
Practical Problems in Coupling Deductive Engines with

Relational Databases

Abstract

Juliana Freire

Bell Labs

juliana@research.bell-labs.com

Abstract

There has been a considerable demand for

applications that extend the capabilities of

databases, such as data warehouses, deci-

sion support systems and knowledge discov-

ery, to name a few. Unfortunately, adding

new functionality by coupling separate com-

ponents with commercial relational databases

is usually a non-trivial task. One of the main

reasons is the fact that the application pro-

gramming interfaces of commercial relational

databases do not provide adequate mecha-

nisms that support e�cient communication

between client applications and the database

servers. In this paper we illustrate this prob-

lem by focusing on the more speci�c issue

of coupling deductive database query engines

and relational databases.

1 Introduction

Relational database management systems (RDBMSs)

are huge monolithic systems. As new technologies

come along, vendors selectively add new features as an

integral part of these systems, and as each vendor in-

dependently develops their version of a certain feature,

applications developed for a speci�c RDBMS usually

The copyright of this paper belongs to the paper's authors. Per-

mission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage.

Proceedings of the 5th KRDB Workshop

Seattle, WA, 31-May-1998

(A. Borgida, V. Chaudhri, M. Staudt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10/

cannot be easily ported to a di�erent system. Further-

more, implementing complex functionality is hard, and

as a result the turnaround time between the inception

of new technology and its availability in a RDBMS can

be unacceptable.

Consider for instance recursive query processing.

Even though signi�cant progress has been made in

area of deductive databases (DDBs) in the past 20

years, none of the available commercial systems makes

full use of this technology. Besides there is a great

variation on how recursive queries are supported by

di�erent RDBMSs. For example, whereas DB2 can

evaluate complex forms of recursion [Cha96], Oracle

only supports hierarchical queries [KL95]. At the same

time, a number of research prototypes that use state of

the art DDB techniques have been built, and theoreti-

cally, these could be coupled with existing RDBMSs to

provide the latter with a full range of deductive capa-

bilities. In practice however, given the available appli-

cation programming interfaces (APIs), an e�cient and

portable interface between a DDB engine and a com-

mercial RDBMS is very hard (and I wonder if possible)

to build.

There has been considerable progress on extensible

databases [CH90]. Starburst [HCL

+

90] and Exodus

[CDF

+

86] are good examples of research prototypes

that attempted to make it easier to customize database

systems to suit user's special needs. But given that

commercial RDBMSs are neither as modular as Exo-

dus, nor make their source code available, an impor-

tant factor to make these systems extensible is to make

them easier to interoperate with, by providing suitable

mechanisms to access their functionalities and to com-

municate with them.

RDBMSs provide a few di�erent APIs through

which client applications can access the database

servers. It is not our intent in this paper to give the

speci�cation of an \ideal" API for RDBMSs. Rather,

J. Freire 11-1

we use the speci�c problem of coupling deductive

database engines and relational databases to illustrate

de�ciencies of the currently available APIs that ham-

per the extensibility of relational systems.

The structure of the paper is as follows. We start

in Section 2 with a brief introduction to DDBs. In

Section 3 we describe the main requirements for an ef-

�cient interface between a DDB and a RDBMS, and

report on our experience and di�culties encountered

in trying to couple the a deductive query engine with a

commercial RDBMS. In Section 4 we discuss desirable

features that if supported by RDBMSs would lead to

a simpler and more e�cient DDB-RDBMS interface.

We conclude in Section 5 with examples of applications

other than DDBs that can bene�t from improved com-

munication mechanisms in APIs for RDBMSs.

2 Deductive Databases

Much of the success of relational databases can be at-

tributed to the declarativeness of the query language

SQL. Unfortunately, SQL is not expressive enough.

There are many useful queries (e.g., queries that in-

volve recursion) which cannot be expressed in this lan-

guage. Usually, when one wants to reason about the

contents of a database, it is necessary to leave the re-

lational model by embedding SQL into a lower-level

language such as C, which results in an impedance mis-

match

1

and consequent loss of declarativeness. Deduc-

tive databases [Min88] address this problem by adopt-

ing logic programming [Llo84] or a restriction such as

Datalog [Ull89] as the query language.

