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Abstract

In this paper, we revisit the frequent itemset mining
(FIM) problem and focus on studying the pattern growth ap-
proach. Existing pattern growth algorithms differ in several
dimensions: (1) item search order; (2) conditional database
representation; (3) conditional database construction strat-
egy; and (4) tree traversal strategy. They adopted differ-
ent strategies on these dimensions. Several adaptive algo-
rithms were proposed to try to find good strategies for gen-
eral situations. In this paper, we described the implemen-
tation techniques of an adaptive pattern growth algorithm,
called AFOPT, which demonstrated good performance on
all tested datasets. We also extended the algorithm to mine
closed and maximal frequent itemsets. Comprehensive ex-
periments were conducted to demonstrate the efficiency of
the proposed algorithms.

1 Introduction
Since the frequent itemset mining problem (FIM) was

first addressed [2], a large number of FIM algorithms have
been proposed. There is a pressing need to completely char-
acterize and understand the algorithmic performance space
of FIM problem so that we can choose and integrate the best
strategies to achieve good performance in general cases.

Existing FIM algorithms can be classified into two cat-
egories: the candidate generate-and-test approach and the
pattern growth approach. In each iteration of the candidate
generate-and-test approach, pairs of frequent k-itemsets are
joined to form candidate (k+1)-itemsets, then the database
is scanned to verify their supports. The resultant frequent
(k+1)-itemsets will be used as the input for next itera-
tion. The drawbacks of this approach are: (1) it needs scan
database multiple times, in worst case, equal to the maximal
length of the frequent itemsets; (2) it needs generate lots of
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candidate itemsets, many of which are proved to be infre-
quent after scanning the database; and (3) subset checking
is a cost operation, especially when itemsets are very long.
The pattern growth approach avoids the cost of generating
and testing a large number of candidate itemsets by grow-
ing a frequent itemset from its prefix. It constructs a condi-
tional database for each frequent itemset t such that all the
itemsets that have t as prefix can be mined only using the
conditional database of t.

The basic operations in the pattern growth approach are
counting frequent items and new conditional databases con-
struction. Therefore, the number of conditional databases
constructed during the mining process, and the mining cost
of each individual conditional database have a direct effect
on the performance of a pattern growth algorithm. The to-
tal number of conditional databases mainly depends on in
what order the search space is explored. The traversal cost
and construct cost of a conditional database depends on the
size, the representation format (tree-based or array-based)
and construction strategy (physical or pseudo) of the condi-
tional database. If the conditional databases are represented
by tree structure, the traversal strategy of the tree structure
also matters. In this paper, we investigate various aspects
of the pattern growth approach, and try to find out what are
good strategies for a pattern growth algorithm.

The rest of the paper is organized as follows: Section
2 revisits the FIM problem and introduces some related
works; In Section 3, we describe an efficient pattern growth
algorithm—AFOPT; Section 4 and Section 5 extend the
AFOPT algorithm to mine frequent closed itemsets and
maximal frequent itemsets respectively; Section 6 shows
experiment results; finally, Section 7 concludes this paper.

2 Problem Revisit and Related Work
In this section, we first briefly review FIM problem and

the candidate generate-and-test approach, then focus on
studying the algorithmic performance space of the pattern
growth approach.
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2.1 Problem revisit
Given a transactional database D, let I be the set of items

appearing in it. Any combination of the items in I can be
frequent in D, and they form the search space of FIM prob-
lem. The search space can be represented using set enumer-
ation tree [14, 1, 4, 5, 7]. For example, given a set of items
I = {a, b, c, d, e} sorted in lexicographic order, the search
space can be represented by a tree as shown in Figure 1.
The root of the search space tree represents the empty set,
and each node at level l (the root is at level 0, and its chil-
dren are at level 1, and so on) represents an l-itemset. The
candidate extensions of an itemset p is defined as the set of
items after the last item of p. For example, items d and e are
candidate extensions of ac, while b is not a candidate exten-
sion of ac because b is before c. The frequent extensions of
p are those candidate extensions of p that can be appended
to p to form a longer frequent itemset. In the rest of this pa-
per, we will use cand exts(p) and freq exts(p) to denote
the set of candidate extensions and frequent extensions of p

respectively.

