
Detailed Description of an Algorithm for Enumeration of Maximal

Frequent Sets with Irredundant Dualization

Takeaki Uno, Ken Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
Email: uno, ksatoh@nii.ac.jp

Abstract
We describe an implementation of an algorithm for
enumerating all maximal frequent sets using irredun-
dant dualization, which is an improved version of that
of Gunopulos et al. The algorithm of Gunopulos et
al. solves many dualization problems, and takes long
computation time. We interleaves dualization with
the main algorithm, and reduce the computation time
for dualization by as long as one dualization. This
also reduces the space complexity. Moreover, we ac-
celerate the computation by using sparseness.

1. Introduction

Let E be an item set and T be a set of transactions
defined on E. For an item set S ⊆ E, we denote the
set of transactions including S by X(S). We define
the frequency of S by |X(S)|. For a given constant α,
if an item set S satisfies |X(S)| ≥ α, then S is said to
be frequent. A frequent item set included in no other
frequent item set is said to be maximal. An item set
not frequent is called infrequent. An infrequent item
set including no other infrequent item set is said to
be minimal.

This paper describes an implementation of an algo-
rithm for enumerating all maximal frequent sets us-
ing dualization in detail presented at [SatohUno03].
The algorithm is an improved version of that of
Gunopulos et al. [Gunopulos97a, Gunopulos97b].
The algorithm computes maximal frequent sets based
on computing minimal transversals of a hyper-
graph, computing minimal hitting set, or, in
other words, computing a dualization of a mono-
tone function [Fredman96]. The algorithm finds all
minimal item sets not included in any current ob-
tained maximal frequent set by dualization. If a fre-
quent item set is in those minimal item sets, then the
algorithm finds a new maximal frequent set includ-
ing the frequent item set. In this way, the algorithm

avoids checking all frequent item sets. However, this
algorithm solves dualization problems many times,
hence it is not fast for practical purpose. Moreover,
the algorithm uses the dualization algorithm of Fred-
man and Khachiyan [Fredman96] which is said to be
slow in practice.

We improved the algorithm in [SatohUno03] by
using incremental dualization algorithms proposed
by Kavvadias and Stavropoulos [Kavvadias99], and
Uno [Uno02]. We developed an algorithm by in-
terleaving dualization with finding maximal frequent
sets. Roughly speaking, our algorithm solves one du-
alization problem with the size |Bd+|, in which Bd+

is the set of maximal frequent sets, while the algo-
rithm of Gunopulos et al. solves |Bd+| dualization
problems with sizes from 1 through |Bd+|. This re-
duces the computation time by a factor of 1/|Bd+|.

To reduce the computation time more, we used
Uno’s dualization algorithm [Uno02]. The experi-
mental computation time of Uno’s algorithm is lin-
ear in the number of outputs, and O(|E|) per out-
put, while that of Kavvadias and Stavropoulos seems
to be O(|E|2). This reduces the computation time
by a factor of 1/|E|. Moreover, we add an improve-
ment based on sparseness of input. By this, the
experimental computation time per output is re-
duced to O(ave(Bd+)) where ave(Bd+) is the av-
erage size of maximal frequent sets. In summary,
we reduced the computation time by a factor of
ave(Bd+) / (|Bd+| × |E|2) by using the combina-
tion of the algorithm of Gunopulos et al. and the
algorithm of Kavvadias and Stavropoulos.

In the following sections, we describe our algorithm
and the computational result. Section 2 describes
the algorithm of Gunopulos et al. and Section 3 de-
scribes our algorithm and Uno’s algorithm. Section 4
explains our improvement using sparseness. Compu-
tational experiments for FIMI’03 instances are shown
in Section 5, and we conclude the paper in Section 6.

1

Dualize and Advance[Gunopulos97a]
1 Bd+ := {go up(∅)}
2 Compute MHS(Bd+).
3 If no set in MHS(Bd+) is frequent, output MHS(Bd+).
4 If there exists a frequent set S in MHS(Bd+), Bd+ := Bd+ ∪ {go up(S)} and go to 2.

Figure 1: Dualize and Advance Algorithm

2. Enumerating maximal frequent sets
by dualization

In this section, we describe the algorithm of Gunop-
ulos et al. Explanations are also in [Gunopulos97a,
Gunopulos97b, SatohUno03], however, those are
written with general terms. In this section, we ex-
plain in terms of frequent set mining.

