CEUR-WS.org/Vol-10/paperld.pdf

Semantic Query Optimisation and Rule Graphs

Jerome Robinson
Computer Science Department
University of Essex, UK.
robij@essex.ac.uk

Abstract

Previous researchers note the problem for
semantic optimisation of database queries caused
by its production of a large number of
semantically equivalent alternative queries, from
which one must be quickly chosen. The present
paper observes that this is caused by the non-
uniform structure of rules, which also (i) prevents
fast access to rules, (ii) allows the rule base to
become impractically large, and (iii) such rules
anyway are of low utility for SQO. Simple rules
are less expressive but more useful in this
application. Single-antecedent, single-consequent
rules are the main component of the rule base.
The rule set then constitutes a graph whose edges
are the rules. This Condition Dependency graph
provides a map of possible query reformulation
operations so that guided direct modification of
the single existing query is possible instead of
blind sequential application of rules and cost
evaluation for the resulting set of alternative
queries.

1 Introduction

A semantic query optimiser is an intelligent interface
between user and database, which intercepts the user’s
query before it reaches the data server. The optimiser
uses its knowledge of the data to improve the query and
then forwards a reformulated version of the query to the
database. Query Q’ is a semantic reformulation of query
Q if Q’ is different from Q, and Q’ cannot be derived
from Q by syntactic operations, and Q’ gives the same
query result as Q. Query Q' must be faster for the server to
process, then Q. Query processing speed is measured by
cost assessment using cost factors such as tuple retrieval
time from disk, and comparison time per tuple to compute

The copyright of this paper belongs to the paper’s authors. Permission to copy
without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage.

Proceedings of the 5th KRDB Workshop

Seattle, WA, 31-May-1998
(A. Borgida, V. Chaudhri, M. Staudt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10/

J. Robinson, B.G.T. Lowden

Barry Lowden
Computer Science Department
University of Essex, UK.
lowdb@essex.ac.uk

query conditions. The cost improvement produced by
modification of an existing query is much easier to assess
than the absolute cost of a new query. In fact, many types
of modification will improve query cost and there is no
need to spend time computing the amount of each specific
improvement.

Rules describing the data are used to transform the
query. Integrity Constraint rules were used in early
systems with limited success, but more recently rule
discovery from the data itself has been used to provide
more query-relevant knowledge of the data. Automatic
knowledge discovery can lead to large rule sets (much
larger than the data sets they describe), whereas a set
much smaller than the data is required. Previous workers
[e.g. Hs 95, Lo 95, Si 88] have, in effect, used a sample
from the potentially derivable rule set, by generating a few
rules in response to each query. But this can provide a
random sample with low probability of containing useful
rules. The histogram-based rule sets described in this
paper are small, easily accessed, and all rules have a good
chance of being used.

Previous semantic optimisation algorithms [e.g. Hs 95,
Ki 81, Sh 88, Si 88] have been iterative, progressively
applying new rules as the query is changed by previous
rules. (‘Rule application' means adding consequent
conditions to the query from rules whose antecedents are
implied by query conditions). This is slow. Its sequential
character is undesirable in a process which must be as fast
as possible, to avoid delaying the query and counteracting
time saved when the data server processes the improved
query. The Dilution Effect identified in section 4,
suggests that successive rule applications provide
information of decreasing quality, which is progressively
less likely to be useful in query reformulation.

The rulebase partitions easily into subsets of current
query interest, and the rule graph for each subset can be
pre-processed, allowing time-consuming decisions to be
made before queries arrive, so that fast lookup replaces
the iterative process and its subsequent time-consuming
cost evaluation.

The rules discussed in this paper are basically if/then
expressions which contain two predicates on attributes of
a relational database table. For example: (15 <a < 30) O
(243 < d < 271), which means "if the value of attribute 'a'
in a tuple is in the range 15 to 30 then the value of
attribute 'd"' will be in the range 243 to 271". In SQO the
antecedent condition(s) of rules are matched with query
conditions. Since a// antecedent conditions in a rule must
be matched, rules with only a single antecedent are most

14-1

widely usable. The two predicates (antecedent and
consequent) in each rule are Selection Conditions or
constraints of the type found in database queries. Each
condition therefore denotes a subset of a database table.
Rules are cascaded using subrange containment as the link
between successive rules.

A rule A0 B partitions the set of tuples in a database
relation into three parts:

fll | .

-B

This has a number of implications. Eg: (i) the rule graph
is a Hasse Diagram for the Ordered Set of tuple subsets
denoted by potential query conditions; (ii) the nodes in a
graph path denote monotonically increasing subsets of the
data set; (iii) the Dilution Effect; (iv) the potential
usefulness of a rule for SQO can be quantified using the
relative sizes of set(A) and set(B).

The structure of the paper is as follows. Section 2
identifies the main operations used in semantic query
transformation. Section 3 introduces the Graph
interpretation of semantic optimisation. Section 4
specifies fundamental properties of rules and paths in the
graph (a path with two or more edges corresponds to two
or more cascaded rules). Section 5 indicates the potential
size of an wunconstrained rulebase, and Section 6
introduces histogram-based multi-consequent rules as an
efficient implementation for attribute-pair rule sets, which
reduces the number of rule sets and look-ups, and can be
derived by a single scan through a database relation.

