
ASP: from Application Development to Syntax
Extensions

Magdalena Ortiz

Universidad de las Américas, CENTIA
Sta. Catarina Mártir, Cholula, Puebla

72820 México
is103378@mail.udlap.mx

Abstract In this paper some theoretical results in ASP are discussed
in the context of application development. An application of ASP in
collaborative learning is presented as a motivation. Some extensions to
the syntax of ASP are discussed. For a particular extension, namely logic
programs with embedded implications, new results are given.

1 Introduction

Answer Set Programming (ASP) has become without a doubt one of the most
important logical formalisms for non monotonic reasoning. It has been deeply
studied for more than 15 years, many extensions have been proposed and its
relations with other approaches have been more clearly understood. However, it
seems surprising that the development of applications using ASP in reasoning
tasks related to the solution of real life problems is still scarce. Many authors
have pointed out lately that there is a strong need of developing applications of
ASP. In the first place, ASP is intended to be useful. As a logic programming
tool, it should fall into the “thinking” part of logic intelligent agents, and allow
them to perform real commonsense reasoning. On the other hand, ASP needs to
be faced with real life needs, in order to test its power and suitability for real
reasoning tasks. At the same time, this should help the ASP community discover
new challenges and give their research new directions.

In [4,5], we used ASP for learner modeling and supporting collaboration in
learning environments. ASP proved to be a very suitable formalism. Modeling
the application was natural and intuitive, and the behavior of the system is
as expected. However, while developing this application, we met some issues
suggesting that extensions to the syntax of ASP would allow more natural and
direct problem solving. The aim of this paper is to point out these challenges,
as well as to make a survey of the directions they have led our research to and
the results achieved, namely related to extending the answer set semantics to
programs with embedded implications in the body of the rules.

The papers is structured as follows: In section 2 some basic concepts and
notation are given. In section 3, we will recall the application presented in [4,5]
and discuss the problems encountered during its development. Having this mo-
tivation, in section 4 we will focus on the relevance of embedded implications



in the body of the rules when modeling application using ASP. We will analyze
some alternatives to overcome this problems and discuss their limitations. These
alternatives include both translations between classes of programs as well as syn-
tax extensions. Section 5 is devoted to a particular one of these alternatives. For
this purpose, we will recall some of the results presented in [7] and give some
more detailed results as well. Finally, in section 6 we present some still open
questions and give some directions for future work.

2 Background and Notation

The language of propositional logic has an alphabet consisting of propositional
symbols: p0, p1, . . . ; connectives: ∧,∨,←,⊥ and auxiliary symbols: (, ) where
∧,∨,← are 2-place connectives and ⊥ is a 0-place connective. Propositional
symbols are also called atoms or atomic propositions. Formulas and theories are
defined as usual in logic. The formula ¬F is introduced as an abbreviation of
⊥ ← F . The formula F → G is just another way of writing the formula G← F .
A signature L is a finite set of propositional symbols. If F is a formula then the
signature of F , denoted as LF , is the set of propositional symbols that occur in
F . A literal is either an atom a (a positive literal) or the negation of an atom
¬a (a negative literal). A negated literal is the negation sign ¬ followed by any
literal, i.e. ¬a or ¬¬a. Given a set of formulas F , we define ¬F = {¬F | F ∈ F}.

A clause is a formula of the form H ← B where H and B, arbitrary formulas
in principle, are called the head and body of the clause respectively. A general
clause is a clause of the form h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm where h1 · · ·hn are
atoms and b1 · · · bm are literals. A logic program is a finite set of clauses. A set of
general clauses is a general program. A clause of the form H ← b1 ∧ · · · ∧ bm will
be also written as H ← b1, · · · , bm. Let P be a program and M a set of atoms
such that M ⊆ LP then we define M̃ = LP \M .