Let Bd− be the set of minimal infrequent sets. For
a subset family H of E, a hitting set HS of H is a set
such that for every S ∈ H, S ∩ HS = ∅. If a hitting
set includes no other hitting set, then it is said to be
minimal. We denote the set of all minimal hitting
sets of H by MHS(H). We denote the complement
of a subset S w.r.t. E by S. For a subset family H,
we denote {S|S ∈ H} by H.

There is a strong connection between the maximal
frequent sets and the minimal infrequent sets by the
minimal hitting set operation.

Proposition 1 [Mannila96] Bd− = MHS(Bd+)

Using the following proposition, Gunopulos et al.
proposed an algorithm called Dualize and Advance
shown in Fig. 1 to compute the maximal frequent
sets [Gunopulos97a].

Proposition 2 [Gunopulos97a] Let Bd+ ⊆ Bd+.
Then, for every S ∈ MHS(Bd+), either S ∈ Bd−

or S is frequent (but not both).

In the above algorithm, go up(S) for a subset S of
E is a maximal frequent set which is computed as
follows.

1. Select one element e from S and check the fre-
quency of S ∪ {e}.

2. If it is frequent, S := S ∪ {e} and go to 1.

3. Otherwise, if there is no element e in S such that
S ∪ {e} is frequent, then return S.

Proposition 3 [Gunopulos97a] The number of fre-
quency checks in the “Dualize and Advance” algo-
rithm to compute Bd+ is at most |Bd+| · |Bd−| +
|Bd+| · |E|2.

Basically, the algorithm of Gunopulos et al. solves
dualization problems with sizes from 1 through
|Bd+|. Although we can terminate dualization when
we find a new maximal frequent set, we may check
each minimal infrequent item set again and again.
This is one of the reasons that the algorithm of
Gunopulos et al. is not fast in practice. In the next
section, we propose a new algorithm obtained by in-
terleaving gp up into a dualization algorithm. The
algorithm basically solves one dualization problem of
size |Bd+|.

3. Description of our algorithm

The key lemma of our algorithm is the following.

Lemma 1 [SatohUno03] Let Bd+
1 and Bd+

2 be sub-
sets of Bd+. If Bd+

1 ⊆ Bd+
2 ,

MHS(Bd+
1) ∩ Bd− ⊆ MHS(Bd+

2) ∩ Bd−

Suppose that we have already found minimal hit-
ting sets corresponding to Bd+ of a subset Bd+ of
the maximal frequent sets. The above lemma means
that if we add a maximal frequent set to Bd+, any
minimal hitting set we found which corresponds to a
minimal infrequent set is still a minimal infrequent
set. Therefore, if we can use an algorithm to visit
each minimal hitting set based on an incremental ad-
dition of maximal frequent sets one by one, we no
longer have to check the same minimal hitting set
again even if maximal frequent sets are newly found.
The dualization algorithms proposed by Kavvadias
and Stavropoulos [Kavvadias99] and Uno[Uno02] are
such kinds of algorithms. Using these algorithms, we
reduce the number of checks.

Let us show Uno’s algorithm [Uno02]. This is
an improved version of Kavvadias and Stavropou-
los’s algorithm [Kavvadias99]. Here we introduce
some notation. A set S ∈ H is called critical for
e ∈ hs, if S ∩ hs = {e}. We denote a family of
critical sets for e w.r.t. hs and H as crit(e, hs).
Note that mhs is a minimal hitting set of H if and
only if for every e ∈ mhs, crit(e, mhs) is not empty.

2

global S0, ..., Sm;
compute mhs(i,mhs) /* mhs is a minimal hitting set of S0, ..., Si */
begin
1 if i == m then output mhs and return;
2 else if Si+1 ∩ mhs = ∅ then compute mhs(i + 1, mhs);

else
begin

3 for every e ∈ Si+1 do
4 if for every e′ ∈ mhs, there exists Sj ∈ crit(e′, mhs), j ≤ i

s.t. Sj does not contain e then
5 comupute mhs(i + 1, mhs∪ {e});

end
return;

end

Figure 2: Algorithm to Enumerate Minimal Hitting Sets

Suppose that H = {S1, ..., Sm}, and let MHSi be
MHS({S0 , ..., Si})(1 ≤ i ≤ n). We simply denote
MHS(H) by MHS. A hitting set hs for {S1, ..., Si}
is minimal if and only if crit(e, hs) ∩ {S1, ..., Si} = ∅
for any e ∈ hs.

