tures of Cyc.5

4 The logic program generator

The goal of the logic program generator is to translate the
extracted sub-ontology into a logic program that can act
as an efficient query evaluator. We decided that the origi-
nal first-order logic (FOL) based language with classical
semantics was not appropriate; our goal is to use a logic
programming language with the Well-Founded Semantics
(WFS). We were unable to design a translation to the
WFS (due to our chosen temporal model, explained be-

5 Note that our use of Cyc contexts is not essential but

only serves as an additional focusing mechanism. The
algorithm could be applied to KBs with no such concept
of context or to KBs with alternate context mechanisms.

W.A. Andersen, B.J. Peterson, J.F. Engel 2-4

low), instead settling for Stratified. The resulting transla-
tion is evaluated with the XSB system. Our goal is that
the logic program resulting from the translation would
have a bounded term size. In our first version, to ensure a
finite domain we removed function symbols and the rules
that used them.

4.1 Basis of the Translation

The idea behind the translation is straight forward: keep
the horn CNF and do what you can with the non-horn
clauses. The non-horn clauses are not completely lost to
us, since we can use them as integrity constraints on the
database. We can also convert the clauses with more than
one positive literal into rules with negative antecedents.
For example, the clause pÙqÙØr could be treated as

ic1 :- r,Øp,Øq.
p :- r,Øq.
q :- r,Øp.

where ic1 is used as an integrity constraint on the data-
base.

We find that in these cases (where a negative depend-
ency is generated) it is often desirable to chose one rule
form and dismiss the others. This is because, in the ab-
sence of other information, the WFS will assign
‘unknown’ as a truth value to the literals involved . In the
example, if the rule concluding q is removed, then the
other is able to conclude p (given r and the absence of a
q). This provides part of the inferential capability of the
original non-horn clauses, and may be closer to what the
person intended when they added the original rule to Cyc:
A rule with negative antecedents is converted to the non-
horn CNF by Cyc. So if the rule was originally
rÙØq®p, then the person may have intended this rule as
a way of concluding p, and not really as a way of con-
cluding q.

Because Cyc converts input rules into CNF clauses,
the only source of negative subgoals in our rules is from
this stage of the translation.

In our initial application of this process (generating a
deductive database from Cyc), the extraction from Cyc
identified 1531 collections, 1267 predicates, and 5532
CNF clauses as relevant to our subject domain. Of these
5532 clauses, only 128 had no positive literals and 84
had 2 or more (about 4% of the extracted clauses). A horn
clause could conclude a literal which we consider to be
inappropriate for a rule. For example, a rule concluding
X<Y is not very interesting for a rule, but fine for an integ-
rity constraint. There were 653 horn clauses which we
identified as constraints. The remaining 4667 (horn)
clauses we used as rules.

4.2 Stratification

Because of the limitations imposed by our temporal
model (see below), the rule base needs to be stratified. To
accomplish this, we used a few heuristics for breaking

negative cycles, but the process was still interactive. The
heuristics were straight-forward, removing rules which
conclude a literal that commonly appears as a subgoal
(like isa and genls).

In our first application, by this time in the translation
process there was 5848 rules. To stratify this rule base,
352 were removed (307 by heuristics).

4.3 Translating the Temporal Model

We settled on a simplified temporal model designed to
support a historic database and primarily point queries.
We treat time as integer-like with two distinguished time
points, start and now, where start comes before all
other (named) time points and now comes after all other
(named) time points. Time points are represented by inte-
gers, counting the number of milliseconds around the
epoch January 1, 19706. A negative number is the number
of milliseconds before the epoch. To simplify the algo-
rithms supporting our temporal model, we represent tem-
poral intervals as closed-open intervals over the integers,
so that if we say that a fact is true from 5 to 10, it is true
over the interval [5,10). This means that a temporal
interval with no extent is not possible, and a time point is
equivalent to the interval [x,x+1).

