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Abstract

This paper presents the implementation ofkDCI, an
enhancement ofDCI [10], a scalable algorithm for dis-
covering frequent sets in large databases.

The main contribution ofkDCI resides on a novel
counting inference strategy, inspired by previously
known results by Bastedet al. [3]. Moreover, multiple
heuristics and efficient data structures are used in or-
der to adapt the algorithm behavior to the features of
the specific dataset mined and of the computing platform
used.

kDCI turns out to be effective in mining both short
and long patterns from a variety of datasets. We con-
ducted a wide range of experiments on synthetic and
real-world datasets, both in-core and out-of-core. The
results obtained allow us to state thatkDCI perfor-
mances are not over-fitted to a special case, and its
high performance is maintained on datasets with differ-
ent characteristics.

1 Introduction

Despite the considerable amount of algorithms pro-
posed in the last decade for solving the problem of find-
ing frequent patterns in transactional databases (among
the many we mention [1] [11] [6] [13] [14] [4] [3] [7]),
a singlebestapproach still has to be found.

The Frequent Set Counting (FSC) problem consists
in finding all the set of items (itemsets) which occur in
at leasts% (s is called support) of the transactions of a
databaseD, where each transaction is a variable length
collection of items from a setI. Itemsets which verify

the minimum support threshold are said to befrequent.

The complexity of the FSC problem relies mainly
in the potentially explosive growth of its full search
space, whose dimensiond is, in the worst case,d =∑|tmax|

k=1

(|I|
k

)
, where tmax is the maximum transac-

tion length. Taking into account the minimum support
threshold, it is possible to reduce the search space, using
the well knowndownward closure relation, which states
that an itemset can only be frequent if all its subsets
are frequent as well. The exploitation of this property,
originally introduced in theApriori algorithm [1], has
transformed a potentially exponentially complex prob-
lem, into a more tractable one.

Nevertheless, theApriori property alone is not suf-
ficient to permit to solve the FSC problem in a rea-
sonable time, inall cases, i.e. on all possible datasets
and for all possible interesting values ofs. Indeed, an-
other source of complexity in the FSC problem resides
in the dataset internal correlation and statistical proper-
ties, which remain unknown until the mining is com-
pleted. Such diversity in the dataset properties is re-
flected in measurable quantities, like the total number
of transactions, or the total number of distinct items|I|
appearing in the database, but also in some other more
fuzzy properties which, although commonly recognized
as important, still lack a formal and univocal definition.
It is the case, for example, of the notion of howdensea
dataset is, i.e. how much its transactions tend to resem-
ble among one another.

Several important results have been achieved for spe-
cific cases. Dense datasets are effectively mined with
compressed data structure [14], explosion in the candi-
dates can be avoided using effective projections of the
dataset [7], the support of itemsets in compact datasets



can be inferred, without counting, using an equivalence
class based partition of the dataset [3].

In order to take advantage of all these, and more spe-
cific results, hybrid approaches have been proposed [5].
Critical to this point iswhenandhow to adopt a given
solution instead of another. In lack of a complete theo-
retical understanding of the FSC problem, the only so-
lution is to adopt a heuristic approach, where theoretical
reasoning is supported by direct experience leading to a
strategy that tries to cover a variety of cases as wide as
possible.

Starting from the previousDCI (Direct Count & In-
tersect) algorithm [10] we propose herekDCI, an en-
hanced version ofDCI that extends its adaptability to the
dataset specific features and the hardware characteristics
of the computing platform used for running the FSC al-
gorithm. Moreover, inkDCI we introduce anovel count-
ing inferencestrategy, based on a new result inspired by
the work of Bastideet al. in [3].

kDCI is a multiple heuristics hybrid algorithm, able
to adapt its behavior during the execution. Since it ori-
gins from the already publishedDCI algorithm, we only
outline in this paper howkDCI differs fromDCI. A de-
tailed description of theDCI algorithm can be found
in [10].

2 ThekDCI algorithm

Several considerations concerning the features of real
datasets, the characteristics of modern hw/sw system, as
well as scalability issues of FSC algorithms have moti-
vated the design ofkDCI. As already pointed out, trans-
actional databases may have different characteristics in
terms of correlations among the items inside transac-
tions and of transactions among themselves [9]. A de-
sirable feature of an FSC algorithm should be the ability
to adapt its behavior to these characteristics.