Lemma 2 [Uno02] For any mhs ∈ MHSi(1 ≤ i ≤
n), there exists just one minimal hitting set mhs′ ∈
MHSi−1 satisfying either of the following conditions
(but not both),

• mhs′ = mhs.

• mhs′ = mhs \ {e} where crit(e, mhs) ∩
{S0, ..., Si} = {Si}.

We call mhs′ the parent of mhs, and mhs a child of
mhs′. Since the parent-child relationship is not cyclic,
its graphic representation forms a forest in which each
of its connected components is a tree rooted at a min-
imal hitting set of MHS1. We consider the trees as
traversal routes defined for all minimal hitting sets
of all MHSi. These transversal routes can be traced
in a depth-first manner by generating children of the
current visiting minimal hitting set, hence we can
enumerate all minimal hitting sets of MHS in linear
time of

∑
i |MHSi|. Although

∑
i |MHSi| can be ex-

ponential to |MHS|, such cases are expected to be
exceptional in practice. Experimentally,

∑
i |MHSi|

is linear in |MHS|.
To find children of a minimal hitting set, we use the

following proposition that immediately leads from
the above lemma.

Proposition 4 [Uno02]
Any child mhs′ of mhs ∈ MHSi satisfies one of the

following conditions.
(1) mhs′ = mhs
(2) mhs′ = mhs ∪ {e}
In particular, no mhs has a child satisfying (1) and
a child satisfying (2).

If mhs ∩ Si+1 = ∅ then mhs ∈ MHSi+1, and (1)
holds. If mhs∩ Si+1 = ∅, then mhs ∈ MHSi+1, and
(2) can hold for some e ∈ Si+1. If mhs′ = mhs∪ {e}
is a child of mhs, then for any e′ ∈ mhs, there is
Sj ∈ crit(e′, mhs), j ≤ i such that e ∈ Sj . From these
observations, we obtain the algorithm described in
Fig. 2.

An iteration of the algorithm in Fig. 2 takes:

• O(|mhs|) time for line 1.

• O(|Si+1 ∪ mhs|) time for line 2.

• O((|E| − |mhs|) ×
∑

e′∈mhs |crit(e′, mhs) ∩
{S0, ..., Si}|) time for lines 3 to 5, except for the
computation of crit.

To compute crit quickly, we store crit(e, mhs) in
memory, and update them when we generate a recur-
sive call. Note that this takes O(m) memory. Since
crit(e′, mhs ∪ {e}) is obtained from crit(e′, mhs) by
removing sets including e (i.e., crit(e′, mhs∪ {e}) =
{S|S ∈ crit(e′, mhs), e′ ∈ Si+1}), crit(e′, mhs∪ {e})
for all e′ can be computed in O(m) time. Hence
the computation time of an iteration is bounded by
O(|E| × m).

Based on this dualization algorithm, we devel-
oped a maximal frequent sets enumeration algorithm.
First, the algorithm sets the input H of the dual-
ization problem to the empty set. Then, the algo-
rithm solves the dualization in the same way as the

3

Irredundant Border Enumerator
global integer bdpnum; sets bd+

0 , bd+
1;

main()
begin

bdpnum := 0;
construct bdp(0, ∅);
output all the bd+

j (0 ≤ j ≤ bdpnum);
end

construct bdp(i, mhs)
begin

if i == bdpnum /* minimal hitting set for ∪bdpnum
j:=0 bd+

j is found */
then goto 1 else goto 2

1. if mhs is not frequent, return; /* new Bd− element is found */

bd+
bdpnum := go up2(mhs); /* new Bd+ element is found */

bdpnum := bdpnum + 1; /* proceed to 2 */

2. if bd+
i ∩ mhs = ∅ then construct bdp(i + 1, mhs);

else

begin

for every e ∈ bd+
i do

if bd+
i ∪ {e} is a minimal hitting set of {bd+

0 , bd+
1 ..., bd+

i−1}) then construct bdp(i + 1, mhs∪ {e});
return;

end

Figure 3: Algorithm to Check Each Minimal Hitting Set Only Once

above algorithm. When a minimal hitting set mhs
is found, the algorithm checks its frequency. If mhs
is frequent, the algorithm finds a maximal frequent
set S including it, and adds S to H as a new element
of H. Now mhs is not a minimal hitting set since
S ∩ mhs = ∅. The algorithm continues generating a
recursive call to find a minimal hitting set of the up-
dated H. In the case that mhs is not frequent, from
Lemma 1, mhs continues to be a minimal hitting set
even when H is updated. Hence, we backtrack and
find other minimal hitting sets.