4.4 Temporal Translation Of Assertions

To capture the assertion holdsIn(E,p(a)),we add two
arguments to the p(a) literal representing the start and
end times that it holds: p(a,s,e), where s/e are the
start/end times for E. This breaks the connection with the
temporal object E, but simplifies the syntax and makes it
more appropriate for the indexing schemes of XSB.

The start and end arguments are handled specially with
respect to unification in order to model time. Bound ar-
guments unify if they are within the range given by
[s,e). Unbound arguments are bound to the maximum
possible range. Thus, the fact p(a,5,10) satisfies the
query p(X,6,9). It also satisfies p(X,6,E), binding E to
10. It does not satisfy p(X, 11, E) or p(X,6,12).

To implement this, rules are generated which perform
a binding pattern analysis on the temporal arguments of a
call and uses a rule which handles the call appropriately.
Assertions are made to extensional versions of the predi-
cate. For example, if p/1 is in the language, then the
following rules are generated:

6 This epoch is an artifact of using Java for the gener-

ated APIs.

W.A. Andersen, B.J. Peterson, J.F. Engel 2-5

p(X,S,E) :-

nonvar(S),nonvar(E),p_ff(S1,E1),

atOrBefore(S1,S),atOrBefore(E,E1).

 p(X,S,E) :-

nonvar(S),var(E),p_ff(S1,E),

atOrBefore(S1,S).

p(X,S,E) :-

var(S),nonvar(E),p_ff(S,E1),

atOrBefore(E,E1).

p(X,S,E) :-

var(S),var(E),p_ff(S,E).

p_ff(X,S,E) :- p_EDB(X,S,E).

where atOrBefore does a temporal comparison between
its arguments, and p_EDB is the extensional version of p.
The extracted rules with p as a head are translated with a
p_ff head. The _ff suffix indicates that the temporal
arguments are unbound. These rules are generated so that
unbound temporal intervals of a call are bound to the full
interval inferred – backtracking over subintervals is not
supported. They also ensure that temporally bound calls
are satisfied if an interval that contains the given one can
be inferred.

Casting the query to one with unbound temporal argu-
ments is required since there are not any special indexing
structures (in XSB) to determine “subinterval unifica-
tion”.

4.5 Temporal Translation Of Horn Rules

Most of the rules in Cyc have no holdsIn component,
instead relying on sub-abstraction for a temporal inter-
pretation. We decided not to try to translate Cyc’s sub-
abstraction mechanism. We treat a rule like

p(X,Y)Ùq(Y,Z)®p(X,Z)

as:
p(X,Z,S,E) :-

p(X,Y,S1,E1),

q(Y,Z,S2,E2),

tInter([(S1,E1),(S2,E2)],(S,E)).

where tInter binds (S,E) to the temporal intersection
of the intervals in the first argument. This makes p(X,Z)
true during the times that both p(X,Y) and q(Y,Z) are
true. The rules are designed so that temporal arguments
get bound to the largest range that can be established with
the current bindings to the sub-goal temporal arguments.

4.6 Translation Of Rules With Negated Subgoals

We read the rule

p(X,Y)Ùq(Y,Z)ÙØr(Z)®p(X,Z)

as “p(X,Z) is true during the times that p(X,Y) and
q(Y,Z) are both true, but that r(Z) is not”. This is real-
ized with the translation into

:- tabled(r/3).

p(X,Z,S,E) :-

 p(X,Y,S1,E1),

 q(Y,Z,S2,E2),

 tInter([(S1,E1),(S2,E2)], (S3,E3)),

 tsetof((S4,E4), r(Z,S4,E4), NEG),

 tDiff([(S3,E3)],NEG,DIFF),

 member((S,E), DIFF).

tDiff binds DIFF to an array containing the portions of
the intervals in the first argument which are not covered
by intervals in the second. The tsetof built-in is an
XSB construct, which behaves like Prolog’s setof,
but is used for tabled predicates7. The rule has to
identify all of the intervals for which r(Z) is true in order
to ensure that (S,E) does not overlap with some interval
for r(Z). The results of the r(Z) call are tabled so that
they are not repeatedly computed (for each instantiation
of (S3,E3)).