  NULL{a,b,c,d,e}
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Figure 1. Search space tree

2.2 Candidate generate-and-test approach
Frequent itemset mining can be viewed as a set contain-

ment join between the transactional database and the search
space of FIM. The candidate generate-and-test approach es-
sentially uses block nested loop join, i.e. the search space
is the inner relation and it is divided into blocks accord-
ing to itemset length. Different from simple block nested
loop join, in candidate generate-and-test approach the out-
put of the previous pass is used as seeds to generate next
block. For example, in the k-th pass of the Apriori algo-
rithm, the transaction database and the candidate k-itemsets
are joined to generate frequent k-itemsets. The frequent k-
itemsets are then used to generate next block—candidate
(k+1)-itemsets. Given the large amount of memory avail-
able nowadays, it is a waste of memory to put only a sin-
gle length of itemsets into memory. It is desirable to fully
utilize available memory by putting some longer and possi-
bly frequent itemsets into memory in earlier stage to reduce
the number of database scans. The first FIM algorithm AIS
[2] tries to estimate the frequencies of longer itemsets us-
ing the output of current pass, and includes those itemsets

that are estimated as frequent or themselves are not esti-
mated as frequent but all of its subsets are frequent or esti-
mated as frequent into next block. The problem with AIS
algorithm is that it does not fully utilize the pruning power
of the Apriori property, thus many unnecessary candidate
itemsets are generated and tested. DIC algorithm [3] makes
improvements based on Apriori algorithm. It starts count-
ing the support of an itemset shortly after all the subsets of
that itemset are determined to be frequent rather than wait
until next pass. However, DIC algorithm cannot guarantee
the full utilization of memory. The candidate generate-and-
test approach faces a trade-off: on one hand, the memory is
not fully utilized and it is desirable to put as many as pos-
sible candidate itemsets into memory to reduce the number
of database scans; on the other hand, set containment test is
a costly operation, putting itemsets into memory in earlier
stage has the risk of counting support for many unnecessary
candidate itemsets.

2.3 Pattern growth approach
The pattern growth approach adopts the divide-and-

conquer methodology. The search space is divided into
disjoint sub search spaces. For example, the search space
shown in Figure 1 can be divided into 5 disjoint sub search
spaces: (1) itemsets containing a; (2) itemsets containing b

but no a; (3) itemsets containing c but no a, b; (4) itemsets
containing d but no a, b and c; and (5) itemsets containing
only e. Accordingly, the database is divided into 5 parti-
tions, and each partition is called a conditional database.
The conditional database of item i, denoted as Di, includes
all the transactions containing item i. All the items before i

are eliminated from each transaction. All the frequent item-
sets containing i can be mined from Di without accessing
other information. Each conditional database is divided re-
cursively following the same procedure. The pattern growth
approach not only reduces the number of database scans,
but also avoids the costly set-containment-test operation.

Two basic operations in pattern growth approach are
counting frequent items and new conditional databases
construction. Therefore, the total number of conditional
databases constructed and the mining cost of each individ-
ual conditional database are key factors that affect the per-
formance of a pattern growth algorithm. The total num-
ber of conditional databases mainly depends on in what or-
der the search space is explored. This order is called item
search order in this paper. Some structures for representing
conditional databases can also help reduce the total num-
ber of conditional databases. For example, if a conditional
database is represented by tree-structure and there is only
one branch, then all the frequent itemsets in the conditional
database can be enumerated directly from the branch. There
is no need to construct new conditional databases. The min-
ing cost of a conditional database depends on the size, the
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Datasets Asc Lex Des
#cdb time max mem #cdb time max mem #cdb time max mem

T10I4D100k (0.01%) 53688 4.52s 5199 kb 47799 4.89s 5471 kb 36725 5.32s 5675 kb
T40I10D100k (0.5%) 311999 30.42s 17206 kb 310295 33.83s 20011 kb 309895 43.37s 21980 kb

BMS-POS (0.05%) 115202 27.83s 17294 kb 53495 127.45s 38005 kb 39413 147.01s 40206 kb
BMS-WebView-1 (0.06%) 33186 0.69s 731 kb 65378 1.12s 901 kb 79571 2.16s 918 kb

chess (45%) 312202 2.68s 574 kb 617401 8.46s 1079 kb 405720 311.19s 2127 kb
connect-4 (75%) 12242 1.31s 38 kb 245663 2.65s 57 kb 266792 14.27s 113 kb
mushroom (5%) 9838 0.34s 1072 kb 258068 3.11s 676 kb 464903 272.30s 2304 kb

pumsb (70%) 272373 3.87s 383 kb 649096 12.22s 570 kb 469983 16.62s 1225 kb

Table 1. Comparison of Three Item Search Orders (Bucket Size=0)

representation and construction strategy of the conditional
database. The traversal strategy also matters if the condi-
tional database is represented using a tree-structure.