Modern hw/sw systems need high locality for ex-
ploiting memory hierarchies effectively and achieving
high performance. Algorithms have to favor the ex-
ploitation of spatial and temporal locality in accessing
in-core and out-core data.

Scalability is the main concern in designing algo-
rithms that aim to mine large databases efficiently.
Therefore, it is important to be able to handle datasets
bigger than the available memory.

We designed and implemented our algorithmkDCI
keeping in mind such performance issues. The pseudo
code ofkDCI is given in Algorithm 1.

kDCI inherits fromDCI the level-wise behavior and
the hybrid horizontal-vertical dataset representation. As
computation is started,kDCI maintains the database in
horizontal format and applies an effective pruning tech-

Algorithm 1 kDCI
Require: D, min supp

// During first scan get optimization figures
F1 = first scan(D, min supp)
// second and following scans on a temporary dbD′

F2 = secondscan(D′, min supp)
k = 2
while (D′.vertical size() > memoryavailable()) do

k + +
// count-based iteration
Fk = DCP(D’, min supp, k)

end while
k + +
// count-based iteration + create vertical database VD
Fk = DCP(D’, VD, min supp, k)
dense = V D.is dense())
while (Fk 6= ∅) do

k + +
if (usekey patterns())then

if (dense) then
Fk = DCI densekeyp(VD, min supp, k)

else
Fk = DCI sparsekeyp(VD, min supp, k)

end if
else

if (dense) then
Fk = DCI dense(VD, minsupp, k)

else
Fk = DCI sparse(VD, minsupp, k)

end if
end if

end while

nique to remove infrequent items and short transactions.
A temporary dataset is therefore written to disk at every
iteration. The first steps of the algorithm are described
in [8] and [10] and remain unchanged inkDCI. In kDCI
we only improved memory management by exploiting
compressed and optimized data structures (see Section
2.1 and 2.2).

The effectiveness of pruning is related to the possi-
bility of storing the dataset in main memory in vertical
format, due to the dataset size reduction. This normally
occurs at the first iterations, depending on the dataset,
the support threshold and the memory available on the
machine, which is determined at run time.

Once the dataset can be stored in main memory,kDCI
switches to the vertical representation, and applies sev-
eral heuristics in order to determine the most effective
strategy for frequent itemset counting.

The most important innovation introduced inkDCI
regards a novel technique to determine the itemset sup-
ports, inspired by the work of Bastideet al. [3]. As we
will discuss in Section 2.4, in some cases the support of
candidate itemsets can be determined without actually



counting transactions, but by a faster inference reason-
ing.

Moreover, kDCI maintains the different strategies
implemented inDCI for sparse and dense datasets. The
result is a multiple strategy approach: during the execu-
tion kDCI collects statistical information on the dataset
that allows to determine which is the best approach for
the particular case.

In the following we detail such optimizations and im-
provements and the heuristics used to decide which op-
timization to use.

2.1 Dynamic data type selection

The first optimization is concerned with the amount
of memory used to represent itemsets and their counters.
Since such structures are extensively accessed during the
execution of the algorithm, is it profitable to have such
data occupying as little memory as possible. This not
only allows to reduce the spatial complexity of the algo-
rithm, but also permits low level processor optimizations
to be effective at run time.

During the first scan of the dataset, global properties
are collected like the total number of distinct frequent
items (m1), the maximum transaction size, and the sup-
port of the most frequent item.

Once this information is available, we remap the sur-
vived (frequent) items to contiguous integer identifiers.
This allows us to decide the best data type to represent
such identifiers and their counters. For example if the
maximum support of any item is less than65536, we can
use anunsigned short int to represent the item-
set counters. The same holds for the remapped identi-
fiers of the items. The decision of which is the most
appropriate type to use for items and counters is taken at
run time, by means of a C++ template-based implemen-
tation of all thekDCI code.

Before remapping item identifiers, we also reorder
them in increasingly support ordering: more frequent
items are thus assigned larger identifiers. This also sim-
plifies the intersection-based technique used for dense
datasets (see Section 2.3).