When the algorithm terminates, H is the set of
maximal frequent sets, and the set of all minimal
hitting sets the algorithm found is the set of minimal
infrequent sets. The recursive tree the algorithm gen-
erated is a subtree of the recursive tree obtained by
Uno’s dualization algorithm inputting Bd+, which is
the set of the complement of maximal frequent sets.

This algorithm is described in Fig. 3. We call the
algorithm Irredundant Border Enumerator (IBE al-
gorithm, for short).

Theorem 1 The computation time of IBE is
O(Dual(Bd+) + |Bd+|g), where Dual(¯Bd+) is the
computation time of Uno’s algorithm for dualizing
Bd+, and g is the computation time for go up.

Note also that, the space complexity of the IBE
algorithm is O(ΣS∈Bd+ |S|) since all we need to mem-
orize is Bd+ and once a set in Bd− is checked, it is
no longer need to be recorded. On the other hand,
Gunopulos et al. [Gunopulos97a] suggests a usage
of Fredman and Khachiyan’s algorithm [Fredman96]
which needs a space of O(ΣS∈(Bd+∪Bd−)|S|) since the
algorithm needs both Bd+ and Bd− at the last stage.

4. Using sparseness

In this section, we speed up the dualization phase
of our algorithm by using a sparseness of H. In real
data, the sizes of maximal frequent sets are usually
small. They are often bounded by a constant. We use
this sparse structure for accelerating the algorithm.

4

global S0, ..., Sm;
compute mhs(i,mhs) /* mhs is a minimal hitting set of S0, ..., Si */
begin
1 if uncov(mhs) == ∅ then output mhs and return;
2 i := minimum index of uncov(mhs) ;
3 for every e ∈ mhs do
4 increase the counter of items in ∪S∈crit(mhs,e)S by one

end
5 for every e′ ∈ mhs s.t. counter is increased by |mhs| do /* items included in all ∪S∈crit(mhs,e)S */
6 compute mhs(i + 1, mhs ∪ {e});

return;
end

Figure 4: Improved Dualization Algorithm Using Sparseness

First, we consider a way to reduce the computa-
tion time of iterations. Let us see the algorithm
described in Fig. 2. The bottle neck part of
the computation of an iteration of the algorithm is
lines 3 to 5, which check the existence of a criti-
cal set Sj ∈ crit(mhs, e′), j < i such that e ∈ Sj .
To check this condition for an item e ∈ mhs, we
spend O(

∑
e′∈mhs |crit(mhs, e′)|) time, hence this

check for all e ∈ mhs takes O((|E| − |mhs|) ×∑
e′∈mhs |crit(mhs, e′)|) time.

Instead of this, we compute
⋃

S∈crit(mhs,e) S for
each e ∈ mhs. If and only if e′ ∈

⋃
S∈crit(mhs,e) S

for all e ∈ mhs, e′ satisfies the condition of “if” at
line 4. To compute

⋃
S∈crit(mhs,e) S for all e ∈ mhs,

we take O(
∑

e∈mhs

∑
S∈crit(mhs,e) |S|) time. In the

case of IBE algorithm, S is a maximal frequent set,
hence the average size of |S| is expected to be small.
The sizes of minimal infrequent sets are not greater
than the maximum size of maximal frequent sets, and
they are usually smaller than the average size of the
maximal frequent sets. Hence, |mhs| is also expected
to be small.