4.7 Problems With The Temporal Translation

We are currently restricted to stratified programs because
of how we handle rules with negated subgoals. We have
not been able to design an efficient temporal model for
the WFS in general.

Binding the temporal arguments of a call to the maxi-
mal interval makes the program sensitive to goal order-
ings. For example, with the assertions p(a,5,10) and
q(a,0,20), the query

p(X,S,E), q(X,S,E)

succeeds, but
q(X,S,E), p(X,S,E)

fails (since p is not true during the entire interval of
[0,20)). This requires a standard query format for han-
dling compound queries with unbound temporal argu-
ments:

q(X,S1,E1), p(X,S2,E2),

tInter([(S1,E1),(S2,E2)], (S,E)).

so that (S,E) provides the temporal context for the an-
swer X=a.

A further limitation of our current implementation is
that no effort is made to merge conclusions with overlap-
ping temporal intervals which are otherwise unifiable. So
if the program can conclude p(a,0,6) and p(a,5,10),
it will not necessarily conclude p(a,0,10). We did not
feel justified in adding this (and significantly decreasing
performance) since the queries made to the system are
either point queries or the temporal arguments are un-
bounded (and all answers are returned). Given the type of
temporal queries that are asked, the standard format for
asking compound queries, and the way that the rules are
translated (explained above), a call with a bound non-

7 The tabled directive tells the XSB compiler that the

given predicate should be tabled. A tabled predicate has
the answers to its calls cached in a table. Reference
[Swi94] for more details on XSB’s tabling.

W.A. Andersen, B.J. Peterson, J.F. Engel 2-6

point temporal interval is not made. This means that the
only kind of rule that is dependent on temporal merging is
one that tests the interval returned from a call (like testing
for a length or for specific boundary points), and these
kinds of rules are (so far) infrequent for the domains we
are interested in. So far this has not proven to be a prob-
lem.

4.8 Adding Assertion Identifiers

In Cyc, literals can appear as arguments to other literals.
We represent this by adding a third argument during the
translation which is the identifier for the literal.

A rule which uses a predicate which takes a literal as
an argument (which can be determined by the type sig-
nature of the predicate) is transformed so that it takes an
assertion identifier which is de-referenced to the appro-
priate assertion. For example, the Cyc rule

if p(X, q(Y)) then r(X,Y)

is translated as
r(X,Y,S,E,A) :-

 p(X,AID,S,E,A1),

 q(Y,_,_, AID).

4.9 Translating Cyc’s Default Logic

No attempt has been made to duplicate Cyc’s argumenta-
tion-based non-monotonic formalism; instead, the Ex-
ceptWhen and ExceptFor assertions are translated by
adding negated subgoals to the rules that they act on. For
example,

ExceptWhen(p(Y),r(X,Y)®q(X,Y))

modifies the rule so that it becomes
r(X,Y)ÙØ p(Y)®q(X,Y)

We then rely on the WFS to achieve a behavior consistent
with major non-monotonic formalisms ([Pry91]).

4.10 The Resulting Dependency Graph

Our first application of the extraction and translation re-
sulted in 1546 rules and 2547 ground facts8. The depend-
ency graph of the rules has 162 strongly connected com-
ponents: 133 of these were of length one (an immediately
recursive rule), 22 of size 2, 1 each of size 3, 4, 5, and 6,
and 1 of size 32.

4.11 Subgoal Reordering

In our initial application of this process, the resulting
rules did not lend themselves to efficient evaluation with
a left-to-right subgoal selection rule. Even with the ta-
bling of XSB, the search space was just too large even for
simple queries. This problem was effectively dealt with
by profiling a set of example queries and reordering the
subgoals of the rules involved. While we have not de-
signed an algorithm to effectively reorder the subgoals,

8 1758 sentences were removed for various reasons
dependent on our initial implementation. One such rea-
son is that we are not currently doing any translation of
function terms from Cyc.

our experiences with manual reordering leads us to be-
lieve that we can. Most of the reordering involved pre-
venting unbound subgoal calls and taking advantage of
XSB’s tabling mechanism, each of which can be accom-
plished by analyzing binding patterns.