The problem of evaluating Datalog queries has been

extensively studied. Two approaches have gained spe-

cial attention: (1) magic sets [BR91], which adds goal

directedness to bottom-up evaluation, and (2) tabling

(or memoization) [CW96], which adds features of

database evaluation to logic programming languages.

These two approaches resemble each other in that they

combine top-down goal orientation with bottom-up re-

dundancy checking. In fact, under certain assumptions

they have been proved to be asymptotically equivalent

[Sek89]. In practice, tabling systems were shown to be

an order of magnitude faster than magic-style systems

for in memory queries [SSW94], and at least as e�cient

for queries involving external data [FSW97].

A number of research prototypes such as,

LDL [CGK

+

90], CORAL [RSS92], Aditi [VRK

+

94],

XSB [SSW94], are available.

2

These prototypes have

been used in various applications [Ram95] and in dif-

ferent domains. XSB, for instance, has been used for

semantic integration of information systems [PAE98],

1

A mismatch between the data manipulation language and

the host programming language.

2

For comprehensive survey see [RU95].

program analysis [CDS97], model checking [RRR

+

97],

and natural language analysis [LWFS96], to name a

few.

Given the availability of mature DDB systems such

as XSB, and the unique advantages of DDBs in al-

lowing non-trivial manipulation of data, DDB tech-

nology is likely to be instrumental in many emerging

applications, such as middleware, decision support and

knowledge discovery systems, which require support

for complex queries and reasoning.

3 Interfacing a Deductive query engine

with a RDBMS

There have been two main approaches to building

DDB systems: integration, where a new database with

deductive capabilities is built from the ground up (e.g.,

Aditi); and coupling, where specialized deductive en-

gines are coupled to existing databases or storage man-

agers (e.g., Coral and XSB).

Coupling and keeping the deductive engine and

RDBMS separate has a number of advantages: deduc-

tive capabilities can be used with arbitrary RDBMSs

and in a heterogeneous environment; and there are

no extra overheads for applications that do not access

data stored in a RDBMS. But there are also draw-

backs. Unlike integrated DDBs, coupled systems incur

overheads for applications that use external data, since

tuples must be sent back and forth from the DDB to

the database server. Thus, for coupled DDB engines to

be practical for such applications, the DDB-RDBMS

interface must keep communication overheads to a

minimum. Besides, in order to be able to access mul-

tiple heterogeneous databases, such an interface must

be portable among di�erent databases.

In what follows we will describe the main issues to

be considered when coupling a DDB query engine with

a RDBMS.

Querying the Database

When external tables are accessed within a DDB, the

XSB system, as do other DDBs and logic programming

systems, translates Datalog fragments that access ex-

ternal relations into dynamic SQL queries which are

sent to the database server.

3

Thus, an e�cient trans-

lation that minimizes the accesses to the RDBMS is

crucial to attain good performance for two main rea-

sons: it reduces the communication costs as well as

3

There are two main programming models found in the SQL

standards and in RDBMSs to handle dynamic SQL queries: em-

bedded SQL, where SQL statements are embedded in a host lan-

guage such as C, and are later translated by pre-compilers into

function calls to runtime libraries of the database; and call-level

interfaces, where runtime library functions are directly used in

the host language.

J. Freire 11-2

the run-time overheads for optimizing these dynamic

queries. There is an array of optimization techniques

that try to accomplish this goal. The following exam-

ple illustrates one such technique.

Example 3.1 Consider the following program:

:- db import(oracle,supplier(sid,sname),db supplier).

:- db import(oracle,supplies(sid,part),db supplies).

:- db import(oracle,order(client,part,qty),db order).

get supplier id(Part,Sid) :-

db order(,Part,), db supplies(Sid,Part).

get supplier name(Part,Sname) :-

get supplier id(Part,Sid), db supplier(Sid,Sname).

Where supplier, supplies and order are tables stored in

Oracle, and each can be accessed locally in the DDB

query engine through its alias (db supplier, db supplies,

and db order respectively). The query:

:- get supplier name(computer,X).

which seeks to know the names of suppliers that sell

computers, will issue at least two SQL queries to the

database (one for each join, in the �rst and second

clauses). If this program is rewritten so that the super-

uous temporary relation get supplier id is eliminated,

a single query with a triple join will su�ce.

get supplier name(Partid,Sname) :-

db order(,Part,),

db supplies(Sid,Part),

db supplier(Sid,Sname).