2.2 Compressed data structures

Itemsets are often organized incollectionsin many
FSC algorithms. Efficient representation of such collec-
tions can lead to important performance improvements.
In [8] we pointed out the advantages of storing candi-
dates in directly accessible data structures for the first
passes of our algorithm. InkDCI we introduce a com-
pressed representation of an itemset collection, used to
store in the main memory collections of candidate and
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Figure 1. Compressed data structure used
for itemset collection can reduce the
amount of memory needed to store the
itemsets.

frequent itemsets. This representation take advantage
of prefix sharing among the lexicographically ordered
itemsets of the collection.

The compressed data structure is based on three ar-
rays (Figure 1). At each iterationk, the first array (pre-
fix ) stores the different prefixes of lengthk− 1. In the
third array (suffix ) all the length-1 suffixes are stored.
Finally, in the elementi of the second array (index ),
we store the position in thesuffix array of the section
of suffixes that share the same prefix. Therefore, when
the itemsets in the collection have to be enumerated, we
first access theprefix array. Then, from the corre-
sponding entry in theindex array we get the section
of suffixes stored insuffix , needed to complete the
itemsets.

From our tests we can say that, in all the interesting
cases – i.e., when the number of candidate (or frequent)
iemsets explodes – this data structure works well and
achieves up to 30% as compression ratio. For example,
see the results reported in Figure 2.

2.3 Heuristics

One of the most important features ofkDCI is its abil-
ity to adapt its behavior to the dataset specific character-
istics. It is well known that being able to distinguish be-
tween sparse and dense datasets, for example, allows to
adopt specific and effective optimizations. Moreover, as
we will explain the Section 2.4, if the number of frequent
itemsets is much greater than the number of closed item-
sets, it is possible to apply a counting inference proce-
dure that allows to dramatically reduce the time needed
to determine itemset supports.
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In kDCI we devised two main heuristics that allow to
distinguish between dense and sparse datasets and to de-
cide whether to apply the counting inference procedure
or not.

The first heuristic is simply based on the measure of
the dataset density. Namely, we measure the correlation
among the tidlists corresponding to the most frequent
items. We require that the maximum number of frequent
items for which such correlation is significant, weighted
by the correlation degree itself, is above a given thresh-
old.

As an example, consider the two dataset in Figure 3,
where tidlists are placed horizontally, i.e. rows corre-
spond to items and columns to transactions. Suppose
to choose a density thresholdδ = 0.2. If we order the
items according to their support, we have the most dense
region of the dataset at the bottom of each figure. Start-
ing from the bottom, we find the maximum number of
items whose tidlists have a significant intersection. In
the case of dataset(a), for example, a fractionf = 1/4
of the items sharep = 90% of the transactions, leading
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Figure 3. Heuristic to establish a dataset
density or sparsity

to a density ofd = fp = 0.25 × 0.9 = 0.23 which is
above the density threshold. For dataset(b) on the other
hand, to a smaller intersection ofp = 50% is common
to f = 1/3 of the items. In this last case the density
d = fp = 0.3 × 0.5 = 0.15 is lower than the threshold
and the dataset is considered as sparse. It is worth to no-
tice that since this notion of density depends on the min-
imum support threshold, the same dataset can exhibits
different behaviors when mined with different support
thresholds.

Once the dataset density is determined, we adopted
the same optimizations described in [10] for sparse and
dense datasets. We review them briefly for complete-
ness.

Sparse datasets. The main techniques used for
sparse datasets can be summarized as follows:

– projection. Tidlists in sparse datasets are
characterized by long runs of0’s. When in-
tersecting the tidlists associated with the 2-
prefix items belonging to a given candidate
itemset, we keep track of such empty ele-
ments (words), in order to perform the follow-
ing intersections faster. This can be consid-
ered asa sort of raw projectionof the verti-
cal dataset, since some transactions, i.e. those
corresponding to zero words, are not consid-
ered at all during the following tidlist inter-
sections.

– pruning. We remove infrequent items from
the dataset. This can result in some transac-
tion remaining empty or with too few items.
We therefore remove such transactions (i.e.
columns in the our bitvector vertical repre-
sentation) from the dataset. Since this bitwise



pruning may be expensive, we only perform
it when the benefits introduced are expected
to balance its cost.

Dense datasets.