In the logic programs presented in this paper we use to types of negation. The
negation not is the usually called default negation and is the logic programming
counterpart of the logical negation ¬. The other negation ∼ represents the strong
or explicit negation. We use it for practical purposes, but any program with this
negation can be easily translated into one without by simply renaming atoms
and adding constraints. We will not go deeper into the subject, but the reader
can just as well consider that only the default negation not is being used.

We will use I to refer to intuitionistic logic and G3to refer to Gödel’s three
valued logic, also known as the logic of here-and-there. We say that a theory T
is consistent with respect to logic X iff there is no formula A such that T `X A
and T `X ¬A. We say that a theory T is (literal) complete w.r.t. logic X iff, for
all a ∈ LT , we have either T `X a or T `X ¬a. Two programs P1 and P2 are
equivalent under logic X, denoted as P1 ≡X P2, iff P1 `X A for every A ∈ P2

and P2 `X A for every A ∈ P1. For a given set of atoms M and a program P we
will write P `X M to abbreviate P `X a for all a ∈ M and P X M to denote
the fact that P is consistent (w.r.t. logic X) and P `X M . If one of the symbols
`X or X lacks of the subscript X we assume that it refers to the intuitionistic

2



logic I. As we will mention later, in this paper we are considering answer sets
as defined in [6], i.e. in terms of intuitionistic extensions. Under this definition
P1 ≡stable P2 means that P1 has the same answer sets as P2.

3 ASP for Collaborative Learning Environments

In the areas of computer assisted learning and tutoring systems, logic program-
ming has been widely used, usually for knowledge representation. However, the
development of logic-based applications for collaboration in learning communi-
ties is very scarce. In this paper, we address the problem from the perspective of
ASP. In [23], we proposed ASP as a suitable basis for learner modeling in Com-
puter Supported Collaborative Learning (CSCL) environments. We continued
with this work in [5], where ASP was used to model how the agents in this kind
of learning environments can effectively support collaboration in the community
according to their learner models. Based on the work of [2,1], in our proposal the
agents in a CSCL environment hold a set of beliefs about the learners, which they
use to infer the best learning and collaboration opportunities for them within
the community. The agents suggest the learners sets of tasks to work on, as well
as collaboration groups according to the agents’ beliefs about the interests and
capabilities of the learners. For this purpose, the agents carry out non-monotonic
inference about the interests and capabilities of the learners. The agent draws
conclusions to propose the learners suitable tasks and work groups within the
learning community.

In this context, some statements similar to the following one have to be
expressed in a disjunctive program:

1. A learner is (normally) capable of applying a knowledge element, if he is
capable of applying all the knowledge elements which are a specialization of
it.

2. If a learner is capable of applying a knowledge element, he/she is also (nor-
mally) capable of applying the knowledge elements which are a specialization
of it.

We would expect a natural and intuitive translation of these statements into
logic, to look like this:

capable(Ke)← ∀Ke1[specialization(Ke, Ke1)→ capable(Ke1)],
not ∼capable(Ke). (1)

This fist expression means that if a learner is capable of applying all the knowl-
edge elements that are a specialization of Ke, he will also be capable of applying
Ke. The last part of the rule: not ∼capable(Ke) represents the word normally.
Intuitively, it weakens the rule allowing exceptions: we can believe a learner is
capable of Ke as long as there is no evidence of the learner not being capable.

3



capable(Ke1)← specialization(Ke, Ke1),
capable(Ke),
not ∼capable(Ke1).

(2)

This second expression goes in the opposite direction: if a learner is capable
of applying a knowledge element Ke, we infer that he is also capable of all
the knowledge elements that are a specialization of it. Note that the normally
weakening is also present in the rule.

Rule 1 suggests the usefulness of having embedded implications in the body
of rules when modeling applications using ASP. At the time we were develop-
ing this application, we came across other problems where similar situations
appeared, and an extension to the syntax seemed to be an useful alternative.
For example, in [9] the authors present some knowledge representation problems
that don’t seem to have an uniform and natural encoding as standard disjunctive
programs. For this reason they introduce parametric connectives, which behave
in a similar way to the extension we are proposing for some cases. We agree with
the remark done by Michael Gelfond via e-mail communication, in the sense
that an extension to the syntax of the language could be needed: “The ability
to use implication in the body seems to suggest the following translation: ‘r is
true if every element with property p has property q’ The natural translation is:
∀(X)(p(X) → q(X)) → r. If no implication is allowed in the formal language
the translation of this English statement loses its universal character. It now
depends on the context and is prone to error.”