4.12 Information loss

The purpose (as discussed earlier) of translating the ex-
tracted sub-ontology into a logic program interpreted un-
der the WFS (with a finite domain) is to ensure a poly-
nomial data complexity and a more appropriate semantics
for negation. It is difficult to characterize what has been
lost or gained in the translation because, which CycL is
based on first-order logic, it has many extensions for
which Cycorp has not provided a clear semantics. For the
purpose of this discussion, assume a classical semantics
for CycL.

Some conclusions could be made from the original
CycL, but others can be made with the resulting XSB.
CycL rules like

p®qÚr
could not directly translate into the target lp; however,
since one of the (classically equivalent) forms such as

pÙØq®r

would be added to the lp, the lp (using a WFS negation)
could allow for concluding r. The original CycL rule is
still used to influence the database since it is used as an
integrity constraint.

Recall that steps were taken to ensure a finite domain
for the resulting lp. The initial version of the logic pro-
gram generator took drastic steps to ensure this, such as
removing any rule which uses a functional term. This is
certainly a source of a loss of information. Later versions
will attempt to reduce this loss by translating the function
symbols (of arity n) into predicates (of arity n+1) which
are functional (in the last argument); however, this will
still entail a finite domain.

Once the restriction to a finite domain has been made,
the use of the WFS (vs classical semantics) actually in-
creases the expressiveness. First-order logic on finite
domains has a logarithmic time data complexity, while
the WFS (first-order plus a least-fixed point operator) is
polynomial ([Abi95] and [Imm89]). This allows the lp to
define relations that the original CycL could not. An ex-
ample is defining the transitive closure (TC) of a relation.
The original CycL rules saying that one relation is the TC
of another can be used under the WFS to say that the one
actually defines the TC of the other. This capability al-
lows for more (non-monotonic) conclusions.

So the only clear source of loss is the restriction to a
finite domain. The other sources possible sources of loss
do prevent some kinds of conclusions, but allow for oth-
ers.

5 The API generator

The Knowledge Bus runtime system exposes the under-
lying logic program as an object-oriented API in a com-

W.A. Andersen, B.J. Peterson, J.F. Engel 2-7

monly-used language. This allows programmers without
training in logic programming to use the database. The
goal is to make the deductive layer invisible, appearing to
be an ordinary object-oriented API.

We selected Java as the OO language of the runtime
system. This allows Knowledge Bus-derived APIs to be
used by anybody with skills in this popular language. This
also allows development with existing development envi-
ronments and to integrate with existing applications.

By using a strongly-typed language, some kinds of
database constraints can be checked by the compiler. For
example, the database may have a requirement for the
predicate drives: Person´Vehicle. By defining the
method Vehicle drives() in the class Person, then
any attempt to use the drives method incorrectly will
cause the program to be rejected by the compiler.

Other constraints cannot be represented directly using
the class notation. For example, the constraint par-
ent(X, Y) :- olderThan(X, Y) cannot be easily
expressed using Java classes. When these constraints are
violated, the user is notified by an exception at run time.

5.1 Knowledge Bus Object Model

In order to make the structure of the Java class definitions
match the structure of the database, we define a set of
rules for creating classes. Intuitively, we create a Java
class corresponding to each collection such that the class
hierarchy corresponds to the genls taxonomy in the da-
tabase. Constants in the database are modeled as Java
objects, using the constant itself as the object identifier.
Predicates are modeled as methods on the classes; the
methods are implemented using the predicates.

These rules define the object model:
1. For all collections X, there is a class CX corre-

sponding to X.
2. For all classes CX, if genls(X, Y) then CY is a su-

perclass of CX.

