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Abstract. Hybrid probabilistic programs framework [5] is a variation
of probabilistic annotated logic programming approach, which allows the
user to explicitly encode the available knowledge about the dependency
among the events in the program. In this paper, we extend the lan-
guage of hybrid probabilistic programs by allowing disjunctive compo-
sition functions to be associated with heads of clauses and change its
semantics to be more suitable for real-life applications. We show on
a probabilistic AI planning example that the new semantics allows us
to obtain more intuitive and accurate probabilities. The new semantics
of hybrid probabilistic programs subsumes Lakshmanan and Sadri [17]
framework of probabilistic logic programming. The fixpoint operator for
the new semantics is guaranteed to be always continuous. This is not the
case in the probabilistic annotated logic programming in general and the
hybrid probabilistic programs framework in particular.

1 Introduction

Reasoning under uncertain knowledge is an important issue in most real-life ap-
plications including those in AI domains. In the literature, logic programming
has been augmented with various notions of uncertainty [5, 6, 8, 9, 12, 13, 16–20,
22, 23, 25–27,30, 32], aiming to develop a sophisticated semantics for logic pro-
gramming with uncertainty. The difference among these frameworks is based
mainly on the underlying formalism of uncertainty and the way how certainty
values are attached to rules and facts in the logic programs. These formalisms
include fuzzy set theory [30, 32], possibilistic logic [6], hybrid (a combination
of numerical and non-numerical [16, 18, 19], multi-valued logic [8, 9, 12, 13], and
probability theory [5, 17, 25–27].

In probabilistic logic programming framework, Decktyar and Subramanian
[5] have proposed the notion of hybrid probabilistic programs (HPP ). Hybrid
probabilistic programs are built upon the idea of annotated logic programs in-
troduced in [31], and extensively studied in [12, 13, 21, 24]. The idea of hybrid
probabilistic programs is to enable the user to encode his/her knowledge about
the dependency among the probabilistic events being described in the programs.
HPP is considered a generalization of probabilistic annotated logic programming



approach, which is proposed in [25] and further extended in [26], by allowing dif-
ferent probabilistic strategies instead of a fixed probabilistic strategy as in [25,
26].

The aim of probabilistic logic programming in general and hybrid probabilis-
tic programs framework in particular, is the ability to reason and make decisions
under uncertain knowledge, which is represented by the well defined probability
theory. Yet, to achieve this goal, more sophisticated semantics for hybrid prob-
abilistic programs needs to be established to be able to perform the reasoning
tasks. Consequently, hybrid probabilistic programs framework becomes more
suitable for real-life applications. To illustrate the idea consider the following
example.

Example 1. Consider the following robot planning task adapted from [15].
Suppose a robot’s grasping operation is not always successful because of the
chance of the robot’s gripper to be wet. Suppose that most of the time the robot
is able to grasp a block with a probability 0.95 after executing the pickup action
in the state of the world in which the gripper is dry. Moreover, the robot is able
to grasp the block with probability 0.5 in the state of the world in which the
gripper is wet. Assume, initially the block is not held and the gripper is dry with
probability 0.7 (this means the gripper is wet with probability 0.3) and the goal
is to grasp the block. There are two world states in which the robot can hold
the block after executing the action pickup. Given the initial state in which the
gripper is dry and the robot does not hold the block, the first resulting state is
the state in which gripper is dry and robot holds the block. The probability of
the block is being held in this state is 0.7× 0.95 = 0.665. Also, given the initial
state in which the gripper is wet and the robot does not hold the block, the
second resulting state is the state in which gripper is wet and robot holds the
block. The probability of the block is being held in this state is 0.3× 0.5 = 0.15.
Hence, the robot is successfully holds the block after executing the pickup action
under the pre-mentioned initial conditions with probability 0.665+0.15 = 0.815.