Item Search Order. When we divide the search space,
all items are sorted in some order. This order is called item
search order. The sub search space of an item contains all
the items after it in item search order but no item before it.
Two item search orders were proposed in literature: static
lexicographic order and dynamic ascending frequency or-
der. Static lexicographic order is to order the items lexico-
graphically. It is a fixed order—all the sub search spaces
use the same order. Tree projection algorithm [15] and H-
Mine algorithm[12] adopted this order. Dynamic ascend-
ing frequency order reorders frequent items in every condi-
tional database in ascending order of their frequencies. The
most infrequent item is the first item, and all the other items
are its candidate extensions. The most frequent item is the
last item and it has no candidate extensions. FP-growth [6],
AFOPT [9] and most of maximal frequent itemsets mining
algorithms [7, 1, 4, 5] adopted this order.

The number of conditional databases constructed by an
algorithm can differ greatly using different item search or-
ders. Ascending frequency order is capable of minimizing
the number and/or the size of conditional databases con-
structed in subsequent mining. Intuitively, an itemset with
higher frequency will possibly have more frequent exten-
sions than an itemset with lower frequency. We put the most
infrequent item in front, though the candidate extension set
is large, the frequent extension set cannot be very large. The
frequencies of successive items increase, at the same time
the size of candidate extension set decreases. Therefore we
only need to build smaller and/or less conditional databases
in subsequent mining. Table 1 shows the total number of
conditional databases constructed (#cdb column), total run-
ning time and maximal memory usage when three orders are
adopted in the framework of AFOPT algorithm described
in this paper. The three item search orders compared are:
dynamic ascending frequency order (Asc column), lexico-
graphic order (Lex column) and dynamic descending fre-
quency order (Des column). The minimum support thresh-
old on each dataset is shown in the first column. On the

first three datasets, ascending frequency order needs to build
more conditional databases than the other two orders, but
its total running time and maximal memory usage is less
than the other two orders. It implies that the conditional
databases constructed using ascending frequency order are
smaller. On the remaining datasets, ascending frequency
order requires to build less conditional databases and needs
less running time and maximal memory usage, especially
on dense datasets connect-4 and mushroom.

Agrawal et al proposed an efficient support counting
technique, called bucket counting, to reduce the total num-
ber of conditional databases[1]. The basic idea is that if the
number of items in a conditional database is small enough,
we can maintain a counter for every combination of the
items instead of constructing a conditional database for each
frequent item. The bucket counting can be implemented
very efficiently compared with conditional database con-
struction and traversal operation.

Conditional Database Representation. The traver-
sal and construction cost of a conditional database heav-
ily depends on its representation. Different data struc-
tures have been proposed to store conditional databases, e.g.
tree-based structures such as FP-tree [6] and AFOPT-tree
[9], and array-based structure such as Hyper-structure [12].
Tree-based structures are capable of reducing traversal cost
because duplicated transactions can be merged and different
transactions can share the storage of their prefixes. But they
incur high construction cost especially when the dataset is
sparse and large. Array-based structures incur little con-
struction cost but they need much more traversal cost be-
cause the traversal cost of different transactions cannot be
shared. It is a trade-off in choosing tree-based structures or
array-based structures. In general, tree-based structures are
suitable for dense databases because there can be lots of pre-
fix sharing among transactions, and array-based structures
are suitable for sparse databases.