If the dataset is dense, we expect to deal with
strong correlations among the most frequent items.
This not only means that the tidlists associated
with thesemost frequent itemscontain long runs
of 1’s, but also that they turn out to be very similar.
The heuristic technique adopted byDCI and con-
sequently bykDCI for dense dataset thus works as
follows:

– we reorder the columns of the vertical dataset
by moving identical segments of the tidlists
associated with the most frequent items to the
first consecutive positions;

– since each candidate is likely to include sev-
eral of these most frequent items, we avoid
repeated intersections of identical segments.

The heuristic for density evaluation is applied only
once, as soon as the vertical dataset is built. After this
decision is taken, we further check if the counting infer-
ence strategy (see Section 2.4) can be profitable or not.
The effectiveness of the inference strategy depends on
the ratio between the total number of frequent itemsets
and how many of them arekey-patterns. The closer to 1
this ratio is, the less advantage is introduced by the in-
ference strategy. Since this ratio is not known until the
computation is finished, we found that the same infor-
mation can be derived from the average support of the
frequent singletons (items), after the first scan. The idea
behind this is that if the average support of the single
items that survived the first scan is high enough, then
longer patterns can be expected to be frequent and more
likely the number ofkey-patternsitemsets will be lower
than that of frequent itemsets. We experimentally veri-
fied that this simple heuristic gives the correct output for
all datasets - both real and synthetic.

To resume the rationale behindkDCI multiple strat-
egy approach, if thekey-patternsoptimization can be
adopted, we use the counting inference method that al-
lows to avoid many intersections. For the intersections
that cannot be avoided and in the cases where thekey-
patternsinference method cannot be applied, we further
distinguish between sparse and dense datasets, and ap-
ply the two strategies explained above.

2.4 Pattern Counting Inference

In this section we describe the count inference
method, which constitute the most important innovation

Figure 4. Example lattice of frequent items.

introduced inkDCI. We exploit a technique inspired by
the theoretical results presented in [3], where the PAS-
CAL algorithm was introduced. PASCAL is able to infers
the support of an itemset without actually count its oc-
currences in the database. In this seminal work, the au-
thors introduced the concept ofkey pattern(or key item-
set). Given a generic patternQ, it is possible to deter-
mine an equivalence class[Q], which contains the set of
patterns that have the same support and are included in
the same set of database transactions. Moreover, if we
definemin[P ] as the set of the smallest itemsets in[P ],
a patternP is akey patternif P ∈ min[P ], i.e. no proper
subset ofP is in the same equivalence class. Note that
we can have several key patterns for each equivalence
class. Figure 4 shows an example of a lattice of frequent
itemsets, taken from [3], where equivalence classes and
key patterns are highlighted.

Given an equivalence class[P ], we can also define a
correspondingclosed set[12]: the closed setc of [P ] is
equal tomax[P ], so that no proper supersets ofc can
belong to the same equivalence class[P ].

Among the results illustrated in [3] we have the fol-
lowing important theorems:

Theorem 1 Q is a key pattern iff supp(Q) 6=
minp∈Q(supp(Q \ {p})).

Theorem 2 If P is not a key pattern, andP ⊆ Q, then
Q is a non-key pattern as well.

From Theorem 1 it is straightforward to observe that
if Q is a non-key pattern, then:



supp(Q) = min
p∈Q

(supp(Q \ {p})). (1)

Moreover, Theorem 1 says that we can check
whetherQ is a key patternby comparing its support
with the minimum support of its proper subsets, i.e.
minp∈Q(supp(Q\{p})). We will show in the following
how to use this property to make faster candidate support
counting.

Theorems 1 and 2 give the theoretical foundations
for the PASCAL algorithm, which finds the support of
a non-keyk-candidateQ by simply searching the mini-
mum supports of all itsk − 1 subsets. Note that such
search can be performed during the pruning phase of
the Apriori candidate generation.DCI does not perform
candidate pruning because its intersection technique is
comparably faster. For this reason we will not adopt the
PASCAL counting inference inkDCI.

The following theorem, partially inspired by the
proof of Theorem 2, suggests a faster way to compute
the support of anon-keyk-candidateQ.