2 Background

The purpose of query optimisation is faster response to
queries. The semantic optimiser knows more about its
data than the user. It can therefore replace the user's
query with a different query which will produce exactly
the same result set, but faster. The new query is faster
because it will do less work when extracting the selected
result tuples from the database

2.1 Semantic Query Processing Operations

This section indicates methods traditionally used in SQO.
A query is canonically a sum of products of selection
conditions. It is semantically optimised by processing the
conjunctive sub-queries, using the following operations.

2.1.1. Condition Elimination

If a query contains conditions G and H, and arule G 0 H
exists (meaning: if G is true in any tuple then H is also
true) then there is no need for the data server to test both
conditions during query processing. The implied
condition can be eliminated from the query.

2.1.2. Query Refutation by Condition Contradiction

J. Robinson, B.G.T. Lowden

—_n

If a query contains the conditions (g propane") and
(100 £ h £200), but rule (g ="propane") 0 (13 <h<71)
exists, then it is impossible for both query conditions to be
satisfied by any tuple. The query will therefore produce
no results, and can be answered immediately with the
empty set, without consulting any data.

2.1.3. Query Refutation by Contradictory Consequents
If two query conditions match the antecedents of two
different rules whose consequent conditions are
contradictory, then the query will produce no results and
can be answered with the empty set. The two query
conditions select disjoint sets of tuples from the database
table. (A conjunctive query identifies the intersection of
condition-selected sets).

2.1.4. Query Refutation by Empty Set Selection

If any query condition selects an empty set then the
conjunctive query will produce the empty set as result. A
query condition can be identified as an empty set
condition if it specifies a range of values for an attribute
which is known to be outside the two extreme values for
that attribute, or specifies values in a known Empty
Subrange Interval between the two extreme values, or it
specifies an equality condition using a string value known
to be absent from a category attribute.

2.1.5. Condition Elimination by Full Set Selection

Any query condition which selects all the tuples in the
database table is redundant. A range condition whose
range interval includes both extreme values for the
attribute is an example of a full set condition, which can
be eliminated from the query.

2.1.6. Condition Range Narrowing

When one query condition implies a subrange of the range
specified in another query condition (by range overlap or
nesting) then narrowing the implied query condition range
allows faster elimination of intermediate tuples during
query processing in the data server. Later (and therefore
probably more expensive) query conditions in the data
server’s query execution plan will then have fewer tuples
to test.

2.1.7. Condition Addition for Index Introduction

An index provides direct access to relevant disk blocks. If
this reduces the number of blocks accessed to answer the
query (because the query relevant tuples are concentrated
in a relatively small number of blocks) then query
processing time is shortened. Some data servers are able
to make use of multiple indexed attributes to retrieve a
single set from a single database relation, in which case
multiple indexed conditions can usefully be added to the

query.

2.1.8. Condition Addition for Subset Selection

If a query consists of a single high-cost condition it is
desirable to reduce the number of tuples to which this
condition must be applied. Adding an indexed condition
may help, but in some circumstances a low-cost non-

14-2

indexed condition implied by the high cost condition can
be usefully added to the query, to act as a tuple filter
(selector) for the high-cost condition.

2.1.9. Empty Projection

Eg: A query requests the cost of houses in region NW3.

A rule in the region — cost attribute-pair rule set states:
(region =NW3) O no tuples.

This means that houses do exist in the database with
values (region = NW3) but all have null values in the
"cost" field. Therefore the query will have no result
values and can be answered directly from the rule, without
consulting the data.

Previous knowledge bases did not support this
operation because the absence of tuples caused an absence
of rules. But the knowledge representation proposed in
section 6.1 is an extended histogram for the antecedent
attribute. Each bar in the histogram identifies a sub-set of
the data, and multiple consequents describe that sub-set.
Because of null values in particular fields in the data
tuples, some attributes in the consequent vector may
report "no tuples" while others specify attribute values.

2.2 Knowledge Representation Requirements

The domain of a database is large. Therefore descriptive
knowledge must satisfy the following conditions:

(i) The rule set must be modular so that rules can be
used, derived and discarded in conveniently manageable
blocks (subsets).

(ii) Rule set modules must be derivable in real time. A
new user's query indicates the data in which they are
interested. Relevant rules sets must be derivable before
the user's next query arrives. Since rules are easily
produced they are also easily discarded without lengthy
consideration. (The modularity allows rule set caching, so
that rules which show decreasing use by current queries
are retained in secondary memory until query interest has
definitely moved to other areas of the data. The rule
subset is then discarded in order to prevent unnecessary
accumulation, and to avoid the need to update passive
rules when the data they describe is changed).

2.3 The Knowledge Base

For query reformulation there are three main types of
knowledge derived from the data, namely domain
assertions, attribute-pair rules and special-purpose rules.

Domain assertions are single-attribute assertions such
as the two extreme values, empty subrange intervals
between the extreme values, percentile points, string
attribute values and frequencies.

Attribute-pair rules (called Simple Rules in [Si 88])
are single antecedent rules which also have a single
consequent condition. Each attribute-pair (AP) rule refers
to two columns in a particular database table, which may
be a Joined table from two or more base relations. Each
rule is an inference of the form A [0 B where A and B are
single conditions (atomic constraints) of the kind found in
queries, and each refers to a different attribute in the same
database table. Conditions include equality conditions

J. Robinson, B.G.T. Lowden

such as (category = ‘paper’) or range conditions on
numeric types, such as (date < 9.1.98).

Each of the two conditions in an AP rule is labelled
with the percentage of the database table it denotes. This
is the percentage of tuples the condition would extract if it
were used as a selection condition in a query.