Conditional Database Construction Strategy Con-
structing every conditional database physically can be ex-
pensive especially when successive conditional databases
do not shrink much. An alternative is to pseudo-construct
them, i.e. using pointers pointing to transactions in upper
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Algorithms Item Search Order CondDB Format CondDB Construction Tree Traversal
Tree-Projection [15] static lexicographic array adaptive -

FP-growth [6] dynamic frequency FP-tree physical bottom-up
H-mine [12] static lexicographic hyper-structure pseudo -

OP [10] adaptive adaptive adaptive bottom-up
PP-mine [17] static lexicographic PP-tree pseudo top-down
AFOPT [9] dynamic frequency adaptive physical top-down

CLOSET+ [16] dynamic frequency FP-tree adaptive adaptive

Table 2. Pattern Growth Algorithms

level conditional databases. However, pseudo-construction
cannot reduce traversal cost as effectively as physical con-
struction. The item ascending frequency search order can
make the subsequent conditional databases shrink rapidly,
consequently it is beneficial to use physical construction
strategy with item ascending frequency order together.

Tree Traversal Strategy The traversal cost of a tree is
minimal using top-down traversal strategy. FP-growth al-
gorithm [6] uses ascending frequency order to explore the
search space, while FP-tree is constructed according to de-
scending frequency order. Hence FP-tree has to be traversed
using bottom-up strategy. As a result, FP-tree has to main-
tain parent links and node links at each node for bottom-up
traversal. which increases the construction cost of the tree.
AFOPT algorithm [9] uses ascending frequency order both
for search space exploration and prefix-tree construction, so
it can use the top-down traversal strategy and do not need to
maintain additional pointers at each node. The advantage of
FP-tree is that it can be more compact than AFOPT-tree be-
cause descending frequency order increases the possibility
of prefix sharing. The ascending frequency order adopted
by AFOPT may lead to many single branches in the tree.
This problem was alleviated by using arrays to store single
branches in AFOPT-tree.

Existing pattern growth algorithms mainly differ in the
several dimensions aforementioned. Table 2 lists existing
pattern growth algorithms and their strategies on four di-
mensions. AFOPT [9] is an efficient FIM algorithm devel-
oped by our group. We will discuss its technical details in
next three sections.

3 Mining All Frequent Itemsets
We discussed several trade-offs faced by a pattern growth

algorithm in last section. Some implications from above
discussions are: (1) Use tree structure on dense database
and use array structure on sparse database. (2) Use dynamic
ascending frequency order on dense databases and/or when
minimum support threshold is low. It can dramatically re-
duce the number and/or the size of the successive condi-
tional databases. (3) If dynamic ascending frequency order
is adopted, then use physical construction strategy because
the size of conditional databases will shrink quickly. In this
section, we describe our algorithm AFOPT which takes the

above three implications into consideration. The distinct
features of our AFOPT algorithm include: (1) It uses three
different structures to represent conditional databases: ar-
rays for sparse conditional databases, AFOPT-tree for dense
conditional databases, and buckets for counting frequent
itemsets containing only top-k frequent items, where k is
a parameter to control the number of buckets used. Sev-
eral parameters are introduced to control when to use arrays
or AFOPT-tree. (2) It adopts the dynamic ascending fre-
quency order. (3) The conditional databases are constructed
physically on all levels no matter whether the conditional
databases are represented by AFOPT-tree or arrays.

3.1 Framework
Given a transactional database D and a minimum

support threshold, AFOPT algorithm scans the original
database twice to mine all frequent itemsets. In the first
scan, all frequent items in D are counted and sorted in
ascending order of their frequencies, denoted as F =
{i1, i2, · · · , im}. We perform another database scan to con-
struct a conditional database for each ij ∈ F , denoted as
Dij

. During the second scan, infrequent items in each trans-
action t are removed and the remaining items are sorted ac-
cording to their orders in F . Transaction t is put into Dij

if
the first item of t after sorting is ij . The remaining mining
will be performed on conditional databases only. There is
no need to access the original database.

We first perform mining on Di1 to mine all the itemsets
containing i1. Mining on individual conditional database
follows the same process as mining on the original database.
After the mining on Di1 is finished, Di1 can be discarded.
Because Di1 also contains other items, the transactions in
it will be inserted into the remaining conditional databases.
Given a transaction t in Di1 , suppose the next item after i1
in t is ij , then t will be inserted into Dij

. This step is called
push-right. Sorting the items in ascending order of their
frequencies ensures that every time, a small conditional
database is pushed right. The pseudo-code of AFOPT-all
algorithm is shown in Algorithm 1.