Second, we reduce the number of iterations. For
mhs ⊆ E, we define uncov(mhs) by the set of S ∈ H
satisfying S ∩mhs = ∅. If mhs∩Si = ∅, the iteration
inputting mhs and i does nothing but generates a
recursive call with increasing i by one. This type of
iterations should be skipped. Only iterations execut-
ing lines 3 to 5 are crucial. Hence, in each iteration,
we set i to the minimum index among uncov(mhs).
As a result of this, we need not execute line 2, and
the number of iterations is reduced from

∑
i |MHSi|

to |
⋃

i MHSi|. We describe the improved algorithm
in Fig. 4.

In our implementation, when we generate a recur-

sive call, we allocate memory for each variable used
in the recursive call. Hence, the memory required
by the algorithm can be up to O(|E| ×m). However,
experimentally the required memory is always linear
in the input size. Note that we can reduce the worst
case memory complexity by some sophisticated algo-
rithms.

5. Experiments

In this section, we show some results of the com-
putational experiments of our algorithms. We im-
plement our algorithm using C programming lan-
guage, and examined instances of FIMI2003. For
instances of KDD-cup 2000[KDDcup00], we com-
pared the results to the computational experiments of
CHARM[Zaki02], closed[Pei00], FP-growth[Han00],
and Apriori[Agrawal96] shown in [Zheng01]. The ex-
periments in [Zheng01] were done on a PC with a
Duron 550MHz CPU and 1GB RAM memory. Our
experiments were done on a PC with a Pentium III
500MHz CPU and 256MB RAM memory, which is
little slower than a Duron 550MHz CPU. The re-
sults are shown in Figs. 4 – 14. Note that our algo-
rithm uses at most 170MB for any following instance.
We also show the number of frequent sets, frequent
closed/maximal item sets, and minimal frequent sets.

In our experiments, IBE algorithm takes approx-
imately O(|Bd−| × ave(Bd+)) time, while the com-
putation time of other algorithms deeply depends on
the number of frequent sets, the number of frequent
closed item sets, and the minimum support. We re-
call that ave(Bd+) is the average size of maximal
frequent sets. In some instances, our IBE algorithm
performs rather well compared to other algorithms.
In these cases, the number of maximal frequent item

5

sets is smaller than number of frequent item sets.
IBE algorithm seems to give a good performance for
difficult problems such that the number of maximal
frequent sets is very small rather than those of fre-
quent item sets and frequent closed item sets.

6. Conclusion

In this paper, we describe the detailed im-
plementation method of our algorithm proposed
in [SatohUno03] and we give some experimental re-
sults on test data.

Acknowledgments
We are grateful to Heikki Mannila for participating
useful discussions about this research.

References

[Agrawal96] Agrawal, R., Mannila, H., Srikant, R.,
Toivonen, H., and Verkamo, A. I., “Fast Dis-
covery of Association Rules”, U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, (eds), Advances in Knowledge Discov-
ery and Data Mining, chapter 12, pp. 307–328
(1996).

[Fredman96] Fredman, M. L. and Khachiyan, L.,
“On the Complexity of Dualization of Mono-
tone Disjunctive Normal Forms”, Journal of Al-
gorithms 21(3), pp. 618 – 628 (1996)

[Gunopulos97a] Gunopulos, D., Khardon, R., Man-
nila, H. and Toivonen, H., “Data mining, Hy-
pergraph Transversals, and Machine Learning”,
Proc. of PODS’97, pp. 209 – 216 (1997).

[Gunopulos97b] Gunopulos, D., Mannila, H., and
Saluja, S., “Discovering All Most Specific Sen-
tences using Randomized Algorithms”, Proc. of
ICDT’97, pp. 215 – 229 (1997).

[Han00] Han, J., Pei, J., Yin, Y., “Mining Frequent
Patterns without Candidate Generation,” SIG-
MOD Conference 2000, pp. 1-12, 2000

[Kavvadias99] Kavvadias, D. J., and Stavropoulos,
E. C., “Evaluation of an Algorithm for the
Transversal Hypergraph Problem”, Algorithm
Engineering, pp 72 – 84 (1999).

[KDDcup00] Kohavi, R., Brodley, C. E., Frasca, B.,
Mason, L., and Zheng, Z., “KDD-Cup 2000 Or-
ganizers’ Report: Peeling the Onion,” SIGKDD
Explorations, 2(2), pp. 86-98, 2000.

[Mannila96] Mannila, H. and Toivonen, T., “On
an Algorithm for Finding All Interesting Sen-
tences”, Cybernetics and Systems, Vol II, The
Thirteen European Meeting on Cybernetics and
Systems Research, pp. 973 – 978 (1996).