This planning domain problem can be represented as a logic program in hybrid
probabilistic programs framework, which supports propagation of probability,
classical negation, conditional probability and Bayesian updates, as follows:

holdBlock : [0.95× V, 0.95× V ] ← pickup : [1, 1], gripperDry : [V, V ]

holdBlock : [0.5× V, 0.5× V ] ← pickup : [1, 1], not gripperDry : [V, V ]

not gripperDry : [1− V, 1− V ] ← gripperDry : [V, V ]

pickup : [1, 1] ←

gripperDry : [0.7, 0.7] ←

Example 1 is pointing out a shortcoming in probabilistic annotated logic
programming approach semantics, in general, and in hybrid probabilistic pro-
grams framework, in particular. Although, the problem encoding for the grip-
per planning domain in the hybrid probabilistic programs framework is correct,



the hybrid probabilistic programs semantics failed to assign the correct prob-
abilistic interval to the hybrid basic formula holdBlock which is [0.815, 0.815].
This can be shown by computing the least fixpoint of the hybrid probabilistic
program encoding for the problem. The least fixpoint of the program assigns
[1, 1] to pickup, [0.7, 0.7] to gripperDry, [0.3, 0.3] to not gripperDry, and ∅ to
holdBlok. ∅ is assigned to holdBlock because by applying the first rule in the
program holdBlock is concluded with the probability interval [0.665, 0.665] and
by applying the second rule holdBlock is concluded with the probability interval
[0.15, 0.15]. Therefore, according to the hybrid probabilistic programs semantics,
holdBlock is assigned ∩{[0.665, 0.665], [0.15, 0.15]}= ∅

The reason for this shortcoming is arising, mainly, from the definition of
the ordering (set inclusion order) employed in the hybrid probabilistic pro-
grams semantics. By recalling the definition of the set inclusion ordering in
hybrid probabilistic programs framework [5], given the probabilistic intervals
[a1, a2], [b1, b2] ⊆ [0, 1] for a certain event e, [a1, a2] ≤ [b1, b2] iff [b1, b2] ⊆ [a1, a2].
This set inclusion order is known as the knowledge order. This means [b1, b2]
provides more precise probabilistic knowledge about the probability of e than
[a1, a2]. However, when reasoning is performed to make decisions, the reasoning
does not depend on how more knowledgeable we are about the probability of the
various events but they depend mainly on how likely are these events to occur.
Therefore, the ordering which describes for a certain event e how more likely that
event might occur is more convenient for decision making and reasoning tasks.
This intuition can be captured by employing the natural ordering ≤t (truth or-
der) described in [5, 17] in logic programming with probability. The truth order
≤t asserts that if [a1, a2], [b1, b2] ⊆ [0, 1] are two probabilistic intervals for the
events e1 and e2 respectively, then [a1, a2] ≤t [b1, b2] iff a1 ≤ b1 and a2 ≤ b2.
Hence, the event e2 is more likely to occur than event e1. Therefore, changing
the semantics of hybrid probabilistic programs to deal with the truth order is
more sophisticated than the existing semantics which deals with set inclusion
order.

Using the truth order ≤t with the hybrid probabilistic programs framework
requires changing its current syntax and semantics to adapt with this new or-
dering. The change includes using disjunctive composition functions similar to
that are used in [17] for combing the probabilistic intervals associated to the
same hybrid basic formula (an atom, a conjunction of atoms, or a disjunction
of atoms) derived from different rules. As a consequence, the problem described
in example 1 and the likes are captured by the new hybrid probabilistic pro-
grams semantics. In addition, from the new semantics, more intuitive and accu-
rate probabilistic intervals can be derived which reflects the correct solutions of
the problems. Moreover, with the new semantics, it can be shown that hybrid
probabilistic programs can subsume Lakshmanan and Sadri [17] approach for
probabilistic logic programming which was not possible with the semantics of
hybrid probabilistic programs in [5]. Additional advantage of the new semantics
is that the TP operator is guaranteed to be always continuous. This is not the
case in probabilistic annotated logic programming in general and hybrid prob-



abilistic programs framework in particular, since the TP operator is not always
continuous [25, 26, 5].

The remaining of this paper is organized as follows. Section 2 reviews the
basic definitions of hybrid probabilistic programs framework as described in [5].
Section 3 presents the new semantics for hybrid probabilistic programs. In sec-
tion 4, we show how the new semantics of hybrid probabilistic programs sub-
sumes Lakshmanan and Sadri [17] approach for probabilistic logic programming.
Finally, section 5 presents some concluding remarks.