3.2 Conditional database representation
Algorithm 1 is independent of the representation of con-

ditional databases. We choose proper representations ac-
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Algorithm 1 AFOPT-all Algorithm
Input:

p is a frequent itemset
Dp is the conditional database of p

min sup is the minimum support threshold;
Description:
1: Scan Dp count frequent items, F ={i1, i2,· · ·, in};
2: Sort items in F in ascending order of their frequencies;
3: for all item i ∈ F do
4: D

p

⋃
{i}

= φ;

5: for all transaction t ∈ Dp do
6: remove infrequent items from t, and sort remaining items according

to their orders in F ;
7: let i be the first item of t, insert t into D

p

⋃
{i}

.

8: for all item i ∈ F do
9: Output s = p

⋃
{i};

10: AFOPT-all(s, Ds, min sup);
11: PushRight(Ds);

TID Transactions

1 a, b, c, f, m, p
2 a, d, e, f, g
3 a, b, f, m, n
4 a, c, e, f, m, p
5 d, f, n, p
6 a, c, h, m, p

7 a, d, m, s

(a) D

TID Transactions

1 c, p, f, m, a
2 d, f, a
3 f, m, a
4 c, p, f, m, a
5 d, p, f
6 c, p, m, a
7 d, m, a

(b)

4

c:3 d:3 p:4 f:5 m:5 a:6

p
f
m

a

4

p
f
m

a

3

f
m

a

2

p

f

2

f

a

2

m

a

m:1

a:1

header table

(c)

Figure 2. Conditional DB Representation

cording to the density of conditional databases. Three struc-
tures are used: (1) array, (2) AFOPT-tree, and (3) buck-
ets. As aforementioned, these three structures are suit-
able for different situations. Bucket counting technique
is proper and extremely efficient when the number of dis-
tinct frequent items is around 10. Tree structure is bene-
ficial when conditional databases are dense. Array struc-
ture is favorable when conditional databases are sparse.
We use four parameters to control when to use these three
structures as follows: (1) frequent itemsets containing only
top-bucket size frequent items are counted using buck-
ets; (2) if the minimum support threshold is greater than
tree min sup or average support of all frequent items is
no less than tree avg sup, then all the rest conditional
databases are represented using AFOPT-tree; otherwise (3)
the conditional databases of the next tree alphabet size

most frequent items are represented using AFOPT-tree, and
the rest conditional databases are represented using arrays.

Figure 2 shows a transactional database D and the ini-
tial conditional databases constructed with min sup=40%.
There are 6 frequent items {c:3, d:3, p:4, f :5, m:5,a:6}.
Figure 2(b) shows the projected database after remov-
ing infrequent items and sorting. The values of
the parameters for conditional database construction are
set as follows: bucket size=2, tree alphabet size=2,
tree min sup=50%, tree avg sup=60%. The frequent
itemsets containing only m and a are counted using buck-

ets of size 4 (=2bucket size). The conditional databases of
f and p are represented by AFOPT-tree. The conditional
databases of item c and d are represented using arrays. From
our experience, the bucket size parameter can choose a
value around 10. A value between 20 and 200 will be safe
for tree alphabet size parameter. We set tree min sup

to 5% and tree avg sup to 10% in our experiments.
Table 3 shows the size, construction time (build col-

umn) and push-right time if applicable, of the initial struc-
ture constructed from original database by AFOPT, H-Mine
and FP-growth algorithms. We set bucket size to 8 and
tree alphabet size to 20 for AFOPT algorithm. The ini-
tial structure of AFOPT includes all three structures. The
array structure in AFOPT algorithm simply stores all items
in a transaction. Each node in hyper-structure stores three
pieces of information: an item, a pointer pointing to the
next item in the same transaction and a pointer pointing to
the same item in another transaction. Therefore the size of
hyper-structure is approximately 3 times larger than the ar-
ray structure used in AFOPT. A node in AFOPT-tree main-
tains only a child pointer and a sibling pointer, while a FP-
tree node maintains two more pointers for bottom-up traver-
sal: a parent pointer and a node link. AFOPT consumes the
least amount of space on almost all tested datasets.

4 Mining Frequent Closed Itemsets
The complete set of frequent itemsets can be very large.

It has been shown that it contains many redundant informa-
tion [11, 18]. Some works [11, 18, 13, 16, 8] put efforts
on mining frequent closed itemsets to reduce output size.
An itemset is closed if all of its supersets have a lower sup-
port than it. The set of frequent closed itemsets is the min-
imum informative set of frequent itemsets. In this section,
we describe how to extend Algorithm 1 to mine only fre-
quent closed itemsets. For more details, please refer to [8].