Special-purpose rules are derived to service specific
frequent queries or query condition combinations. A rule
such as: (a = “Seattle”) 0(G0<c<100)0 37<g<38l)
is potentially useful if the specified antecedent conditions
often occur together in queries. This is analogous to a
multi-attribute key, which selects a single tuple by
specifying an equality condition on more than one
attribute. Similarly, data subsets of regular interest can
each be identified by a specific conjunction of conditions.
Since a fixed pair of conditions is used, the pair can be
regarded as a single unit, and does not lead to a
combinatorial explosion in the size of the rule set (by
cartesian product combination of values from the two
attributes). Only specific multi-attribute conditions which
are used often are of interest as rule antecedents. A/l
antecedent conditions in a rule must be matched with
query conditions in order to use the rule for query
optimisation, so multi-condition-antecedent rules are not
useful for general query processing. The probability that
a query contains the specific combination of conditions in
a rule antecedent decreases as the number of antecedents
in the rule increases. So a large number of rules would
need to be held in order to improve the hit ratio for
queries. Single-antecedent rules are more likely to be used
and have much smaller maximum set size. So single-
antecedent rules should be the main component of the
rulebase in SQO systems.

3 Rule Graphs

An Attribute-pair rule is a pair of conditions linked by a
directed arc. Such a rule can be used as an edge in a
directed graph, whose connected paths denote chains of
inference. Two rules can be cascaded to form a path if the
consequent of one implies the antecedent of the other. For
equality conditions this means the two conditions match
exactly, whereas for two range conditions RC; and RC,
on the same attribute, RC; implies RC, if the range in RC,
is a subrange of that in RC,. Subrange containment is
therefore the rule of inference that links consecutive rules.
Subranges select subsets, so the set of tuples selected by
the consequent of one rule is a subset of the set selected
by the other rule’s antecedent. Therefore the consequent
assertion satisfies the antecedent comstraint in the second
rule.

Query conditions identify particular condition nodes
in the graph, by matching rule antecedent or consequent
conditions. Certain paths attached to these distinguished
nodes are of interest for the SQO operations listed in
section 2.1 above:

Operation 2.1.1 needs a path between two
distinguished nodes (such as the path A to E in Figure 1).
Query conditions are usually matched with rule
antecedent conditions, but in operation 2.1.1, one of the
two query conditions linked by a graph path is implied by

14-3

a rule comsequent. For all the other operations a query
condition is the start of a path rather than the end, since
we are interested in what the query condition implies.
Operation 2.1.2, for example, needs paths to any
conditions on attribute K, where K is restricted in the

query. Operation 2.1.3 compares assertions reachable
from different query nodes. Operation 2.1.7 needs a path
to an indexed attribute condition, while operation 2.1.8
needs a path from a high cost query condition one whose
attribute #ype has lower comparison cost per tuple.

Figure 1. Part of a Rule Graph showing query conditions A, F and E.

A cycle (such as B, M, R in Figure 1) denotes a set of
equivalent conditions on different attributes. All
conditions in a cycle select the same set of tuples.
Conditions in a query can be replaced by equivalent
conditions which are faster to process. E.g. a string
attribute which differs in more than the first eight
characters requires more than one CPU step to compare
with a specified value. Replacing the string attribute
condition with a different condition on a simple numeric
attribute will reduce the time needed per tuple to process
the query.

When rules are cascaded by subrange containment
rather than exact match, their intermediate graph node
denotes a set of conditions, as shown inside the box in the
diagram on the right. The consequent range [15 .. 19]
matches (i.e. implies) any rule antecedent of which it is a
sub-range. The box denotes a graph node. All ranges
inside the box refer to the same attribute.

Branches occur in graph paths when a consequent
range is a subrange of more than one antecedent range.
The multiple antecedents included in one of these

J. Robinson, B.G.T. Lowden

composite graph nodes must have overlapping ranges
since the overlap region contains the consequent node
range (e.g. [15 .. 19] above).

[12.21] = €

[13.30] = D

Branches also occur when the same antecedent condition
appears in more than one rule, whose consequents
describe different attributes. Eg:

(a="PC-49") O (115.04 £b<208.63)
(a="PC-49") O (3.6.80 <c<12.7.82).
The traditional approach to semantic query reformulation

[Eg. Sh 88] does not refer to a graph. It entails iteratively
adding consequent conditions from rules to the query if

[15 ..

/\

and

14-4

the rule antecedents are implied either by Original
Conditions in the query or by conditions subsequently
added to the query. The process, known as Semantic
Expansion, can be seen as path building in the Rule
Graph. Path building is necessarily a sequential process,
which is therefore undesirably slow for SQO. A single-
step process is preferable. Furthermore, each added
condition from each rule application produces a new
query, semantically equivalent to the original. After a
certain amount of expansion, the traditional approach
examines the set of queries it has produced, computes the
execution cost of each, and forwards the lowest cost query
to the data server to process (i.e. answer). This cost-
computation phase is also an unsuitably slow activity for a
process in a hurry.

Figure 1 clarifies the process of semantic query
optimisation, revealing it as modification of an existing
query, using graph paths, rather than the sequential
generation of multiple alternative queries. Of the nine
query processing operations listed in section 2, only
operations 7 and 8 require any cost assessment. The
others involve only path connectivity or domain assertion
checking. A knowledge of path and graph characteristics,
as discussed below, is therefore relevant.