[Pei00] Pei, J., Han, J., Mao, R., “CLOSET: An Ef-
ficient Algorithm for Mining Frequent Closed
Itemsets,” ACM SIGMOD Workshop on Re-
search Issues in Data Mining and Knowledge
Discovery 2000, pp. 21-30, 2000.

[SatohUno03] Satoh, K., Uno, T., “Enumerating
Maximal Frequent Sets using Irredundant Dual-
ization”, Lecture Notes in Artificial Intelligence
(Proc. of Discovery Science 2003), Springer-
Varlag, pp. 192-201, 2003.

[Uno02] Uno, T., “A Practical Fast Algorithm
for Enumerating Minimal Set Coverings”, SI-
GAL83, Information Processing Society of
Japan, pp. 9 – 16 (in Japanese) (2002).

[Zaki02] Zaki, M. J., Hsiao, C., “CHARM: An Effi-
cient Algorithm for Closed Itemset Mining,” 2nd
SIAM International Conference on Data Mining
(SDM’02), pp. 457-473, 2002.

[Zheng01] Zheng, Z., Kohavi, R., and Mason, L.,
“Real World Performance of Association Rule
Algorithms,” KDD 2001, pp. 401-406, 2001.

6

BMS-WebView1

1

10

100

1000

10000

6
0

4
8

3
6

2
4

1
2

6 support

time(sec)

Apriori
FP-growth
closet
CHARM
IBE

BMS-WebView2

1

10

100

1000

10000

100000

7
7

6
2

4
6

3
1

1
5

7 support

time(sec)

Apriori
FP-growth
closet
CHARM
IBE

BMS-POS

10

100

1000

10000

100000

5
1
7

4
1
3

3
1
0

2
0
6

1
0
3

5
1

support

time(sec)

Apiori
FP-growth
CHARM
IBE

T10I4D100K

1

10

100

1000

10000

0
.
1

0
.
0
8

0
.
0
6

0
.
0
4

0
.
0
2

0
.
0
1

support

time(sec)

Apriori
FP-growth
closet
CHARM
IBE

T40I10D100K

100

1000

10000

1600 1300 1000 700 support

time(sec
)

IBE

pumsb

10

100

1000

10000

45000 44000 43000 42000 41000 40000 support

time(sec)

IBE

7

pumsb_star

1

10

100

1000

10000

30000 25000 20000 15000 10000
support

time(sec)

IBE

kosarak

100

1000

10000

3000 2500 2000 1500 1000
support

time(sec)

IBE

mushroom

10

100

1000

30 20 10 5 2 support

time(sec
)

IBE

connect

100

1000

10000

63
00
0

60
00
0

57
00
0

54
00
0

51
00
0

48
00
0

45
00
0

support

time(sec
)

IBE

chess

10

100

1000

10000

2200 1900 1600 1300 1000 support

time(sec
)

IBE

8

BMS-Web-View1: #item 497, #transactions, 59602, ave. size of transaction 2.51
support 60 48 36 24 12 6

Apriori 1.1 3.6 113 - - -
FP-growth 1.2 1.8 51 - - -

Closet 33 74 - - - -
Charm 2.2 2.7 7.9 133 422 -

IBE 5.8 9.6 45 42 333 2982

#freq. sets 3992 10287 461522 - - -
#closed sets 3974 9391 64762 155651 422692 1240701

#max. freq. sets 2067 4028 15179 12956 84833 129754
#min. infreq. sets 66629 81393 150278 212073 579508 4320003
maximum use of memory: 45MB

BMS-Web-View2: #items 3340, #transactions 77512, ave. size of transaction 4.62
support 77 62 46 31 15 7

Apriori 13.1 15 29.6 58.2 444 -
Fp-growth 7.03 10 17.2 29.6 131 763

Closet 1500 2250 3890 6840 25800 -
Charm 5.82 6.66 7.63 13.8 27.2 76

IBE 25 32 46 98 355 1426

#closed sets 22976 37099 60352 116540 343818 754924
#freq. sets 24143 42762 84334 180386 1599210 9897303

#max. freq. sets 3901 5230 7841 16298 43837 118022
#min. infreq. sets 657461 958953 1440057 2222510 3674692 5506524
maximal use of memory: 100MB