4.1 Removing non-closed itemsets
Non-closed itemsets can be removed either in a postpro-

cessing phase, or during mining process. The second strat-
egy can help avoid unnecessary mining cost. Non-closed
frequent itemsets are removed based on the following two
lemmas (see [8] for proof of these two lemmas).

Lemma 1 In Algorithm 1, an itemset p is closed if and only
if two conditions hold: (1) no existing frequent itemsets is a
superset of p and is as frequent as p; (2) all the items in Dp

have a lower support than p.

Lemma 2 In Algorithm 1, if a frequent itemset p is not
closed because condition (1) in Lemma 1 does not hold,
then none of the itemsets mined from Dp can be closed.

We check whether there exists q such that p ⊂ q and
sup(p)=sup(q) before mining Dp. If such q exists, then
there is no need to mine Dp based on Lemma 2 (line 10).
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Datasets AFOPT H-Mine FP-growth
size build pushright Size build pushright size build

T10I4D100k (0.01%) 5116 kb 0.55s 0.37s 11838 kb 0.68s 0.19s 20403 kb 1.83s
T40I10D100k (0.5%) 16535 kb 1.85s 1.91s 46089 kb 2.10s 1.42s 104272 kb 6.16s

BMS-POS (0.05%) 17264 kb 2.11s 1.43s 38833 kb 2.58s 1.00s 47376 kb 6.64s
BMS-WebView-1 (0.06%) 711 kb 0.12s 0.01s 1736 kb 0.17s 0.01s 1682 kb 0.27s

chess (45%) 563 kb 0.04s 0.01s 1150 kb 0.05s 0.03s 1339 kb 0.12s
connect-4 (75%) 35 kb 0.73s 0.01s 22064 kb 1.15s 0.55s 92 kb 2.08s
mushroom (5%) 1067 kb 0.08s 0.04s 2120 kb 0.10s 0.03s 988 kb 0.17s

pumsb (70%) 375 kb 0.82s 0.02s 17374 kb 1.15s 0.43s 1456 kb 2.26s

Table 3. Comparison of Initial Structures

Thus the identification of a non-closed itemsets not only re-
duces output size, but also avoids unnecessary mining cost.
Based on pruning condition (2) in Lemma 1, we can check
whether an item i ∈ F appears in every transaction of Dp.
If such i exists, then there is no need to consider the frequent
itemsets that do not contain i when mining Dp. In other
words, we can directly perform mining on D

p
⋃

{i} instead
of Dp (line 3-4). The efforts for mining D

p
⋃

{j}, j 6= i are
saved. The pseudo-code for mining frequent closed item-
sets is shown in Algorithm 2.

Algorithm 2 AFOPT-close Algorithm
Input:

p is a frequent itemset
Dp is the conditional database of p

min sup is the minimum support threshold;
Description:
1: Scan Dp count frequent items, F ={i1, i2,· · ·, in};
2: Sort items in F in ascending order of their frequencies;
3: I = {i|i ∈ F and support(p

⋃
{i}) = support(p)};

4: F = F − I; p = p
⋃

I;
5: for all transaction t ∈ Dp do
6: remove infrequent items from t, and sort remaining items according

to their orders in F ;
7: let i be the first item of t, insert t into D

p

⋃
{i}

.

8: for all item i ∈ F do
9: s = p

⋃
{i};

10: if s is closed then
11: Output s;
12: AFOPT-close(s, Ds, min sup);
13: PushRight(Ds);

Frequent
Closed Itemsets

d:3,p:4,f:5,a:6

pf:3,fa:4, ma: 5

fma: 3

cpma:3

(a)

c:3 d:3 p:4 f:5 m:5 a:6

f:3 m:3 a:4

a:3

a:5

pma:3

(b) CFP-tree

c

d

p

f

m

a

4

1

4 1

2 0 0

4 0 0

4 0 0 0

(c)

Figure 3. CFP-tree and Two-layer Hash Map

4.2 Closed itemset checking
During the mining process, we store all existing frequent

closed itemsets in a tree structure, called Condensed Fre-
quent Pattern tree or CFP-tree for short [8]. We use the

CFP-tree to check whether an itemset is closed. An exam-
ple of CFP-tree is shown in Figure 3(b) which stores all
the frequent closed itemsets in Figure 3(a). They are mined
from the database shown in Figure 2(a) with support 40%.