3. For all predicates p:T1´…´Tn and all i from 1 to n,

there are n-1 methods in class CTi
 named mj for all

j from 1 to n, not including i. The signatures of
these methods are

C C C C C C CT T T T T T Tj j i i n j1 1 1 1 1
, ..., , ,..., , ,...,

− + − +





 → 





where [t] represents an array of type t.
In the most common case, where n=2, for the predi-
cate p:X´Y, this corresponds to the class defini-
tions:

class CX { CY[] p(); }

class CY { CX[] p(); }

4. For all constants c in the database such that isa(c,
X) holds, then there is a corresponding Java object
oc such that oc instanceof CX. We define c to be
the object identifier of the object oc.

5. Define the function f: object®constant such that
f(oc) ®c.

6. For each method mj in class CX, objects

om instanceof CTm
and t instanceof CX, the

semantics of the mj are defined such that the result
of invoking

t.mj(o1, …, oj-1, oj+1, …, oi-1, oi+1, …, on)
is the set of objects Z such that

p(f(o1), f(o2), …, f(oj-1), f(t), f(oj+1),
…, f(oi-1), f(Z), f(oi+1), …, f(on))

holds, where p is the predicate corresponding to mj.
This can be easily evaluated in the logic program by
substituting a variable for f(Z), and using all bind-
ings of Z as the object identifiers of the resulting
objects.

Rule 6 provides method definitions for the most com-
mon case, where exactly one argument is unbound and all
others are bound. Section 6.3 provides a more general
solution for other binding patterns.

The intuition behind rule 6 is that result of executing a
method is the set of objects corresponding to the bindings
of variable Z. All other arguments to the predicate are
bound to the object identifiers of the arguments of the
method. Thus, for an object with identifier joshua of
class Person, executing the method hob-

bies:()®Activities yields the array of objects with
object identifiers [marathon_running, com-

puter_programming].
In practice, the class name CX is usually identical to the

constant name X. Some mangling of names must be done
to support Java’s naming conventions (replace hyphens
by underscores, etc.). This paper will use the name X to
refer to CX when this will not result in confusion.

Rule 6 does not include the metadata parameters to the
underlying database relations. These are taken from a
single Context object which provides limits for these
parameters. This works well in the most common case,
where all queries are asked at the same time point. The
construction of these are straightforward, following the
example of section 4.3.

It must be proven that the results of calling a method
meet the Java requirement for type safety. It is straight-
forward to prove given the database constraints that all
bindings of Z are constants such that isa(Z, Tj). This
can be used with the definition of the method to prove
that for all Z, f(Z) instanceof CX.

6 The runtime system

The runtime system supports access to the generated da-
tabases systems by providing a dynamic class creation
capability, and a relational interface which allows for
other binding patterns in queries (other than the bound-
free pattern provided for by an object-oriented interface).

6.1 Meta-object protocol

The ordinary Java notion of a class is insufficient to fulfill
rules 2 and 3 because Java lacks multiple inheritance. In

W.A. Andersen, B.J. Peterson, J.F. Engel 2-8

addition, even if Java had multiple inheritance, it would
be impractical to create classes for all possible subsets of
the set of collections.

In order to meet these goals, Java is augmented with a
Metaobject Protocol for Java ([Eng97]). This is a system
for defining classes based on the Metaobject Protocol for
CLOS ([Kic91]).

The Metaobject Protocol for Java (hereafter MOP) re-
quires no changes to the Java language, and uses existing
Java compilers. It is based on Java’s ability to load new
classes into a running system. Under MOP, the classes
described above are actually Java interfaces. The MOP
has the ability to dynamically create a class which imple-
ments any arbitrary collection of interfaces. The methods
of these new classes are implemented according to rule 6.
The MOP uses a protocol similar to CLOS’s MOP to
resolve conflicts arising from multiple inheritance.

In the Knowledge Bus, there are no conflicts because
the underlying logic program enforces the restriction that
each predicate has exactly one signature. Problems of
multiple inheritance (and overriding in general) are
avoided.

Whenever the constant c is present in the result of a
query, the constant is swizzled into an object. This in-
volves creating an object whose class implements the
interfaces corresponding to the types of the constant (that
is, all X such that isa(c, X)). If this is a novel collection
of interfaces, a new class is created. The methods of this
class are implemented as described in rule 6.