2 Preliminaries

In this section we overview some of the basic definitions related to HPPs [5]. Let
C[0, 1] denotes the set of all closed intervals of [0, 1].

Definition 1. A probabilistic strategy (p-strategy) is a pair of functions ρ =<

c, md >, such that:

1. c is a probabilistic composition function c : C[0, 1] × C[0, 1] → C[0, 1] that
satisfies the following axioms:
(a) Commutativity: c([a1, b1], [a2, b2]) = c([a2, b2], [a1, b1])
(b) Associativity: c(c([a1, b1], [a2, b2]), [a3, b3]) = c([a1, b1], c([a2, b2], [a3, b3]))
(c) Monotonicity: c([a1, b1], [a2, b2]) ⊆ c([a3, b3], [a2, b2]) if [a1, b1] ⊆ [a3, b3]
(d) Separation: there exist two functions c1 and c2 such that c([a1, b1], [a2, b2]) =

(c1([a1, a2]), c2([b1, b2]))
2. md : C[0, 1]→ C[0, 1] is called the maximal interval function.

Given the probability range of a complex event, the maximal interval function
md returns the best estimate of the probability range of a primitive event. The
composition function c returns the probability range of a conjunction or dis-
junction of two or more events. Given that M = {[a1, b1], . . . , [an, bn]} is a set
of probabilistic intervals, we will denote cM to be equivalent to the expres-
sion c([a1, b1], c([a2, b2], . . . , c([an−1, bn−1], [an, bn]) . . .). According to the type of
combination (conjunctive or disjunctive) among events, p-strategies are classified
into conjunctive p-strategies and disjunctive p-strategies [5].

Example 2 ([5]). In this example, only composition functions of different types
of p-strategies are provided, maximum interval functions are defined uniquely
by the type of p-strategy.

1. Independence p-strategy (in):
– Conjunctive (inc): cinc([a1, b1], [a2, b2]) = [a1 · a2, b1 · b2].
– Disjunctive (ind): cind([a1, b1], [a2, b2]) = [a1+a2−a1 ·a2, b1+b2−b1 ·b2].

2. Ignorance p-strategy (ig):
– Conjunctive (igc): cigc([a1, b1], [a2, b2]) = [max(0, a1+a2−1), min(b1, b2)].
– Disjunctive (igd): cigd([a1, b1], [a2, b2]) = [max(a1, a2), min(1, b1 + b2)].

3. Positive correlation p-strategy (pc):

– Conjunctive (pcc): cpcc([a1, b1], [a2, b2]) = [min(a1, a2), min(b1, b2)].



– Disjunctive (pcd): cpcd([a1, b1], [a2, b2]) = [max(a1, a2), max(b1, b2)].

4. Mutual exclusion p-strategy (me):

– Disjunctive (med): cmed([a1, b1], [a2, b2]) = [(a1 +a2), (b1 + b2)] such that
a1 + a2 ≤ b1 + b2 ≤ 1.

Let L be an arbitrary but fixed first-order language with finitely many pred-
icate symbols, constants, and infinitely many variables. Function symbols are
not allowed. In addition, let S be an arbitrary but fixed set of p-strategies. The
notions of terms, atoms, and literals are defined as usual. The Herbrand base of
L is denoted by BL. An annotation is an expression of the form [α1, α2] where
α1 and α2 are annotation items. An annotation item is a constant in [0, 1], a
variable ranging over [0, 1] (called annotation variable), or a computable total
function, called annotation function, where an n-ary annotation function f is a
mapping f : ([0, 1])n → [0, 1]. When α1 and α2 are constants, then [α1, α2] is
called constant annotation. If α1 and α2 are annotation variables then [α1, α2]
is called variable annotation.

Definition 2. Let ρ be a probabilistic strategy and A1, . . . , An be atoms. Then
A1 ∧ρ . . . ∧ρ An and A1 ∨ρ . . . ∨ρ An are called hybrid basic formulas. bfS(BL)
is the set of all ground hybrid basic formulas formed using distinct atoms from
BL and p-strategies from S.