2

This and other high-level compile-time optimiza-

tions have been well-studied in the literature (see e.g.,

[CGT90]), and they do indeed improve the perfor-

mance of query evaluation. However, in an implemen-

tation, another important issue that is not captured in

these optimizations should be taken into account: the

actual communication mechanisms | how tuples are

sent back and forth between a DDB and an RDBMS.

Surprisingly, this issue has been largely neglected in

current systems.

DDB systems use set-at-a-time evaluation strategies

which mesh well with database set-based operations

such as relational joins. However, even though rela-

tional database operations are set-based, access mech-

anisms to relational systems are tuple-at-a-time. Con-

sequently, there is a communication mismatch between

the client DDB engine and the database server.

Under standard interfaces that support dynamic

SQL, the results of a query are associated with a cur-

sor. After a query is executed, the resulting tuples

can then be fetched one by one from the associated

cursor by the client application. For data intensive

applications, sending a fetch request for each tuple

is too expensive. A reasonable assumption is that

database libraries should handle this transparently, by

caching pre-fetched tuples at the client side to reduce

the round-trips between client and server. But that

is not always the case. No support for transparent

caching was provided in Oracle 7, and Oracle 8 sup-

ports allows caching through its (non-standard) OCI

call-level interface [Loc97] but not through embedded

SQL [Mel97], which is also the case for DB2 v2 [Cha96]

Another alternative provided by some databases to

reduce the communication costs is through an array

interface. In Oracle, for instance, by explicitly de�n-

ing arrays (one for each column to be retrieved), the

client application can control to a certain extent how

many tuples are fetched at a time. Just to give an

idea of the performance gains from fetching multiple

tuples at a time, the graph in Figure 1(a) shows the

times to select 32,000 rows of a table stored in Or-

acle using array of varying sizes, to fetch from 1 to

64 rows at a time. Notice that there is a signi�cant

speedup. It is worth pointing out that in this exper-

iment, client and server ran in the same machine. If

data were transferred across the network the speedups

could have been signi�cantly bigger.

Joining In-Memory and External Relations

Another aspect that has been overlooked in (cou-

pled) DDB prototypes is how to e�ciently join a re-

lation stored within the DDB (in-memory) with a ta-

ble in an external database. For instance, in CORAL,

even though in-memory evaluation of recursive queries

is done in a set-at-a-time fashion, when joining in-

memory and externally stored relations, a tuple-at-a-

time nested-loop join is used [RSSS94]. In what fol-

lows, we illustrate the ine�ciency of this method, and

the obstacles posed by the APIs of RDBMSs to achieve

a more e�cient solution.

Example 3.2 Consider the following rules that de-

�ne the path relation:

1

32

5 6 7

10 11 12 13 14 15

4

98

:- db import(oracle,edge(source,target),db edge).

:- table path/2.

path(Src,Tgt) :-

db edge(Src,Tgt).

path(Src,Tgt) :-

path(Src,TgtTmp),db edge(TgtTmp,Tgt).

J. Freire 11-3

and the query :- path(1,X) which seeks to �nd (recur-

sively) all nodes reachable from node 1 in the edge

table (stored in Oracle), whose contents are depicted

in the graph above. Let us examine how this query is

evaluated in the XSB system.

4

XSB uses a top-down breadth-�rst search strat-

egy to evaluate recursive queries that involve exter-

nal data in a set-at-a-time fashion (which is equivalent

to the semi-naive evaluation of a magic-transformed

query [FSW97]). The query :- path(1,X) is �rst re-

solved against the non-recursive rule, which �nds the

nodes directly connected to node 1 (nodes 2 and 3) by

selecting the desired tuples from the base table. The

second rule �nds nodes indirectly connected to node 1

by iteratively joining the set of tuples in the in-memory

path relation derived in the previous iteration with the

external edge table, until a �xpoint is reached.

The original XSB-Oracle interface compiles the sec-

ond rule into a parameterized SQL select statement

SELECT Tgt FROM edge WHERE Src=TgtTmp, that

is issued for the values of TgtTmp from relevant tu-

ples in the path relation. The execution of the trans-

lated query is equivalent to a nested-loop join, and it

is clearly ine�cient as it will result in one database

access for each edge tuple (in the example, 15 select

statements are issued). 2

A straightforward solution would be to materialize

the edge table in XSB. However, this might not be

feasible for relations that do not �t in memory. And

even when the table �ts in-memory, if the query only

uses a small subset of the tuples, materializing the

whole table might lead to unnecessary communication,

as it requires all tuples to be sent from the RDBMS to

the DDB.