6.2 Naming conflicts

The rules defined in section 5.1 have a serious flaw with
respect to the Java language. Consider two collections X
and Y such that genls(X,Y), and a predicate p: X´Y.
This gives rise to these interface definitions:

interface X { Y[] p(); }

interface Y implements X { X[] p(); }

Y inherits the definition of p from X. This means that Y
has two method definitions named p with identical argu-
ments but different return types. This is an error.

To resolve this error, we have chosen the naming con-
vention which adds Of to any method whose implementa-
tion involves leaving the first argument unbound. Thus,
we define Y as:

interface Y implements X { X[] pOf(); }

This naming convention feels natural to the program-
mers. For example, for owner: Agent´Thing, this
definition matches the programmer’s intuition:

interface Thing { Agent[] ownerOf(); }

interface Agent { Thing[] owner(); }

A different, less natural naming convention exists for
higher-arity predicates, in which conflicts are resolved by
affixing the binding pattern (a string of Bs and Fs) to the
name of the predicate.

6.3 Other binding patterns

Since most predicates are binary, the most common query
involves one bound argument and one unbound argument.
Even where there are more arguments, there is generally
exactly one unbound argument. This situation is well
modeled by the methods described here; invoking a
method is equivalent to finding all answers to a query
with one unbound argument. Java programmers usually
find this paradigm very natural.

Sometimes, a programmer may require alternative
binding patterns, especially with higher-arity predicates.
For this reason, an additional view of the database called
the relational interface is provided. The relational inter-
face consists of a collection of static methods defined
thus:

For all predicates p:T1´…´Tn, there is a static method

m: (CT1
, …, CTn

, S, E, A) ® Query. When invoked on

a set of objects o1…on, this sets up an object of class
Query which models a general query into the logic pro-
gram9.

Any subset of the arguments oi may be unbound ob-
jects. An unbound object is an object without a fixed ob-
ject identifier. Unbound objects are created by a specially
provided method, makeVar(Class[]), which returns a
new object with the appropriate types but no object iden-
tifier.

The Query object is used by invoking the method
nextBinding. The logic program is asked the query
p(x1, x2, x3, …, xn, S, E, A), where xi corresponds
to the object identifier of the object (if it is a bound ob-
ject) or a variable (if it is an unbound object). If the same
unbound object appears in more than one position, the
same variable is used.

For each set of bindings of the variables, the object
identifiers of the unbound objects are altered to match the
bindings.

Query objects may be combined with conjunctions
like and, or, not, and others. For example, to find all of
joshua’s aunts, (where joshua is an object of class
Person) use this Java code:

Person X =

 (Person) makeVar(Person.class);

Person Y =

 (Person) makeVar(Person.class);

Query q =

parent(joshua, X), sister(X, Y);

while(q.nextBinding()) {

 // Y is now bound to one of

 // Joshua’s aunts

}

9 The extra arguments (S, E, A) are added during the

translation process. See sections 4.3 and 4.8.

W.A. Andersen, B.J. Peterson, J.F. Engel 2-9

7 Future Work

7.1 Introspection, mobile agents, and discovery

An indirect but extremely important benefit of using
Java for the generated programming interfaces is that
dynamic linking of client systems is greatly simplified.
Using the reflection capabilities of Java 1.1, a client
which subscribes to the common ontology could interro-
gate a generated database to discover if it manifests a
desired interface. If it does, the client can dynamically
link to the database to operate on it. This is an important
enabling feature for the widespread application of mobile
agents. We already use a rudimentary form of this capa-
bility in building client applications - methods which re-
quire heavy database access can be shipped to a running
database and evaluated, thus reducing network overhead.

7.2 Improvements to the temporal model

The two limitations of the temporal model that we are
most concerned with is the restriction to stratified pro-
grams and the inability to merge overlapping temporal
intervals (for otherwise unifiable literals). We would like
to develop efficient solutions to both of these problems.