BMS-POS: #items 1657, #transactions 517255, ave. size of transaction 6.5
support 517 413 310 206 103 51

Apriori 251 341 541 1000 2371 10000
Fp-growth 196 293 398 671 1778 6494

Closet - - - - - -
Charm 100 117 158 215 541 3162

IBE 1714 2564 4409 9951 44328 -

#closed sets 121879 200030 378217 840544 1742055 21885050
#freq. sets 121956 200595 382663 984531 5301939 33399782

#max. freq. sets 30564 48015 86175 201306 891763 4280416
#min. infreq. sets 236274 337309 530946 1047496 3518003 -

maximum use of memory: 110MB

T10I4D100K: #items 1000, #transactions 100000, ave. size of transaction 10
support 100 80 60 40 20 10

Apriori 33 39 45 62 117 256
Fp-growth 7.3 7.7 8.1 9.0 12 20

Closet 13 16 18 23 41 130
Charm 11 13 16 24 45 85

IBE 96 147 263 567 1705 -

#freq. sets 15010 28059 46646 84669 187679 335183
#closed sets 13774 22944 38437 67537 131342 229029

#max. freq. sets 7853 11311 16848 25937 50232 114114
#min. infreq. sets 392889 490203 736589 1462121 4776165 -
maximum use of memory: 60MB

T40I10D100K: #items 1000, #transactions 100000, ave. size of transaction 39.6
support 1600 1300 1000 700

IBE 378 552 1122 2238

#freq. sets 4591 10110 65236 550126
#closed sets 4591 10110 65236 548349

#max. freq. sets 4003 6944 21692 41473
#min. infreq. sets 245719 326716 521417 1079237

9

maximum memory use: 74MB

pumsb: #items 7117, #transactions 49046, ave. size of transaction 74
support 45000 44000 43000 42000

IBE 301 582 1069 1840

#freq. sets 1163 2993 7044 15757
#closed sets 685 1655 3582 7013

#max. freq. sets 144 288 541 932
#min. infreq. sets 7482 7737 8402 9468

maximum use of memory: 70MB

pumsb star: #items 7117, #transactions 49046, ave. size of transaction 50
support 30000 25000 20000 15000 10000 5000

IBE 8 19 59 161 556 2947

#freq. sets 165 627 21334 356945 >2G -
#closed sets 66 221 2314 14274 111849 -

#max. freq. sets 4 17 81 315 1666 15683
#min. infreq. sets 7143 7355 8020 9635 19087 98938

maximum use of memory: 44MB

kosarak: #items 41217, #transactions 990002, ave. size of transaction 8
support 3000 2500 2000 1500 1000

IBE 226 294 528 759 2101

#freq. sets 4894 8561 34483 219725 711424
#closed sets 4865 8503 31604 157393 496675

#max. freq. sets 792 1146 2858 4204 16231
#min. infreq. sets 87974 120591 200195 406287 875391

maximum use of memory: 170MB

mushroom: #items 120, #transactions 8124, ave. size of transaction 23
support 30 20 10 5 2

IBE 132 231 365 475 433

#freq. sets 505205917 781458545 1662769667 >2G >2G
#closed sets 91122 109304 145482 181243 230585

#max. freq. sets 15232 21396 30809 34131 27299
#min. infreq. sets 66085 79481 81746 69945 31880

maximum use of memory 47MB

connect: #items 130, #transactions 67577, ave. size of transaction 43
support 63000 60000 57000 54000 51000 48000 45000

IBE 229 391 640 893 1154 1381 1643

#freq. sets 6327 41143 171239 541911 1436863 - -
#closed sets 1566 4372 9041 15210 23329 - -

#max. freq. sets 152 269 464 671 913 1166 1466
#min. infreq. sets 297 486 703 980 1291 1622 1969

maximum use of memory: 60MB

chess: #items 76, #transactions 3196, ave. size of transaction 37
support 2200 1900 1600 1300 1000

IBE 19 61 176 555 2191

#freq. sets 59181 278734 1261227 5764922 29442848
#closed sets 28358 106125 366529 1247700 4445373

#max. freq. sets 1047 3673 11209 35417 114382
#min. infreq. sets 1725 5202 14969 46727 152317

maximum use of memory: 50MB

10