Theorem 1: A Path denotes a Sequence of Nested Sets,
Monotonically Increasing in Size.

Proof: Each condition in a rule denotes a set of tuples.
This is the set obtained if the condition is used as a
selection constraint to restrict the data set. In each rule,
AL B, set(A) O set(B) because the rule "if A then B"
means "all A's are B's".

The link between successive rules in a graph is a sub-
set relationship since consequent; ‘matches’ antecedent;,;
by subrange containment; both conditions refer to the
same attribute and the set of values specified in
consequent; is a sub-set of those in antecedent;.
Adjacent-condition sets in a path may be the same size,
(because consequent; and antecedent;.; match exactly, or
the wider range antecedent selects no more tuples due to
an empty subrange interval, or because A and B in a rule
A 0O B are equivalent conditions) but consecutive
conditions in a path can never denote a decrease in set
size.

Corollary 1: For any path, any reachable node whose
attribute is the same as the start node represents a super-
set of the start node set. For example, a path from node
(15 £ g £20) may lead to a node (8 < g < 47) which is a
super-range of the earlier condition and therefore denotes
a super-set of tuples.

Corollary 2: String attribute assertions cannot lead to
other assertions on that same attribute (unless the rules
support set-valued assertions). This is because string
attributes allow only equality or set-valued conditions (not
ranges). A graph path starting with (a="BBC") could only
lead to an assertion such as (a O{“BBC”, “ITV”})
describing the properties of the reachable super-set.

J. Robinson, B.G.T. Lowden

Theorem 2: Reachable node assertions are non-

contradictory

Proof: Starting from a specific node, such as (a= "BBC")
any forward path in the directed graph denotes a
monotonically increasing sequence of nested sets of
tuples. When a path branches, the two alternative sub-sets
at the branch point must have a non-empty intersection
which contains the set selected by the original condition
(a= "BBC"). This applies at every branch point reachable
from that original condition. Therefore al/ the reachable
nodes denote tuple sets which overlap. Each node
assertion specifies sets of values found in the node's sub-
set of tuples. Contradictory assertions have disjoint value
sets. For example, one says (2 < g < 10) and another (15 <
b < 20). This cannot occur with intersecting sets of tuples
because the assertions must contain common values,
found in tuples common to both sets.

Corollary 3: Alternative consequents can be intersected.
Branching produces rules which involve alternative super-
sets of the set selected by the antecedent. For example,
using a(n .. m) as an abbreviation for (n < a < m),
a(5..7)0 b(11 .. 15) cascades with rules:

b(10..28) 0 c(7 .. 16) b2..16) O c(3..10).
This produces two transitive rules:

a(5..7)0 ¢(7..16)

a(5..7)0 c(3 .. 10).

The first rule states that any tuple with (5 < a < 7) will
have a ¢ value between 7 and 16. The second asserts that
their ¢ value is somewhere between 3 and 10. Therefore:

a(5..7)0 (7 .. 10).

This rule uses the intersection of the two consequents. The
intersection must contain all the a(5 .. 7) tuples, and the
narrower consequent range is a better description of that
set than either of the consequents alone. Combining the
knowledge from two different paths has produced a more
specific consequent assertion about the subset selected by
condition a(5 .. 7).

A narrow consequent range is desirable for SQO. So
graph pre-processing, to intersect consequents from
different branches, can give better query reformulation
results than the traditional method which sequentially
applies rules to the query. ‘Better results’ in this case
means it can reformulate a wider range of queries using
the given set of rules, since the traditional method may not
use all alternative rules within its limited time.

A rule produced by intersecting consequents is a new
edge in the Condition Dependency (CD) graph. Its
narrowed consequent range can cascade with antecedents
not previously used. These new transitive rules are
derived during graph processing. They describe smaller
sets than previously cascaded rules, so they narrow the
intersection range of alternative consequents in the next
stage of rule composition. (Wide antecedent ranges are
associated with wide consequent ranges. Range
intersection uses extreme values from those ranges. A

and

and

14-5

narrow range provides better extreme values for the
purpose of producing a narrow intersection range).

4 Properties of Paths

A rule A O K partitions the set of tuples in a database
relation into three parts, as explained in Section 1. This
causes a Dilution Effect, whereby the consequent assertion
becomes progressively less specific to the antecedent set
as set(K) becomes a progressively larger superset of
set(A). This is a characteristic of paths in the graph. In
any transitive rule, A [0 C, produced from:
(AO B)OMBDO O),

set(C) is a superset of set(B) and set(B) a superset of
set(A); so set(C) may therefore be much larger than
set(A).

A rule, A O B, asserts that tuples which satisfy
condition A will exhibit property B, but if a lot of other
tuples also have property B the value of the assertion is
limited. This affects query reformulation operations
(listed in section 2.1). In operation 2.1.1 the consequent
must be a subset of the implied query condition.
Operations 2.1.2 and 2.1.3 require non-intersection with
the consequent set. This becomes less likely as the set
covers a larger fraction of the whole data set. Operations
2.1.7 and 2.1.8 require the added condition to be close in
size to the existing antecedent condition to which it is
being added in the query.

Because cascaded rules are less useful than direct rules it
is probable that the best reformulated query will be found
directly from the rule set rather than by taking longer in
query reformulation to search the graph for transitive
rules, or build them by successive application of rules to
the query. This explains the experimental observation [Ti
97] that the reformulated query obtained quickly from a
given set of rules is little improved by allowing unlimited
time and using many more rules.