7.3 Improvements to XSB

Unfortunately, there are no commercial deductive
DBMS currently available. To duplicate the same func-
tionality using XSB, we need to implement two important
capabilities - concurrent query evaluation and transac-
tions. Work is already underway at SUNY Stony Brook
to support these features. In fact, we plan to use the pro-
posed concurrency extensions to implement distributed
query evaluation.

7.4 Improvements to the generation process

The current generation process isn’t quite so automatic
as we would like. For example, due to the limitations of
the current temporal model, we are forced to eliminate
some axioms to ensure stratification, which requires some
interaction.

We are trying to improve the specificity of the sub-
ontology extraction process. While the current system has
yielded promising results, many superfluous collections
and axioms are extracted from Cyc. Part of this is due to
the structure of the Cyc KB. Cycorp is working on im-
provements to Cyc’s context mechanisms to allow more
fine-grained specification of an application context.

8 Related Work

[Swa96] describes an algorithm which uses heuristic
techniques to extract application-focused subsets from the
large (70K concept) SENSUS ontology. SENSUS is a
linguistically-based ontology with subsumption but no
relations or axioms.

9 Acknowledgments

We would like to thank the other members of the
Knowledge Bus project - Jon Shoemaker and Paul
Brinkley for their excellent Java programming work. We
would also like to thank Professors David S. Warren of
SUNY, Stony Brook and V.S. Subrahmanian of the Uni-
versity of Maryland, College Park for their invaluable
advice and assistance. Doug Lenat, Nick Siegel, Keith
Goolsbey, Fritz Lehmann and David Gadbois of Cycorp
helped us understand the intricacies of Cyc’s KB and
inference engine. Special thanks to Joe O’Kane of DoD
for having enough vision to support our work.

This work was supported by internal R&D funding
from the U.S. Government, Department of Defense.

10 References

[Abi95] S. Abiteboul, R. Hull, V. Vianu, Foundations of
Databases, Addison-Wesley Pub. Co. Inc.,
1995.

[Aho79] A.V. Aho, J.D. Ullman: The Universality of
Data Retrieval Language. POPL 1979: 110-120.

[Imm89]N. Immerman, Descriptive and Computational
Complexity. FCT 1989: 244-245.

[Eng97] J. Engel, A Meta-Object Protocol for Java, un-
published MS, 1997.

[Gel91] A. Van Gelder, K.A. Ross, J.S. Schlipf, The
Well-Founded Semantics for General Logic Pro-
grams. JACM 38(3), 1991: 620-650.

[Guh94] R.V. Guha, D.B. Lenat: Enabling Agents to
Work Together. CACM 37(7), 1994: 126-142.

 [Kic91] G. Kiczales, J. des Rivières, and D. G. Bobrow,
The Art of the Metaobject Protocol, MIT Press.,
1991.

 [Pry88] T.C. Przymusinski, On the Declarative Seman-
tics of Deductive Databases and Logic Pro-
grams. Foundations of DD and LP, ed. J.
Minker, Morgan Kaufmann Pub. Inc., 1988:
193-216.

[Pry91] T.C. Przymusinski, Three-Valued Non-
Monotonic Formalisms and Semantics of Logic
Programs, Artificial Intelligence Journal 13,
1991: 445-464.

W.A. Andersen, B.J. Peterson, J.F. Engel 2-10

[Sag96] K.F. Sagonas, T. Swift, D.S. Warren, An Ab-
stract Machine for Computing the Well-Founded
Semantics. Proceedings of the Joint Conference
and Symposium on Logic Programming, Sep.
1996, MIT Press: 274—288.

[She88] J.C. Shepherdson, Foundations of DD and LP,
ed. J. Minker, Morgan Kaufmann Pub. Inc.,
1988: 19-88.

[Swa96] B. Swartout, R. Patil, K. Knight, T. Russ, To-
ward Distributed Use of Large-Scale Ontologies,
Proceedings, Tenth Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff,
Canada, 1996.

[Swi94] T. Swift, D.S. Warren, Analysis of Sequential
SLG Evaluation, ILPS 1994: 219--238.