A more scalable and potentially more e�cient ap-

proach is to perform actual joins instead of the mul-

tiple selects required by the original XSB-Oracle in-

terface. At each �xpoint iteration, XSB sends the rel-

evant set of values in the path relation to be joined

with the base relation edge. In the example, this would

result in 4 database accesses (instead of 15). Unfor-

tunately, this cannot be done e�ciently through the

APIs of current commercial RDBMSs.

Let us go over some possible translations for the

second rule of Example 3.2. A simple translation is:

SELECT * FROM edge WHERE Src IN <TmpTgt>,

where <TmpTgt> is the relevant set of values from

the path relation. The question now is how to send the

set <TmpTgt> to the database. The array interface

4

In XSB, an in-memory table is created to store the tuples

of relations (views) declared as tabled. By selectively \tabling"

certain views, XSB can avoid redundant computation and the

in�nite looping of Prolog for programs such as the left-recursive

transitive closure of Example 3.2.

would seem to be a natural choice, but neither DB2

nor Oracle allow arrays to be used as arguments for

the IN predicate [Mel97, Cha96].

5

A more general and

scalable solution is to create a temporary table in the

database, populate it with the relevant tuples from the

path relation, and then perform the join with the edge

table.

The latter solution was implemented in the XSB

system. The graph in Figure 1(b) shows that this set-

at-a-time translation can lead to signi�cantly better

performance compared to the the original tuple-at-a-

time translation.

6

It is worth pointing out that even

though temporary tables are de�ned in the SQL92

standard [MS93], they are not supported in Oracle.

Therefore, the overall performance of the set-at-a-time

translation is hampered by the high overheads of cre-

ating and maintaining the (pseudo) temporary tables,

which in some examples account for 70% of the query

execution time.

4 Improving the APIs of RDBMSs

In the examples above we described some of the re-

quirements for achieving an e�cient coupling of a DDB

query engine and an RDBMS: (1) the ability to com-

municate multiple tuples at a time back and forth

from the DDB engine to the RDBMS, (2) the ability

to manipulate these tuples in RDBMS in an e�cient

way, and (3) portability, the ability to access di�erent

RDBMSs. Below, we discuss if and how these require-

ments can be realized through current RDBMS APIs.

Sending/fetching tuples

The issue sending/fetching multiple tuples at a time is

partially addressed through the array interfaces pro-

vided by some RDBMSs, such as Oracle's host ar-

rays [Mel97], and the SQLExtendedFetch facility of

ODBC [Gei95]. The host arrays supported by Ora-

cle allow client applications to explicitly control how

many values are sent/fetched from the database server.

We have shown in Figure 1(b) that host arrays can sig-

ni�cantly reduce communication overheads. Nonethe-

less, Oracle's host arrays have a number of limita-

tions [Mel97]:

� The values sent to the server cannot be operated

on as a set. For example, an array cannot be

joined with a database table.

� There is a �xed limit on the number of bytes an

array can store which can not be set by the client

application.

5

One could also generate a string with all values, but clearly

this is not a scalable solution.

6

The graphs used for this experiment were generated with

Knuth's Stanford Graph Base [Knu93].

J. Freire 11-4

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

T
im

e
(i

n
se

cs
)

Array size

(a) Time variation for di�erent array sizes

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

T
im

e
(i

n
se

cs
)

Number of edges

tuple-at-a-time
set-at-a-time

(b) Elapsed times for di�erent translations to

evaluate the query path(words,X) using varia-

tions of the Words graph stored in Oracle

Figure 1

� From a design point of view, one might also argue

that using one array per column is quite unnat-

ural, as most applications manipulate rows, not

columns.

Even though in its latest release (version 8) Oracle pro-

vides a new array interface for its OCI API that ad-

dresses these limitations, they remain in the embedded

SQL API.

In contrast to host arrays, in ODBC level 2 the

client application can set how many tuples should be

cached at the client side, and when a SQLExtend-

edFetch is issued, multiple tuples are automatically

fetched from the server. This approach is more trans-

parent than having to explicitly de�ne arrays, unfor-

tunately, it allows multiple tuples to be fetched from

but not sent to the database server.