Before introducing the theorem, we need to define
the functionf , which assigns to each patternP the set
of all the transactions that include this pattern. We can
define the support of a pattern in terms off : supp(P ) =
|f(P )|. Note thatf is a monotonically decreasing func-
tion, i.e. if P1 ⊆ P2 ⇒ f(P2) ⊆ f(P1). This is obvi-
ous, because every transaction containingP2 surely con-
tains all the subsets ofP2.

Theorem 3 If P is a non-key pattern andP ⊆ Q, the
following holds:

f(Q) = f(Q \ (P \ P ′)).

whereP ′ ⊂ P , andP andP ′ belong to the same equiv-
alence class, i.e.P, P ′ ∈ [P ].

PROOF. Note that, sinceP is a non-key pattern, it is
surely possible to find a patternP ′, P ′ ⊂ P , belonging
to the same equivalence class[P ].

In order to demonstrate the Theorem we first show
that f(Q) ⊆ f(Q \ (P \ P ′)) and then that also
f(Q) ⊇ f(Q \ (P \ P ′)) holds, thus proving the Theo-
rem hypotheses.

The first assertionf(Q) ⊆ f(Q \ (P \ P ′)) holds
because(Q \ (P \P ′)) ⊆ Q, andf is a monotonically
decreasing function.

To prove the second assertion,f(Q) ⊇ f(Q \ (P \
P ′)), we can rewritef(Q) asf(Q\(P \P ′)∪(P \P ′)),
which is equivalent tof(Q \ (P \ P ′)) ∩ f(P \ P ′).

Sincef is decreasing,f(P ) ⊆ f(P \ P ′). But, since
P, P ′ ∈ [P ], then we can writef(P ) = f(P ′) ⊆ f(P \
P ′). Thereforef(Q) = f(Q \ (P \P ′))∩ f(P \P ′) ⊇
f(Q\(P \P ′))∩f(P ′). The last inequality is equivalent

to f(Q) ⊇ f(Q \ (P \P ′)∪P ′). SinceP ′ ⊆ (Q \ (P \
P ′)) clearly holds, it follows thatf(Q\(P \P ′)∪P ′) =
f(Q\(P \P ′)). So we can conclude thatf(Q) ⊇ f(Q\
(P \ P ′)), which completes the proof.
2

The following corollary is trivial, since we defined
supp(Q) = |f(Q)|.

Corollary 1 If P is a non-key pattern, andP ⊆ Q, the
support ofQ can be computed as follows:

supp(Q) = supp(Q \ (P \ P ′))

whereP ′ andP , P ′ ⊂ P , belong to the same equiva-
lence class, i.e.P, P ′ ∈ [P ].

Finally, we can introduce Corollary 2, which is a par-
ticular case of the previous one.

Corollary 2 If Q is k-candidate (i.e. Q ∈ Ck) and
P , P ⊂ Q, is a frequent non-key(k-1)-pattern (i.e.
P ∈ Fk−1), there must existP ′ ∈ Fk−2, P ′ ⊂ P , such
that P and P ′ belong to the same equivalence class,
i.e. P, P ′ ∈ [P ] andP andP ′ differ for a single item:
{pdiff} = P \ P ′. The support ofQ can thus be com-
puted as:

supp(Q) = supp(Q \ (P \ P ′)) = supp(Q \ {pdiff})

Corollary 2 says that to find the support of anon-
key candidate patternQ, we can simply check whether
Q \ {pdiff} belongs toFk−1, or not. If Q \ {pdiff} ∈
Fk−1, thenQ inherits the same support asQ \ {pdiff}
and is therefore frequent. Otherwise we can conclude
thatQ \ {pdiff} is not frequent.

Using the theoretical result of Corollary 2, we
adopted the following strategy in order to determine the
support of a candidateQ at stepk.

In kDCI, we store with each itemsetP ∈ Fk−1 the
following information:

• supp(P );

• a flag indicating ifP is akey patternor not;

• if P is non-key pattern, also the itempdiff such that

P \ {pdiff } = P ′ ∈ [P ].

Note thatpdiff must be one of the items that we can re-

move fromP to obtain a proper subsetP ′ of P , belong-
ing to the same equivalence class.

During the generation of a generic candidateQ ∈ Ck,
as soon askDCI discovers that one of the subsets ofQ,
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Figure 5. Total execution time of OP, FP, Eclatd, and kDCI on various datasets as a function of
the support threshold.

sayP , is anon-key pattern, kDCI searches inFk−1 the
patternQ \ {pdiff }, wherepdiff is stored withP .