4.1 Maximum Usable Pathlength in the Graph

In order to reduce workload at query time it is desirable to
pre-process the rule graph, to identify any usefu/ transitive
paths and add them as direct rules to the rule set. Rules
discovered by this deductive method are no different in
character from rules produced by data analysis. There is
no risk of them becoming invalid if any rule in their chain
of deduction was deleted, since they describe a connection
between two columns in a database table, independent of
the rules which revealed that connection. The graph pre-
processor needs to know whether there is a maximum path
length from any condition node, beyond which further
exploration is unnecessary, when deriving these transitive
rules.

Part of the answer is provided by the Dilution Effect,
since the conditions in a path denote a sequence of
monotonically increasing nested subsets of the database
table. The two conditions in each rule are labelled with
their percentage selectivity, so a path can be abandoned as
soon as a new node makes the size difference between

J. Robinson, B.G.T. Lowden

antecedent and consequent sets too large. But there is
also a maximum path length independent of set sizes, as
now explained.

a b c d e f

£ N

/

e

\

A path is a sequence of conditions. Each condition refers
to a single attribute. Successive conditions refer to
different attributes. The sequence of rule consequents
following a particular condition node in the chain are
implied consequents of that condition. A chain of
inference terminates when the artribute in the first
condition is encountered again. Subsequent conditions in
the path are consequents of that second condition on the
antecedent attribute. They are also consequents of the first
condition, of course, but such implied rules are logically
redundant; subsumed by the later rule. For example, the
following conditions occur in a path:

a(10..15) - - a(5..20) -
Two rules can be extracted:

a(10 .. 15) 0 h(86 .. 117),
a(5..20) O h(86.. 117).

The first rule is redundant according to the Rule
Subsumption Theorem [Ro 97], since the second rule
contains all the information in the first rule, and more,
because it describes a super-set (i.e. those selected by the
condition (5 < a £ 20)) of the tuples with (10 < a < 15).
Therefore:

i) The maximum path-length that needs to be examined
in a CD graph when deriving rules is N-1 edges (N
nodes), where N is the number of columns in the database
table and the path is a sequence of N conditions on the N
different columns. Paths longer than N can exist in the
graph, but rule derivation only needs to examine paths to
depth N.

ii) As soon as a path gets back to the column from
which it started, the node at the end of the path must
denote a superset of the tuples identified by the start of
path node condition. Eg: ¢(15..20) O ¢(12..93). So there
are no further consequents in this path for the start node
antecedent condition. ¢(12..93) starts a new path,
providing information about a different subset of the
database table. This is a super-set of the tuples described
by the first path. A path does not necessarily pass through

= h(86 .. 117).

14-6

all other attributes before returning to the attribute in its
start of path condition.

After graph pre-processing, each antecedent condition has
a set of optimum consequent conditions associated with it.
These are single-edged paths in the graph, which represent
the discovered transitive and intersected-condition paths;
but the set is more efficiently accessed if it is coalesced
into a single rule for the single antecedent condition. A
vector of consequents holds the set of rule consequents.
For example, the rules:

(@a=5)0 (4<b<7) and (a=5)0 (d="bf235-k")
(@=50 4<b<7) O (d="bf235-k").

Each element in the consequent vector is a consequent
condition from a rule. The vector is a conjunction of
conditions, but since consequents are assertions rather
than constraints, individual conditions can be used in the
same way as the individual rules from which they were
derived. Elements in the vector are ordered in the same
way as the attributes to which they refer in the database
table. Many attributes will be absent from a rule
consequent, since only antecedent-consequent attribute
pairs useful for query processing are included.

become:

4.2 Inefficiency of Transitive Rules

A path is an inefficient way to derive a subset dependency
rule between two attributes. Inefficient because the
Dilution Effect produces low utility rules. Eg cascading
the two rules:
2: (10a<20) O (155c<2))
r3: (14<c<32) 0 (24<b<83)

provides a rule linking attributes a and b via c.
transitive rule is (10<a<20) O (24 <b<83).

But direct rule derivation, using the selection condition
(10 < a < 20) to extract a set of tuples and examining the
range of values for attribute b in that set, will usually
provide a narrower range, such as (56 < b < 62).

and

The

r1
(10 <a<20) (56 < b < 62)
r2
(15<¢<25) 3 (24 < b < 83)

Therefore it is questionable whether rules should be
cascaded to provide transitive rules, because they are less
useful than the corresponding direct rules. Although rule
concatenation does provide information without accessing
the data server, which may be beneficial in some
environments.

If the rule set has not been pre-processed to discover
transitive rules, the Dilution Effect suggests that transitive
rules are rarely beneficial, so that on average the time
saved by not looking for these rules at query time (and so
delaying the query and adding to query response time)
will contribute to an average improvement in query

J. Robinson, B.G.T. Lowden

response time. The rare occasions when a useful
transitive rule is discovered will not outweigh the time
wasted on other queries.

4.3 Search Space Reduction

If the depth of search in the Graph at query time is limited
to one edge, then a query with N conditions requires N
rule antecedent lookups. This must provide (i) paths
between query conditions, (ii) paths to conflicting
consequents, and (iii) paths to low cost conditions which
can be redundantly added to the query, as indexed tuple-
retrieval conditions or filter conditions.