4 Embedded implications for Knowledge Representation
in ASP

In order to solve knowledge representation problems similar to the one intro-
duced in section 3, some alternatives have been proposed. In this section we
discuss some of them in detail. The goal of the discussion is to see whether this
alternatives really provide rule 1 and similar problems a natural and uniform
encoding and a suitable semantics.

For our discussion we will take the example presented above. Additionally
to rules 1 and 2, we will give some facts (EDB). We will call P the following
program:

Example 1.
knowElem(k1). specialization(k1, k2).
knowElem(k2). specialization(k1, k3).
knowElem(k3). specialization(k1, k4).
knowElem(k4). specialization(k5, k6).
knowElem(k5). capable(k2).
knowElem(k6). capable(k3).

capable(k4).

4



capable(Ke)← hasSpecialization(Ke), (1)
∀Ke1[specialization(Ke, Ke1)→ capable(Ke1)],
not ∼capable(Ke).

hasSpecialization(K)← knowElem(K), specialization(K, K1).

capable(Ke1)← specialization(Ke, Ke1),
capable(Ke),
not ∼capable(Ke1).

Roughly, we could classify the existing alternatives in two groups: those which
try to find an encoding within the standard syntax that has the expected mean-
ing and those that extend the syntax to be able to express this rule and give it
a suitable semantics.

4.1 Coding Embedded implications in Disjunctive Logic Programs

Can rule 1 be encoded as a standard logic program? In this direction many
approaches have been made. In [7] we discussed an alternative which we called
classical translation. the sentence “every element that holds property p holds
property q”, is rewritten as “there is no element that holds property p and does
not hold property q”, i.e. rule 1 is replaced in P by:

capable(Ke)← hasSpecialization(Ke),
not notHoldsForAll(Ke),not ∼capable(Ke).

notHoldsForAll(Ke)← specialization(Ke, Ke1),
not capable(Ke1).

(3)

The direct encoding has some unexpected models, as presented in [7]. The
codification can be forced to work as expected. There are many ways in which
this forcing could be done. For example, if we add not not capable(Ke) to rule 3
the problem seems to be solved. Other ad hoc stratifications or reductions can
be done. Some have been tried and are available on line1. However, none of this
solutions, which are all more or less ad hoc to the problem really provide an
uniform and well-behaved encoding for embedded implications. A translation
from programs with embedded implications into standard disjunctive ones that
preserves the expected behavior is given in [3], but it is questionable whether this
approach is computationally convenient, and it does not solve the problem since
it does not provide an easy and natural encoding of problems and an intuitive
semantics.

1 http://mail.udlap.mx/∼is103378/research/rigid/examples

5



4.2 Syntax Extension Alternatives to Embedded Implications

In other cases, the problem has been addressed by proposing an extension to the
syntax. We will focus on one particular extension: parametric connectives. When
proposing this extension the authors do not address the problem of embedded
implications, but they are motivated by other problems encountered when using
ASP to solve knowledge representation problems. However some problems that
can be addressed by embedded implications can also be solved using parametric
connectives, and this is the case of our example.

Parametric Connectives Parametric connectives were introduced by Leone
and Perri in [9]. They are a good alternative for a natural and uniform encoding
of several problems. This approach does not represent an explicit implication, but
as we will see, the semantics and behavior are suitable for this problem. Using this
approach, rule 1 will be represented as a parametric literal, namely a parametric
conjunction. The intuition is translating the statement “being capable of all
knowledge elements that are a specialization of K” into a term whose truth
value is given by the conjunction of all instances of the predicate capable(K ′)
for all K ′ such that K ′ is an specialization of K. In our program P , rule 1 would
be replaced by the following rule 2:

capable(Ke)← hasSpecialization(Ke),∧
{capable(Ke1) : specialization(Ke, Ke1)},

not ∼capable(Ke).