If Q \ {pdiff } is found, thenQ is a frequentnon-

key pattern(see Theorem 2), its support issupp(Q \
{pdiff }), and the item to store withQ is exactlypdiff.

In fact,Q′ = Q \ {pdiff } ∈ [Q], i.e. pdiff is one of the

items that we can remove fromQ to obtain a subsetQ′

belonging to the same equivalence class.

The worst case is when all the subsets ofQ in Fk−1

arekey patternsand the support ofQ cannot be inferred
from its subsets. In this casekDCI counts the support
of Q as usual, and applies Theorem 1 to determine if
Q is a non-key-pattern. If Q is a non-key-pattern, its
support becomessupp(Q) = minp∈Q(supp(Q \ {p}))
(see Theorem 1), while the item to be stored withQ is
pdiff, i.e. the item to be subtracted fromQ to obtain the
pattern with the minimum support.

The impact of this counting inference technique on
the performance of an FSC algorithm becomes evident if
you consider the Apriori-like candidate generation strat-
egy adopted bykDCI. From the combination of every
pair of itemsetsPa andPb ∈ Fk−1, that share the same

(k-2)-prefix (we called themgenerators), kDCI gener-
ates a candidatek-itemsetQ. For very dense datasets,
most of the frequent patterns belonging toFk−1 arenon-
key patterns. Therefore one or both patternsPa andPb

used to generateQ ∈ Ck are likely to benon-key pat-
terns. In such cases, in order to find anon-key pattern
and then apply Corollary 2, it is not necessary to check
the existence of further subsets ofQ. For most of the
candidates, a single binary search inFk−1, to look for
the patternQ \ {pdiff }, is thus sufficient to compute

supp(Q). Moreover, oftenQ \ {pdiff } is exactly equal
to one of the twok-1-itemsets belonging to the gener-
ating pair (Pa, Pb): in this casekDCI does not need to
perform any search at all to computesupp(Q).

We conclude this section with some examples of how
the counting inference technique works. Let us con-
sider Figure 4. ItemsetQ = {A,B, E} is a non-key
pattern becauseP = {B,E} is a non-key patternas
well. So, if P ′ = {B}, kDCI will store pdiff =
E with P . We have that thesupp({A,B,E}) =
supp({A,B,E}\({B,E}\{B})) = supp({A,B,E}\
{pdiff } = supp({A,B}). From the Figure you can

see that{A,B,E} and{A,B} both belong to the same
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Figure 6. Total execution time of OP, FP, Eclatd, and kDCI on various datasets as a function of
the support threshold.

equivalence class.
Another example is itemsetQ = {A,B,C, E}, that
is generated by the twonon-key patterns{A,B, C}
and {A,B,E}. Suppose thatP = {A,B,C}, i.e.
the first generator, whileP ′ = {A,B}. In this
casekDCI will store pdiff = C with P . We have

that thesupp({A,B, C, E}) = supp({A,B, C, E} \
({A,B,C} \ {A,B})) = supp({A,B,C, E} \
{pdiff } = supp({A,B,E}, where{A,B,E} is exactly
the second generator. In this case, no search is necessary
to find {A,B,E}. Looking at the Figure, it is possible
to verify that{A,B,C, E} and{A,B,E} both belong
to the same equivalence class.

3 Experimental Results

We experimentally evaluatedkDCI performances by
comparing its execution time with respect to the origi-
nal implementations of state of the art FSC algorithms,
namely FP-growth (FP) [6], Opportunistic Projection
(OP) [7] and Eclat with diffsets (Eclatd) [14], provided
by their respective authors.