Definition 3. A hybrid probabilistic clause (hp-clause) is an expression of the
form F : µ← F1 : µ1, . . . , Fn : µn where F, F1, . . . , Fn are hybrid basic formulas,
and µ, µ1, . . . , µn are annotations, such that every annotation variable (if any)
occurring in µ also occurs in at least one of µ1, . . . , µn. F : µ is called the head
of the hp-clause and (F1 : µ1, . . . , Fn : µn) is its body.

Definition 4. A hybrid probabilistic program over S (hp-program) is a finite set
of hp-clauses involving only p-strategies from S.

Definition 5. Given F = F1∗ρ. . .∗ρFn, G = G1∗ρ. . .∗ρGk, and H = H1∗ρ. . .∗ρ
Hm, where ∗ ∈ {∧,∨}. Then G⊕ρ H = F iff k > 0 and m > 0, {G1, . . . , Gk} ∪
{H1, . . . , Hm} = {F1, . . . , Fn}, and {G1, . . . , Gk} ∩ {H1, . . . , Hm} = ∅.

Definition 6. A hybrid formula function h is a mapping h : bfS(BL)→ C[0, 1]
iff the following conditions are satisfied:

1. Commutativity. h(F ) = h(G1 ∗ρ G2) if F = G1 ⊕ρ G2.
2. Composition. h(F ) ⊆ cρ(h(G1), h(G2)) if F = G1 ⊕ρ G2.
3. Decomposition. For any hybrid basic formula F , h(F ) ⊆ mdρ(h(F ∗ρ G)) for

all ρ ∈ S and G ∈ bfS(BL).

3 New Semantics for Hybrid Probabilistic Programs

In the new semantics, the composition functions in disjunctive p-strategies are
used to combine the probabilistic intervals of the same hybrid basic formula



derived from different hp-clauses. For example, if a hybrid probabilistic program
consists of the hp-clauses

a : [0.5, 0.6] ← b : [0.7, 0.7]

a : [0.4, 0.7] ← c : [0.5, 0.8]

b : [0.7, 0.7]←

c : [0.5, 0.8] ←

and it is known that deriving a from the first hp-clause with probability [0.5, 0.6]
is positively correlated to deriving a with probability [0.4, 0.7] from the second
hp-clause, then a can be concluded with probability [0.5, 0.7] using the the com-
position function of the disjunctive positive correlation p-strategy. A similar idea
is introduced in [17].

3.1 Syntax

In this subsection, we provide a new syntax for hybrid probabilistic programs by
modifying the notions of hp-clause and hp-program in [5] by allowing the user
to encode his knowledge about how to disjoin the probabilistic intervals for the
same hybrid basic formula derived from different clauses.

Definition 7. A hybrid probabilistic rule (h-rule) is an expression of the form
r ≡ (F : µ ← F1 : µ1, . . . , Fn : µn; ρF ) where F, F1, . . . , Fn are hybrid basic
formulas, µ, µ1, . . . , µn are annotations, and ρF ∈ S. F : µ is the head of the
h-rule, (F1 : µ1, . . . , Fn : µn) is its body, and ρF is a disjunctive p-strategy
associated to F in r indicating how to disjoin the probabilistic intervals associated
to F from different derivations of heads of h-rules involving F .

Definition 8. A hybrid probabilistic program over S (h-program) is a finite set
of h-rules involving only connectives from S such that whenever a hybrid ba-
sic formula F is in heads of more than one h-rule, the disjunctive p-strategies
associated to F in these h-rules are identical.

Definition 9. Let P be an h-program. P is said to be a ground h-program iff all
h-rules in P do not include variables or annotation variables.

In what follows, the Herbrand base of a ground h-program is denoted by BP .

3.2 Declarative Semantics

The definition of satisfaction are based on the notion of hybrid formula functions
which has been defined earlier in the previous section.