Doing the universal and then a local grounding on the program P , we have an
instance of the rule in ground(P ) for every knowledge element Ke. Taking the
set of facts in the EDB as a basis for the interpretation I, we obtain a valuation
on the rules as follows:

capable(k1)← hasSpecialization(k1),
capable(k2),
capable(k3),
capable(k4),
not ∼capable(k1).

capable(k2)← hasSpecialization(k2),
not ∼capable(k2).

Applying the extended Gelfond-Lifschitz transform on this program we ob-
tain exactly the expected answer set, which contains capable(k2), capable(k3),
capable(k4), capable(k1), and no other instances of capable. This coding of the
program provides a natural and intuitive syntax, as well as the expected seman-
tics.
2 Note that strong negation does not strictly belong to the syntax of DLP

∧
,
∨

. We
are assuming, as we roughly commented in section 2, that strong negation can be
simulated and that its use only provides an easier and shorter encoding of programs.

6



5 KR with Positive Embedded Programs.

In [7] we presented a family of logic programs that allows a restricted use of
implications in the body of the rules called positive embedded programs. Now
we will address the same example modeling it as a positive embedded program.

Definition 1 (Positive embedded program). [7] A positive embedded con-
junct is either a literal or a formula of the form (a → b), where a and b are
atoms. A positive embedded clause is a clause of the form H ← B, where H is
an atom and B is a conjunction of positive embedded conjuncts. P is a positive
embedded program if for every clause α ∈ P , α is either a general clause or a
positive embedded clause.

In rule 1, the universal quantifier is interpreted as an abbreviation of a con-
junction of elements. We could rewrite the quantifier as the explicit conjunction
(remember that the Herbrand universe is finite). This subject could be subject
of deeper discussion, but it is out if the scope of this paper. Thus we assume that
on the ground program, the expression ∀x[p(x)] becomes a simple conjunction
p(a1), . . . , p(an) of all the ground instances of predicate p. As an example, we
give two ground instances of rule 1.

capable(k1)← hasSpecialization(k1),
specialization(k1, k1)→ capable(k1),
specialization(k1, k2)→ capable(k2),
specialization(k1, k3)→ capable(k3),
specialization(k1, k4)→ capable(k4),
specialization(k1, k5)→ capable(k5),
specialization(k1, k6)→ capable(k6),
not ∼capable(k1).

(4)

capable(k2)← hasSpecialization(k2),
specialization(k2, k1)→ capable(k1),
specialization(k2, k2)→ capable(k2),
specialization(k2, k3)→ capable(k3),
specialization(k2, k4)→ capable(k4),
specialization(k2, k5)→ capable(k5),
specialization(k2, k6)→ capable(k6),
not ∼capable(k2).

Here we see that rule 1 is expressed as a positive embedded rule. The answer
sets semantics of this kind of programs is given in [7]. Here the semantics is
not given by some extended Gelfond-Lifschitz reduct, but in terms of intuition-
istic provability instead. Many authors have previously defined the answer set
semantics of programs in terms of some non-classical logics. We follow the line
started by Pearce[8] and studied in detail by Osorio et al. [6]. In [7] the answer
sets of arbitrary theories are defined as intuitionistically complete and consistent
extensions obtained by adding only negated and double negated literals.

7



From a practical point of view, embedded implications are not supported by
any software that would allow us to compute answer sets. To approach this issue,
we provide a translation that can be applied to positive embedded programs and
may reduce them to a simpler family in order to implement them in some existing
answer set solver. It is also our purpose to give the reader a clearer intuition of
the semantics of programs with embedded implications as defined in [7].

5.1 Translation into General Programs

Before giving the details of the translation we will define some important con-
cepts. In this section we also present the proofs of some results that were briefly
introduced in in [7].