Manipulating client data e�ciently

A useful feature that is missing from current RDBMS

APIs is the ability to e�ciently manipulate data sent

from client applications. For instance, to allow a set of

tuples sent from the client to be directly joined with a

database table. This could also be achieved indirectly

by using temporary tables together with an array in-

terface. But as we mentioned before, even though tem-

porary tables are de�ned in the SQL92 standard, they

are not supported in either Oracle or DB2.

Portability

There are considerable discrepancies among di�er-

ent RDBMSs. Therefore, designing an e�cient yet

portable DDB-RDBMS interface is a major challenge.

The �rst issue to be considered is which programming

model to use. For the XSB-Oracle interface, embedded

SQL was chosen for two main reasons: it is simpler to

program than call-level interfaces, and easier to port

among di�erent databases.

However, there is a tradeo� between portability and

e�ciency. For example, in order to support e�cient

communication between the XSB and Oracle, the set-

at-a-time XSB-Oracle interfaces uses the non-standard

(thus, non-portable) host arrays provided by Oracle.

5 Discussion

We have discussed practical issues to be considered

in coupling DDB engines and RDBMSs. Even though

there are well-known optimizations to reduce the num-

ber of accesses to the RDBMS, the communication

mechanisms between the systems have been largely

neglected in coupled DDB systems. We have shown

that e�cient mechanisms to send sets of tuples back

and forth from DDBs to the RDBMSs, as well as the

ability to operate on these tuples are crucial to attain

good performance. Unfortunately, adequate support

for these mechanisms is not provided in the APIs of

commercial relational databases such as Oracle and

DB2.

The inability of RDBMSs to e�ciently handle data

intensive communication from/to client applications

hampers their usability not only for DDB engines, but

for a number of applications that require non-trivial

manipulation of large amounts of data, such as work-

ow managers, mediators, decision support systems

and data mining tools. Consider for instance a me-

diator wrapper that accesses multiple heterogeneous

databases. If a query requires a join between rela-

tions residing in di�erent databases, the join can be

performed in one of the databases or in the media-

tor. In either case tuples must be transferred across

the network: from one database to the other where

the join is to performed, and later the results back to

the mediator; or tuples of both relations are sent to

the mediator. In both scenarios it is very important

to be able to transfer multiple tuples at a time, and

J. Freire 11-5

in the �rst scenario there is also the need (as in Ex-

ample 3.2) to join the set of tuples being transferred

against a table in the database.

Recent improvements in some commercial RDBMS

APIs indicate that vendors are starting to recognize

the need for e�cient communication mechanisms be-

tween client applications and database servers. E�orts

towards designing more portable interfaces are also un-

derway [Mel95, FMMP96, Gei95], but adoption of such

standards remain a rather slow process.

References

[BR91] C. Beeri and R. Ramakrishnan. On the

Power of Magic. Journal of Logic Pro-

gramming, 10(3):255{299, 1991.

[CDF

+

86] M. Carey, D. DeWitt,

D. Frank, G. Graefe, M. Muralikrishna,

J.E. Richardson, and E.J. Shikita. Archi-

tecture of the EXODUS extensible DBMS.

In Proceedings of the International Work-

shop on Object-Oriented Database Sys-

tems, pages 52{65, 1986.

[CDS97] M. Codish, B. Demoen, and K. Sago-

nas. XSB as the natural habitat for gen-

eral purpose program analysis. In Pro-

ceedings of the International Conference

on Logic Programming (ICLP), page 416.

MIT Press, 1997.

[CGK

+

90] D. Chimenti, R. Gamboa, R. Krishna-

murthy, S. Naqvi, S. Tsur, and C. Zan-

iolo. The LDL system prototype. IEEE

Transactions on Knowledge and Data En-

gineering, 2(1):76{90, 1990.

[CGT90] S. Ceri, G. Gotlob, and L. Tanca. Logic

Programming and Databases. Springer-

Verlag, 1990.

[CH90] M. Carey and L. Haas. Extensible

database management systems. SIGMOD

Record, 19(4):54{60, 1990.

[Cha96] D. Chamberlin. Using the New DB2. Mor-

gan Kaufmann, 1996.

[CW96] W. Chen and D.S. Warren. Tabled Evalu-

ation with Delaying for General Logic Pro-

grams. JACM, 43(1):20{74, January 1996.