Definition 10. Let h be a hybrid formula function, F ∈ bfS(BL), and µ ∈
C[0, 1]. Then



1. h satisfies F : µ iff µ ≤t h(F ).
2. h satisfies F1 : µ1, . . . , Fn : µn iff for all 1 ≤ i ≤ n, h satisfies Fi : µi.
3. h satisfies (F : µ ← F1 : µ1, . . . , Fn : µn; ρF ) iff h satisfies F : µ or h does

not satisfy (F1 : µ1, . . . , Fn : µn).

Since probabilistic intervals of the same hybrid basic formula F derived from
different h-rules are combined together to strengthen the overall probabilistic
interval of F , more conditions need to be imposed on the the satisfaction of
h-programs. The following definitions are needed in defining the satisfaction of
h-programs.

Definition 11. Let P be a ground h-program and h be a hybrid formula func-
tion. Then for each F ∈ bfS(BP ):

1. If F is atomic then
Mh

1 = {< µ, ρ > |((F ∗ρ G) : µ ← F1 : µ1, . . . , Fn : µn; ρFG) ∈ P, ∗ ∈
{∨,∧}, ρ, ρFG ∈ S, and for all i, 1 ≤ i ≤ n, µi ≤t h(Fi)}.

2. F = F1 ∗ρ . . . ∗ρ Fn is not atomic then
Mh

2 = {< µ, ρ > |((D1 ∗ρ . . . ∗ρ Dk) : µ ← E1 : µ1, . . . , Em : µm; ρD) ∈ P

and for all i, 1 ≤ i ≤ n, µi ≤t h(Ei); {F1, . . . , Fn} ⊂ {D1, . . . , Dk}, n < k}.

Definition 12. Let P be a ground h-program, h be a hybrid formula function,
and HFF be the set of all hybrid formula functions. The intermediate operator
SP is defined as a mapping SP : HFF → HFF such that SP (h)(F ) = cρF

M

where
M = {µ|(F : µ ← F1 : µ1, . . . , Fn : µn; ρF ) ∈ P and for all i, 1 ≤ i ≤ n, µi ≤t

h(Fi)}. If M = ∅, SP (h)(F ) = [0, 0] and ρF is assumed to be the disjunctive
ignorance p-strategy.

Definition 13. Let P be a ground h-program and h be a hybrid formula func-
tion. Then, h satisfies P if h satisfies every h-rule in P and for all F ∈ bfS(BP )
the following condition is satisfied:

1. If F is atomic then
cρF

(cρF
{mdρ(µ)| < µ, ρ >∈Mh

1 }, SP (h)(F )) ≤t h(F ).
2. If F = F1 ∗ρ . . . ∗ρ Fn is not atomic then

cρF
(SP (h)(F ), cρF

(cρF
{cρ(h(G), h(H))|G⊕ρH = F}, cρF

{mdρ(µ)| < µ, ρ >∈
Mh

2 })) ≤t h(F ).

Definition 14. Let P be a ground h-program and h be a hybrid formula func-
tion. Then, h is a probabilistic model of P iff h satisfies P .

Definition 15 ([17]). Let [a1, a2], [b1, b2] ∈ C[0, 1]. The meet ⊗t and the join
⊕t operations corresponding to ≤t are defined as:

1. [a1, a2]⊗t [b1, b2] = [min{a1, b1}, min{a2, b2}].
2. [a1, a2]⊕t [b1, b2] = [max{a1, b1}, max{a2, b2}].



Definition 16. Let h1 and h2 be formula functions. h1 ≤t h2 iff, for all F ∈
bfS(BL), h1(F ) ≤t h2(F ).

Definition 17. Let h1, h2 ∈ HFF . The meet ⊗t and the join ⊕t operations
with respect to ≤t are defined respectively as follows, for all F ∈ bfS(BL),

1. (h1 ⊗t h2)(F ) = h1(F )⊗t h2(F )
2. (h1 ⊕t h2)(F ) = h1(F )⊕t h2(F ).

Lemma 1. The set of all hybrid formula functions HFF along with the truth
order ≤t forms a complete lattice.

The top element of the lattice, < HPP,≤t>, is the mapping bfS(BL) → [1, 1]
and the bottom element is the mapping bfS(BL)→ [0, 0].