Remark 1. For one of the proofs, we will need a reduction presented in [7].
However, due to space limitations, we can not present the reduction here. A
given program P can be reduced w.r.t. a set of negated and double negated
literals ¬M̃ , ¬¬M into a positive program red(P,M). For more details, please
see [6].

Lemma 1. Let P be a positive program and let HP be the set of atoms that
occur in the heads of the rules of P . If P G3 a then a ∈ HP .

Proof. The proof can be done by contradiction as follows: suppose a /∈ HP , take
I to be a definite interpretation 3 in G3 that is a model of P and that I(a) = 2.
Construct a new interpretation I ′ such that I ′(a) = 1 and I ′(x) = I(x) otherwise.
It can be proved that for every rule H ← B of P, we have that I ′(H) = I(H)
(since a does not occur in H) and I ′(B) ≤ I(B) (an exhaustive proof can be done,
but it is rather straight forward: the body in a conjunction of elements, hence it
behaves monotonically. The conjuncts with embedded implications behave also
monotonically, prove all cases). Thus we have an interpretation I ′ such that
I ′(P ) = 2 and I ′(a) = 1, hence P 6`G3 a. (Note that if a were in the head of any
rule, it could be the case that I ′ was not a model of P).

Proposition 1. Let P be a logic program and let HP be the set of atoms that
occur in the heads of the rules of P . If a /∈ HP , then P ≡stable P ∪ {¬a}

Proof. Suppose P ∪ {¬a} ∪ ¬M̃ ∪ ¬¬M I M . Since P ∪ {¬a} ∪ ¬M̃ ∪ ¬¬M

is consistent and complete, then a /∈ M , and ¬a ∈ ¬M̃ . Thus P ∪ {¬a} ∪
¬M̃ ∪ ¬¬M ≡I P ∪ ¬M̃ ∪ ¬¬M , so P ∪ ¬M̃ ∪ ¬¬M I M . Now suppose
P ∪ ¬M̃ ∪ ¬¬M I M . If a /∈ M , then ¬a ∈ ¬M̃ and we have trivially that
P ∪ {¬a} ∪ ¬M̃ ∪ ¬¬M I M . If a ∈M , then P ∪ ¬M̃ ∪ ¬¬M I a. Let P ′ be
red(P,M). Then by Lemma 2 in [7] we have that P ′ I a and thus, by Lemma 1,
a ∈ HP ′ , which implies a ∈ HP and we have a contradiction, so it can not be
the case that a ∈M .
3 A definite interpretation is one in which all literals take the values 0 or 2 (equiv. ⊥

or >)

8



Definition 2. Given a set of literals L and a positive embedded rule r, rL is
obtained from r by replacing every conjunct of the form (a → b) by b if a ∈ L,
by > if ¬a ∈ L and doing no replacements otherwise. For any positive embedded
program P , PL is the program obtained by replacing every conjunctive rule r ∈ P
by rL.

Remark 2. For any positive embedded program P and a set of literals L such
that P I L, PL ≡ P .

Proposition 2. Let P be a positive embedded program. Let F be the set of facts
in P and Lit(H) the literals occurring in the heads of the rules in P . Let F ′ ⊆ F

and ¬H̃ ′ ⊆ ¬(LP \ Lit(H)). Then P ≡stable PF∪¬H̃′

Proof. By Proposition 1 we know that P ≡stable P ∪ ¬(LP \ Lit(H)) and as we
have trivially that P ∪ ¬(LP \ Lit(H)) I F ∪ ¬(LP \ Lit(H)), then P ≡stable

PF∪¬(LP \Lit(H)).