We used a MS-WindowsXP workstation equipped

with a Pentium IV 1800 MHz processor, 368MB of
RAM memory and an eide hard disk. For the tests,
we used both synthetic and real-world datasets. All
the synthetic datasets used were created with the IBM
dataset generator [1], while all the real-world datasets
but one were downloaded from the UCI KDD Archive
(http://kdd.ics.uci.edu/ ). We also extracted
a real-world dataset from the TREC WT10g corpus [2].
The original corpus contained about1.69 millions of
WEB documents. The dataset for our tests was built by
considering the set of all the terms contained in each
document as a transaction. Before generating the trans-
actional dataset, the collection of documents was filtered
by removing HTML tags and the most common words
(stopwords), and by applying astemmingalgorithm. The
resultingtrec dataset is huge. It is about1.3GB, and
contains1.69 millions of short and long transactions,
where the maximum length of a transaction is71, 473
items.

kDCI performance and comparisons. Figure 5 and
6 report the total execution time obtained running FP,
Eclatd, OP, andkDCI on various datasets as a func-



tion of the support thresholds. On all datasets in Fig-
ure 5, connect , chess pumsb and pumsb star ,
kDCI runs faster than the others algorithms. Onpumsb
its execution time is very similar to the one of OP. For
high support thresholdskDCI can drastically prune the
dataset, and build a compact vertical dataset, whose
tidlists presents large similarities. Such similarity of
tidlists is effectively exploited by our strategy for com-
pact datasets. For smaller supports, the benefits intro-
duced by the counting inference strategy become more
evident, particularly for thepumsb star and con-
nect datasets. In these cases the number of frequent
itemsets is much higher than the number ofkey-patterns,
thus allowingkDCI to drastically reduce the number of
intersections needed to determine candidate supports.

On the datasetsmushroom and T30I16D400K
(see Figure 6),kDCI outperforms the other competi-
tors, and this also holds on the real-world dataset
BMSView 1 when mined with very small support
thresholds (see Figure 6). On only a dataset, namely
T25I10D10K , FP and OP are faster thankDCI for all
the supports. The reason of this behavior is the size
of the candidate setC3, which for this dataset is much
larger thanF3. While kDCI has to carry out a lot of use-
less work to determine the support of many candidate
itemsets which are not frequent, FP-growth and OP take
advantage of the fact that they do not require candidate
generation.

Furthermore, differently from FP, Eclatd, and OP,
kDCI can efficiently mine huge datasets such astrec
andUSCensus1990 . Figure 7 reports the total execu-
tion time required bykDCI to mine these datasets with
different support thresholds. The other algorithms failed
in mining these datasets due to memory shortage, also
when very large support thresholds were used. On the
other hand,kDCI was able to mine such huge datasets
since it adapts its behavior to both the size of the dataset
and the main memory available.

4 Conclusions and Future Work

Due to the complexity of the problem, a good algo-
rithm for FSC has to implement multiple strategies and
some level of adaptiveness in order to be able to succes-
fully manage diverse and differently featured inputs.

kDCI uses different approaches for extracting fre-
quent patterns: count-based during the first iterations
and intersection-based for the following ones.

Moreover, a new counting inference strategy, to-
gether with, adaptiveness and resource awareness are the
main innovative features of the algorithm.

On the basis of the characteristics of the mined
dataset,kDCI chooses which optimization to adopt for
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Figure 7. Total execution time of kDCI: on
datasets trec (a) and USCensus1990 (b)
as a function of the support.

reducing the cost of mining at run–time. Dataset pruning
and effective out-of-core techniques are exploited dur-
ing the count-based phase, while the intersection-based
phase, which starts only when the pruned dataset can fit
into the main memory, exploits a novel technique based
on the notion ofkey-patternthat in many cases allows to
infer the support of an itemset without any counting.

kDCI also adopts compressed data structures and dy-
namic type selection to adapt itself to the characteristics
of the dataset being mined.

The experimental evaluation demonstrated thatkDCI
outperforms FP, OP, and Eclatd in most cases. More-
over, differently from the other FSC algorithms tested,
kDCI can efficiently manage very large datasets, also on
machines with limited physical memory.

Although the variety of datasets used and the large
amount of tests conducted permit us to state that the per-
formance ofkDCI is not highly influenced by dataset



characteristics, and that our optimizations are very effec-
tive and general, some further optimizations and future
work will reasonably improvekDCI performance. More
optimized data structures could be used to store itemset
collections in order to make faster searches in such col-
lections. Note that such fast searches are very important
in kDCI, which bases its count inference technique at
level k on searching for frequent itemset inFk−1. Fi-
nally, we can benefit from a higher level of adaptive-
ness to the available memory on the machine, either
with fully memory mapped data structures or with out-
of-core ones, depending on the data size. This should
allow a better scalability and a wider applicability of the
algorithm.
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