Lemma 2. Let P be a ground h-program and h1, h2 be two probabilistic models
satisfying P . Then, h1 ⊗t h2 is also a probabilistic model satisfying P .

Lemma 3 (The Least Model hP ). Let P be a ground h-program and HP be
the set of all probabilistic models satisfying P . Then, hP = ⊗t{h|h ∈ HP } is the
least probabilistic model satisfying P .

3.3 Fixpoint Semantics

Associated with each h-program, P , is an operator, TP , called the fixpoint oper-
ator which takes a hybrid formula function as an argument and returns a hybrid
formula function.

Definition 18. Let P be a ground h-program and h be a hybrid formula func-
tion. The fixpoint operator TP is a mapping TP : HFF → HFF which is defined
as follows:

1. If F is atomic then
TP (h)(F ) = cρF

(cρF
{mdρ(µ)| < µ, ρ >∈Mh

1 }, SP (h)(F )).
2. If F = F1 ∗ρ . . . ∗ρ Fn is not atomic then

TP (h)(F ) = cρF
(SP (h)(F ), cρF

(cρF
{cρ(TP (h)(G), TP (h)(H))|G⊕ρ H = F},

cρF
{mdρ(µ)| < µ, ρ >∈Mh

2 })).

Lemma 4. The SP operator is monotonic and continuous.

Definition 19. Let P be a ground h-program. Then:

1. TP ↑ 0 = h⊥ where h⊥ is the mapping h⊥ : bfS(BP )→ [0, 0].
2. TP ↑ α = TP (TP ↑ (α − 1)) where α is a successor ordinal whose immediate

predecessor is (α− 1).
3. TP ↑ ω = lub{TP ↑ α|α < ω} where ω is a limit ordinal.

Theorem 1. The TP operator is monotonic and continuous.



Proposition 1. Let P be an h-program and h be hybrid formula function. Then
h is a model of P iff TP (h) ≤t h.

Theorem 2. Let P be an h-program. Then, hP = lfp(TP ).

To illustrate how the new semantics is more sophisticated and intuitive, let us
reconsider the robot gripper planning example, introduced earlier in section 1,
P , which can be encoded as the following h-program.

Example 3.

(holdBlock : [0.95 × V, 0.95 × V ] ← pickup : [1, 1], gripperDry : [V, V ]; med)

(holdBlock : [0.5 × V, 0.5 × V ] ← pickup : [1, 1], not gripperDry : [V, V ]; med)

(not gripperDry : [1 − V, 1− V ] ← gripperDry : [V, V ]; )

(pickup : [1, 1] ←; )

(gripperDry : [0.7, 0.7] ←; )

Since, having a disjunctive p-strategy in the last three h-rules is irrelevant, the
underscore symbol is substituted. According to the new semantics of hybrid
probabilistic programs, the least fixpoint of P assigns [1, 1] to pickup, [0.7, 0.7]
to gripperDry, [0.3, 0.3] to not gripperDry, and [0.815, 0.815] to holdBlok.
This is because by applying the first h-rule in the program, holdBlock is con-
cluded with the probability interval [0.665, 0.665] and by applying the second
h-rule, holdBlock is concluded with the probability interval [0.15, 0.15]. But,
since the disjunctive mutual exclusion p-strategy is associated to the hybrid ba-
sic formula holdBlock, holdBlock is assigned cmed{[0.665, 0.665], [0.15, 0.15]}=
cmed([0.665, 0.665], [0.15, 0.15]) = [0.665 + 0.15, 0.665 + 0.15] = [0.815, 0.815]
which coincides with the actual solution of the problem.

In general, the upward iteration operator does not always terminate. Consider
the following example adapted from [12].

Example 4 ([12]).