As well as reducing the number of sequential paths to
consider at query time, it is also important to provide
rapid simultaneous access to parallel paths because each
query condition on an N-ary database relation can have up
to N-1 outgoing edges from it, for each of the other
attributes in consequent conditions. Multi-consequent
rules, introduced in Section 6, provide this support.

The set selected by an end of path condition is larger
than the set selected by the start of path condition. So
unless the relative selectivity of two query conditions
(estimated from attribute histograms) is appropriate it is
not worth searching for any path between them.

The Dilution Effect also suggests that (in a
reformulated query) an added index or filter condition
obtained from a transitive path will be a poor selector of
relevant tuples for the existing query condition which is
the start node in the transitive path. Selecting a
significantly larger set is not useful and can increase the
time needed to process a query.

5 Potential Rulebase Size

A common problem for systems which use automatic rule
discovery is the tendency of the rulebase to grow
unsuitably large. For the type of rules used in SQO, each
N-ary database table can spawn up to N * (N-1) different
sets of AP rules, plus N * (N-1) * (N-2) sets of 2-
antecedent-condition rules. In general, for rules with
exactly P antecedent conditions there are N!/(N-(P+1))!
different sets of rules, reflecting different combinations of
attributes on the left hand side of rules. Any of these
numerous sets of rules can grow very large, e.g. for an
integer type antecedent attribute with m different values
appearing in the attribute column of the database table
there are "C, different ordered pairs of integer values to
use as range specifiers, i.e. m*(m-1)/2 possible range
intervals to use in antecedent conditions. For example, if
2000 tuples contain 1000 different values for this integer
attribute there are 499500 possible rules with this attribute
as antecedent. And this is only one of the N * (N-1) rule
sets which use only a single antecedent condition.

It is easy to see how a rulebase can become many
orders of magnitude larger than the data it describes,
unless it is deliberately restrained. Using histograms as
the basis of a rule sets, as described in the following
section, is a restraint mechanism. The number of rules in
the set for any particular antecedent attribute is now
chosen in advance, before deriving rules from the data.

14-7

6 Histogram for Antecedent Conditions

If the rule set for a numerical antecedent attribute is
allowed to grow automatically, by rule discovery, then the
very large set of range rules produced contains much
redundancy. Many rules are subsumed by others, and
there is much nesting of closely-related sets of tuples
defined by rule antecedents [Ro 97]. The redundant rules
can be removed, but it is inefficient to generate a large set
of rules and then analyse and delete most of them. Better
to decide the size of the required rule set in advance.
Then derive antecedent condition ranges by dividing the
interval between the two extreme values (highest and
lowest for the attribute) by the number of rules. Rules
therefore correspond to bars in a histogram for the
antecedent attribute. Histograms are already used in
conventional query optimisation (distinct from SQO) to
estimate the size of intermediate tuple sets. A single
(multi-consequent) subset descriptor rule is now attached
to each bar of the histogram. This provides multiple
assertions per bar, to supplement the single, frequency
value, assertion. An N-bar histogram limits the size of the
rule set per antecedent attribute to N rules.

Category or string attributes can be dealt with in the
same way. E.g. 100 bars representing 100 category values
with bars taller than a certain frequency-of-occurrence
value. Each rule is known to describe a suitably
significant percentage of tuples in the table.

Examples of rule antecedent conditions associated with
bars are: (job_title = ‘secretary’),

or (7.4.65<date of birth < 7.4.75).

A particular merit of the histogram rule set for a numeric
antecedent attribute is that it represents a hierarchy of
other rules, quickly derivable from the base set. Adjacent
bars in the histogram can be combined to provide more
rules. The antecedent range can therefore expand to
capture any ‘comparable’ query condition, by
concatenating adjacent rule ranges. This provides a
solution to the query condition containment problem
suffered by other rule sets, where a large number of rules
is needed in order to find one to contain the query
condition range fairly closely. Any number of adjacent
rules can be combined, from 2 to 99 rules in the case of
100 ranges. For N original rules, N-1 new rules can be
formed from adjacent pairs, N-2 further rules from
adjacent triplets, N-3 rules from groups of four adjacent
rules, etc. Hence N+ (N-1) + (N-2) +...+3+2+1 =N
* (N+1)/2 rules are represented by a basic set of N rules,
i.e. half the square of the number of basic rules,
approximately. (About 5000 in the case of 100 rules. But
rule maintenance is much easier with only 100 rules).

The following diagram shows the hierarchy of
antecedent ranges available from a base set of four rules.
The two extreme values in the antecedent attribute are 17
and 65. This attribute range [17 .. 65] was divided into
four sub-ranges to produce the histogram rule set:

J. Robinson, B.G.T. Lowden

[17 .65]

[17 .. [29 . 65]

[17.41) [29 . 53) [41.65]

[17.29) [29 . 41) [#4.53) [53.65]

The antecedent ranges for the corresponding four rules are
shown in the lowest row. But these four rules represent 10
rules, by Unioning. A Union of Antecedent conditions
implies a union of rule Consequent assertions.

Unioning is a rapid process because of the simple rule
structure. The purpose of unioning at query time is to
produce a rule antecedent range that brackets a query
condition, and is therefore implied by the query condition.
Eg: a query condition range [34 .. 42] on the attribute to
which these antecedent ranges refer, uses the antecedent
[29 .. 53). This rule describes a set of tuples which
includes all the items of interest to the query. Any further
conditions in the conjunctive query operate to restrict the
set selected by the query condition [34 .. 42] on this
attribute.