[FMMP96] S.J. Finkelstein, N. Mattos, I. Mumick,

and H Pirahesh. Expressing recursive

queries in sql. Technical Report X3H2-96-

075r1, ISO/IEC JTC1/SC21 WG3 DBL

MCI, 1996.

[FSW97] J. Freire, T. Swift, and D.S. Warren. Tak-

ing I/O seriously: Resolution reconsidered

for disk. In Proceedings of the Interna-

tional Conference on Logic Programming

(ICLP), pages 198{212, 1997.

[Gei95] K. Geiger. Inside ODBC. Microsoft Press,

1995.

[HCL

+

90] L.M. Haas, W. Chang, G.M. Lohman,

J. McPherson, P.F. Wilms, G. Lapis,

B. Lindsay, H. Pirahesh, M. Carey, , and

E. Shekita. Starburst mid-
ight: As the

dust clears. IEEE Transactions on Knowl-

edge and Data Engineering, 2(1):143{160,

1990.

[KL95] G. Koch and K. Loney. Oracle The Com-

plete Reference. Oracle Press, 1995.

[Knu93] D. E. Knuth. The Stanford GraphBase:

A Platform for Combinatorial Computing.

Addison Wesley, 1993.

[Llo84] J. W. Lloyd. Foundations of Logic Pro-

gramming. Springer Verlag, 1984.

[Loc97] P. Locke. Oracle Call Interface Program-

mer's Guide, Volumes 1 & 2 Release 8.0.

Oracle Corporation, 1997.

[LWFS96] R.K. Larson, D.S. Warren, J. Freire, and

K. Sagonas. Syntactica. MIT Press, 1996.

[Mel95] J. Melton. (ISO/ANSI Working Draft)

database language SQL3. Technical re-

port, ISO - International Organization for

Standardization, 1995.

[Mel97] J. Melnick. Pro*C/C++ Precompiler Pro-

grammer's Guide Release 8.0. Oracle Cor-

poration, 1997.

[Min88] J. Minker. Foundations of Deductive

Databases and Logic Programming. Mor-

gan Kaufmann, 1988.

[MS93] J. Melton and A. Simon. The New SQL:

A Complete Guide. Morgan Kaufmann,

1993.

[PAE98] B.J. Peterson, W.A. Andersen, and

J. Engel. Knowledge Bus:Generating

Application-focused Databases from Large

Ontologies. In Proceedings of the 5

th

KRDB Workshop, 1998.

[Ram95] R. Ramakrishnan. Applications of Logic

Databases. Kluwer, 1995.

J. Freire 11-6

[RRR

+

97] Y. Ramakrishna, C.R. Ramakrishnan,

I.V. Ramakrishnan, S. Smolka, T. Swift,

and D. Warren. E�cient model check-

ing using tabled resolution. In Proceedings

of Computer Aided Veri�cation (CAV),

pages 143{154, 1997.

[RSS92] R. Ramakrishnan, D. Srivastava, and

S. Sudarshan. CORAL: Control, relations,

and logic. In Proceedings of VLDB, pages

238{250, 1992.

[RSSS94] Raghu Ramakrishnan, Divesh Srivastava,

S. Sudarshan, and Praveen Seshadri. The

coral deductive system. The VLDB Jour-

nal, Special Issue on Prototypes of De-

ductive Database Systems, 3(2):161{210,

1994.

[RU95] R. Ramakrishnan and J. Ullman. A survey

of research on deductive database systems.

Journal of Logic Programming, 23(2):125{

149, 1995.

[Sek89] H. Seki. On the power of Alexander tem-

plates. In Proceedings of PODS, pages

150{159, 1989.

[SSW94] K. Sagonas, T. Swift, and D.S. Warren.

XSB as an e�cient deductive database en-

gine. In Proceedings of SIGMOD, pages

442{453, 1994.

[Ull89] J. Ullman. Principles of Data and

Knowledge-base Systems, volume 1. Com-

puter Science Press, 1989.

[VRK

+

94] J. Vaghani, K. Ramamohanarao, D.B.

Kemp, Z. Somogyi, P.J. Stuckey, T.S.

Leask, and J. Harland. The Aditi deduc-

tive database system. The VLDB Journal,

3(2):245{288, 1994.

J. Freire 11-7