(r : [0.5, 0.5] ←; )

(q : [0.6, 0.6] ←; ind)

(q : [V1 × V2, V1 × V2] ← r : [V1, V1], q : [V2, V2]; ind)

In the first iteration TP ↑ 1 assigns [0.5, 0.5] to r, [0.6, 0.6] to q. TP ↑ 2 assigns
[0.72, 0.72] to q while TP ↑ 2(r) is the same. After the third iteration TP ↑ 3(q) =
[0.744, 0.744]. This process infinitely continues in which a better approximation
of q is obtained in each iteration. Similar to [12], this problem arises from the
existence of a cyclic inference of the same hybrid basic formula with a slightly
higher probability interval. This problem does not arise with h-programs that
satisfy the finite termination property [12, 13, 25, 26, 5].

Definition 20 ([5]). Let P be an h-program. P is said to satisfy the the finite
termination property iff

(∀F ∈ bfS(BP ))(∃ n < ω)(lfp(TP )(F ) = TP ↑ n(F )).



If P satisfies the the finite termination property, then the least fixpoint is guar-
anteed in a finite number of steps. Obviously, all non-recursive programs has the
finite termination property [12].

4 Probabilistic Implication-Based Approach

To show how the probabilistic implication-based framework presented in [17] is
subsumed by the new hybrid probabilistic programs framework, we follow the
outline of [13]. Assume that probabilities in h-programs can be represented by
a pair of probabilistic intervals, where the various p-strategies used throughout
this paper can be straightforwardly extended to cope with a pair of probabilis-
tic intervals in a similar way as in [17]. Let LC be the set C[0, 1] × C[0, 1]. A
probabilistic rule (p-rule) in the probabilistic IB framework [17] is an expression

of the form (r; µr, µp) where r ≡ H
c
←− A1, . . . , An, H, A1, . . . , An are atoms,

c ∈ LC , µr is the mode of combination associated to the body using the connec-
tive ∧ (conjunctive p-strategy) among the atoms in the body of r, and µp is the
mode of combination associated to the head using the connective ∨ (disjunctive
p-strategy). A probabilistic program (p-program) is a finite set of p-rules such
that p-rules with the same heads in the p-program, the mode of combination
associated to their heads is the same. Let P be a p-program and BP be its Her-
brand base. The notion of interpretation in the probabilistic IB framework [17]
is defined as a mapping I : BP → LC . Associated with each p-program, P , is an
operator T IB

P that maps an interpretation to an interpretation which is defined as

T IB
P (I)(H) = ∨µp

{c ∧µr
I(A1) ∧µr

. . . ∧µr
I(An)|(H

c
← A1, . . . , An; µr, µp) is

a ground instance of p-rule in P}.

Computationally ∨µp
{c ∧µr

I(A1) ∧µr
. . . ∧µr

I(An)|(H
c
← A1, . . . , An; µr, µp)

is a ground instance of p-rule in P} is equivalent to

cµpd{cµrc{c, I(A1), . . . , I(An)}|(H
c
← A1, . . . , An; µr, µp) is a ground instance of

p-rule in P}. The T IB
P operator is monotonic and continuous.

Definition 21 (Translation). Let P be a p-program. Then P can be translated
into an h-program, Tr(P ), where

Tr(P ) = {(H : cµrc(c, µ1, . . . , µn)← A1 : µ1, . . . , An : µn; µp)|

(H
c
←− A1, . . . , An; µr, µp) ∈ P and µ1, . . . , µn are variable annotations }.

The following theorem establishes the relation between the probabilistic IB
framework and the new hybrid probabilistic programs framework given the as-
sumption that, without a loose of generality, an interpretation in the new hybrid
probabilistic programs framework is a mapping h : BP → LC .

Theorem 3. Let P be a p-program. Then TTr(P ) = T IB
P .



5 Conclusions

The language of hybrid probabilistic programs has been extended as well as
a new semantics for the extended language has been introduced. Having such
a new language and semantics is important in order to enable more realistic
applications including those in probabilistic AI planning. In addition, it has been
shown that the TP operator of the new hybrid probabilistic programs semantics
is always continuous. We have also illustrated that Lakshmanan and Sadri [17]
approach for probabilistic logic programming can fit in the proposed framework.
A topic of future research is to extend the new hybrid probabilistic programs
framework with non-monotonic negation giving the underlying semantics are the
stable model semantics and the well-founded semantics.
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