Brackets in the diagram follow the usual convention
for interval representation, that a square bracket means the
limit value is included in the range, while a round bracket
indicates the limit value is not included. E.g. [29 .. 53) =
(29 < value < 53).

6.1 Multi-Consequent Rules

Rules are derived from data by using the antecedent
condition to select a set of tuples and then producing
consequents which describe the tuples in that set. To
support fast query reformulation and rule maintenance the
histogram for a particular antecedent attribute is used to
provide antecedent conditions in multi-consequent rules.
Each of these rules is a compact representation of a set of
(up to N-1 for an N-ary relation) AP rules which all share
the same antecedent condition but differ in their
consequent attribute. Each multi-consequent rule can
therefore provide information about the values of all
attributes in the subset of tuples selected by the antecedent
condition.

The multiple consequents are ordered according to the
position of their attributes in the relation schema, so that
two or more of these consequent structures can be rapidly
compared or their field values unioned. Comparisons are
useful between consequents implied by different query
conditions; and unioning is useful when concatenating
antecedent ranges to produce a range wide enough to
enclose a query condition.

A multi-consequentrule CO AOBOD OE (where
A .. E are conditions, ie atomic constraints, on attributes
a .. e respectively) has a conjunctive consequent assertion.
The consequent is a logical product, so all its component

14-8

assertions are true. Therefore any of those components
can be used or ignored according to the needs of the rule
application.

A multi-consequent rule set is a TABLE whose column
names are the same as those of the database relation it
describes; i.e. column names are attribute names, and rows
correspond to bars in the histogram describing a particular
attribute currently used as antecedent for rules. Each row
in the table is labelled in the same way as a bar in a
histogram, to identify the sub-set of tuples it describes. Eg
(job_title = "nurse") or (53 < f < 65). But the whole
table refers to a single antecedent attribute, so there is no
need to mention the attribute name (eg job title, or ') in
row labels. The table structure provides fast lookup by
row label:

[17.29)

[29.41)

[41.53)

[53.65)

Different antecedent attributes have different tables, but,
since the structure of rows is the same in all rule tables for
a particular database relation, they are easily compared.
Each row is a vector of attribute assertions, so information
about a particular attribute will be found in its fixed
position slot in the row. Contradictory consequents,
conflicting query condition requirements, single values for
result attributes, etc., are thus directly accessible. The
particular rows to compare are chosen using the row label
that ‘matches’ a query condition.

Example 1: a query on a personnel database concerns
people whose (job_title = "nurse") AND (salary < 12 K).

Using the relevant multi-consequent rule table, whose
antecedent attribute is 'job title'; if the row labelled
"nurse" shows an entry such as [12741 .. 19380] for the
'salary' column there are no tuples matching both query
conditions. Furthermore, the system can easily provide an
explanation for its answer, e.g. "There are no result values
because (job title = "nurse") implies salary is in the
range £12741 to £19380, in this data set".

Example 2: contradictory consequents.
A new query contains two selection conditions:

(e ="nurse") A (50<g<100).

Each condition restricts a different attribute, so the rule
sets for attributes 'e' and 'g' are consulted. The following
rules 'match' (i.e. their antecedents are implied by) the two
query conditions.

(e = "nurse") O a(15..20), b(106..183), ¢ =“TV”,d = 101
(50 <g< 100)0 a(18..34), b(44.71), - ,d(80..110)

J. Robinson, B.G.T. Lowden

Consequent values above each other are easily compared,
to implement operation 2.1.3, and the ordered format of
consequent assertions facilitates operation 2.1.2.
Contradictory assertions about the value of attribute 'b'
show that the two query conditions (e = "nurse") and (50
< g < 100) are incompatible. They denote disjoint sub-sets
of the data, so the query will return no result tuples.

7 Discussion

Section 3 identified properties of a rule set when viewed
as a condition dependency graph. This clarified the
requirements of semantic query reformulation operations,
and showed that time-consuming operations (which
counteract the effectiveness of query optimisation) can be
done independently of the query, as a pre-processing
phase. Special-purpose rules extend the expressiveness of
attribute-pair rules, and these link into the CD graph via
their single consequent assertion per attribute. The
antecedent can be seen as a constraint on a sub-relation or
view, but the rule’s consequent assertion applies to tuples
in the parent table described by the graph.

The result of graph pre-processing is a vector of
attribute value assertions attached to each antecedent
condition in the graph rule set. If the set of antecedents
for a particular attribute were assembled, each with its
vector of consequents, it would resemble a multi-
consequent histogram, but the antecedent ranges in this set
can overlap and can be nested. Nevertheless, this set of
antecedent ranges is an ordered set, and could therefore be
organised in an appropriate data structure for fast lookup.
This is explained further in [Ro 98]. That paper also
discusses criteria to identify useful sub-sets in order to
restrict the number of rules. (Since each antecedent
condition is a sub-set selector for tuples in a virtual or
base relation in the database).

Section 5 explained that the worst case size for a set of
rules with only one antecedent condition on a single
attribute is m * (m-1)/2 rules, where m is be number of
tuples in the database relation (all with different values, in
the worst case). If all N attributes from the relation were
used as antecedent conditions the total could grow to
N*m*(m-1)/2 rules. If two antecedent conditions per rule
are allowed, the rule set produced by automatic
knowledge discovery could grow by a further (N*m*(m-
1)/2) * ((N-1)*m*(m-1)/2) rules. Therefore section 6
suggested the set partitioning strategy used by histograms
as a direct source of rule antecedents, rather than
unguided discovery.