Going back to our example, let P be the program in 1 after grounding. Let’s
define F to be the set of facts in P and LH := Lit(H) as the set of literals that
appear in the heads of the rules of P . Moreover, we can define Fspec ⊂ F to be
the subset of F that contains all instances of specialization, and L̃Hspec ⊂ L̃H

contains all instances of specialization that are not in LH . Now we have the
following sets:

Fspec = { specialization(k1, k2), . . . , specialization(k5, k6)}
¬L̃Hspec = { ¬specialization(k1, k1), . . .¬specialization(k6, k6)}

We define a new program P ′ := P ∪¬L̃Hspec. By Proposition 1 we know that
the stable models of P are preserved in P ′. Let L := Fspec ∪¬L̃Hspec . It is easy
to see that every ground instance of specialization is in L, and that P ′ I L.
so we can apply the P ′L reduction to obtain a general program that has exactly
the answer sets of P . We give as an example the first two rules after applying
the reduction:

capable(k1)← hasSpecialization(k1), capable(k2), capable(k3),
capable(k4),not ∼capable(k1).

capable(k2)← hasSpecialization(k2),not ∼capable(k2).

The only answer set of the general program we obtain contains exactly the ex-
pected instances of capable: capable(k2), capable(k3), capable(k4), capable(k1).

6 Conclusions and Future Work

In this paper we have presented a review of some theoretical results in ASP.
However, the results were motivated by real applications, and this research has

9



been deeply related to the improvements done to the application we described.
From our point of view this practical support gives the results additional rele-
vance. With this work we intend to make a small collaboration towards making
ASP a real useful formalism suitable for solving real life problems and developing
useful applications. Concerning the extension of the ASP syntax to wider classes
of programs, for example allowing the use of embedded implications, there is
still much work to be done. More complete and precise results must be given.
Some important issues were not given a proper treatment yet, like equivalence
and strong equivalence, the use of two types of negation, etc. We hope to have
some results in this direction soon.

This work should be a motivation to reconsider research in the theory of
ASP from the context of real applications. The ultimate goal of this paper was
to discuss how solving real commonsense reasoning problems should be a main
source of research directions for the ASP community. We hope to have made
clear that research in theory and applications are deeply related and it is not
the case they should develop independently from each other.

References

1. Gerardo Ayala. Intelligent agents supporting the social construction of knowledge
in a lifelong learning enviroment. In Proceedings of the International Workshop on
New Technologies for Collaborative Learning (NTCL 2000), pages 79–88, Hyogo,
Japan, November 2000.

2. Gerardo Ayala and Yano Yoneo. Learner models for supporting awareness and
collaboration in a cscl environment. Lecture Notes in Computer Science 1086, pages
158–167, 1996.

3. Juan Antonio Navarro. Properties of translations for logic programs. In Balder Ten
Cate, editor, ESSLLI03 Student Session. European summer School of Logic, Lan-
guage and Information, Vienna, Austria, August 2003.

4. Magdalena Ortiz, Gerardo Ayala, and Mauricio Osorio. Formalizing the learner
model for cscl environments. In Proceedings of the Fourth Mexican International
Conference on Computer Science (ENC 03), pages 151–158. IEEE Computer Society
and SMCC, Mexican Society for Computer Science, 2003.

5. Magdalena Ortiz de la Fuente. An application of answer sets programming for
supporting collaboration in agent-based cscl enviroments. In Balder Ten Cate, ed-
itor, ESSLLI03 Student Session. European summer School of Logic, Language and
Information, Vienna, Austria, August 2003.

6. Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Applications of intu-
itionistic logic in answer set programming. Accepted to appear at the TPLP journal,
2003.

7. Mauricio Osorio and Magdalena Ortiz. Embedded implications and minimality
in asp. In Accepted to apprear in 15th International Conference on Applications
of Declarative Programming and Knowledge Management. INAP 2004, Postdam,
Germany, March 2004.

8. David Pearce. Stable inference as intuitionistic validity. Logic Programming, 38:79–
91, 1999.

9. Simona Perri and Nicola Leone. Parametric connectives in disjunctive logic pro-
gramming. In ASP03 Answer Set Programming: Advances in Theory and Imple-
mentation, Messina, Sicily, September 2003.

10