Histogram rule sets provide, directly, a single rule
matching each query condition. This is another advantage
of histogram rules versus rule sets with overlapping
antecedent ranges, since those require the extra work of
deciding which of the applicable rules to use.

The histogram rule set is an automatically derived data
profile whose easily understandable structure allows it to
be displayed to users wishing to understand the data.
Other rule bases, in contrast, can be incomprehensible to a
user who wants an overview of data characteristics. The
histogram can also be used to provide explanations for
empty query result sets, and to provide summary answers

14-9

(specifying the range for each attribute in the result set)
instead of tuple sets. Another way to summarise the result
set is by showing a semantically equivalent query, since
this describes the query-specified data set in a different
way, which may be informative.

The knowledge representation scheme proposed in this
paper also allows aggregate values to be pre-computed for
the sub-set of tuples described by each rule, and used to
further accelerate query response. Support for aggregates
is less viable in the amorphous rule sets commonly used.

8 Conclusions

Semantic optimisation is a strictly time-constrained task,
so the central issue for effective implementation is how to
make best use of the limited time available. Elaborate or
unstructured rule sets are unlikely to be accessible in time.
Sets of attribute-pair rules (and their multi-consequent
representations) are easily structured for rapid access.
The Rule graph provides a map of possible query
reformulation operations, which allows (i) appropriate
rules (paths) to be directly selected, and (ii) alternative
and transitive paths to be precomputed and assessed
before query time. (Full transitive closure is not required,
since the maximum useful path length for an N-ary base
relation is N nodes).

An explanation was needed for the empirical
observation that the best query reformulation is usually
produced quickly from the given rule base, before many
of the query-relevant rules have been used. The Dilution
Effect suggests that rule quality is inversely proportional
to inference path length for that rule. Therefore applying
rules to the results of previous rule applications will
probably not be beneficial. Furthermore, the empirical
result suggested that early termination of query processing
was desirable but it was not clear when to stop. Limiting
graph search to a maximum pathlength of one edge makes
termination time explicit. ~ Graph preprocesing can
convert any useful transitive paths to single-edge paths in
preparation for this fast query reformulation strategy.

The set of reachable nodes at distance 1 from each
query node must then be retrieved during query
processing. Multi-consequent rules were proposed as a
way to add value to each rule antecedent lookup. Each of
these rules effectively explores all alternative paths from a
graph node such as a query condition, and provides
structured results whose components are easily compared
or combined with results from other lookups. These
histogram-based rule sets also solve the problems of large
set size and difficult rule maintenance, which are
characteristic of incrementally derived rule sets.

A multi-consequent rule set can be produced by a
single scan through the database table, since it involves
assigning tuples to buckets rather than sorting.
Continuous incremental aggregate value production for
each consequent condition in each bucket allows very
large tables to be condensed to a rule set during the scan.
The work is easily distributable to multiple processors or
workstations.

The effects of cascading rules, which are revealed by
the graph, also apply to successive application of rules of

J. Robinson, B.G.T. Lowden

any structure. So the conclusions in this paper have
general application to SQO, not just to attribute pair rules.

References

[Hs 95] C. N. Hsu, C.A. Knoblock, Using Inductive
Learning to Generate Rules for Semantic Query
Optimization, Chapter 17 in Advances in Knowledge
Discovery and Data Mining, AAAI Press, 1995.

[Ki 81] 1.J. King, QUIST: A System for Semantic Query
Optimization in Relational Database Management
Systems, Proc. VLDB Conference 1981

[Lo 95] B.G.T. Lowden, J. Robinson, K.Y. Lim, 4
Semantic Query Optimiser Using Automatic Rule
Derivation, Proc. WITS '95, 5th International
Workshop on Information Technologies and Systems
1995, pp 68-76.

[Ro 97] J. Robinson, B.G.T. Lowden, Data Analysis for
Query Processing, Proc IDA '97, Second Intl.
Symposium on Intelligent Data Analysis, 1997, pp
447-458 (LNCS 1280).

[Ro 98] J. Robinson and B.G.T. Lowden, Query
Optimisation using Subset Descriptors, submitted for
publication, May 1998.

[Sh 88] S. Shekhar, J. Srivastava, S. Dutta, 4 Formal
Model of Trade-off Between Optimization and
Execution Costs in Semantic Query Optimization, Proc
14th VLDB Conference 1988, pp 457-467.

[Sh 87] S.T. Shenoy, Z.M. Ozsoyoglu, A System for
Semantic Query Optimization, Proc ACM SIGMOD
Conference, 1987, pp 181-195.

[Sh 88] S. Shekhar, B. Hamidzadeh, A. Kohli, and M.
Coyle. Learning transformation rules for semantic
query optimization: A data-driven approach, 1EEE
Transactions on Knowledge and Data Engineering,
5(6), 1993, pp 950-964.

[Si 88] M. D. Siegel, Automatic Rule Derivation for
Semantic Query Optimization, Proc 2nd Intl Conf on
Expert Database Systems, 1988, pp 371-385.

[Si 91] M. Siegel, E. Sciore, S. Salveter, Rule Discovery
for Query Optimization, in Knowledge Discovery in
Databases, AAAI/MIT Press, 1991, pp 411-427.

[Ti 97] K. Tint, Semantic Query Optimisation, MSc

Project Dissertation September 1997, Department of
Computer Science, University of Essex.

14-10