Each CFP-tree node is a variable-length array, and all
the items in the same node are sorted in ascending order of
their frequencies. A path in the tree starting from an entry
in the root node represents a frequent itemset. The CFP-
tree has two properties: the left containment property and
the Apriori property. The Apriori Property is that the sup-
port of any child of a CFP-tree entry cannot be greater than
the support of that entry. The Left Containment Property is
that the item of an entry E can only appear in the subtrees
pointed by entries before E or in E itself. The superset of
an itemset p with support s can be efficiently searched in the
CFP-tree based on these two properties. The apriori prop-
erty can be exploited to prune subtrees pointed by entries
with support less than s. The left containment property can
be utilized to prune subtrees that do not contain all items
in p. We also maintain a hash-bitmap in each entry to indi-
cate whether an item appears in the subtree pointed by that
entry to further reduce searching cost. The superset search
algorithm is shown in Algorithm 3. BinarySearch(cnode,
s) returns the first entry in a CFP-tree node with support no
less than s. Algorithm 3 do not require the whole CFP-tree
to be in main memory because it is also very efficient on
disk. Moreover, the CFP-tree structure is a compact repre-
sentation of the frequent closed itemsets, so it has a higher
chance to be held in memory than flat representation.

Although searching in CFP-tree is very efficient, it is
still costly when CFP-tree is large. Inspired by the two-
layer structure adopted by CLOSET+ algorithm[16] for
subset checking, we use a two-layer hash map to check
whether an itemset is closed before searching in CFP-
tree. The two-layer hash map is shown in Figure 3(c).
We maintain a hash map for each item. The hash map
of item i is denoted by i.hashmap. The length of the
hash map of an item i is set to min{sup(i)-min sup,
max hashmap len}, where max hashmap len is a pa-
rameter to control the maximal size of the hash maps and
min sup=min{sup(i)|i is frequent}. Given an itemset
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Algorithm 3 Search Superset Algorithm
Input:

l is a frequent itemset
cnode the CFP+-tree node pointed by l

s is the minimum support threshold
I is a set of items to be contained in the superset

Description:
1: if I = φ then
2: return true;
3: Ē = the first entry of cnode such that Ē.item ∈ I;
4: E′ = BinarySearch(cnode, s);
5: for all entry E ∈ cnode, E between E′ and Ē do
6: l′=l

⋃
{E.item};

7: if E.child 6= NULL AND all items in I − {E.item} are in
E.subtree then

8: found = Search Superset(l′, E.child, s, I − {E.item});
9: if found then

10: return true;
11: else if I − {E.item} = φ then
12: return true;
13: return false;

p = {i1, i2, · · · , il}, p is mapped to ij .hashmap[(sup(p)−
min sup)%max hashmap len], j = 1, 2, · · · , l. An en-
try in a hash map records the maximal length of the item-
sets mapped to it. For example, itemset {c, p,m, a} set the
first entry of c.hashmap, p.hashmap, m.hashmap and
a.hashmap to 4. Figure 3(c) shows the status of the two-
layer hash map before mining Df . An itemset p must be
closed if any of the entry it mapped to contains a lower value
than its length. In such cases there is no need to search in
CFP-tree. The hash map of an item i can be released af-
ter all the frequent itemsets containing i are mined because
they will not be used in later mining. For example, when
mining Df , the hash map of items c, d and p can be deleted.

5 Mining Maximal Frequent Itemsets
The problem of mining maximal frequent itemsets can

be viewed as given a minimum support threshold min sup,
finding a border through the search space tree such that all
the nodes below the border are infrequent and all the nodes
above the border are frequent. The goal of maximal fre-
quent itemsets mining is to find the border by counting sup-
port for as less as possible itemsets. Existing maximal algo-
rithms [19, 7, 1, 4, 5] adopted various pruning techniques to
reduce the search space to be explored.

5.1 Pruning techniques
The most effective techniques are based on the following

two lemmas to prune a whole branch from search space tree.

Lemma 3 Given a frequent itemset p, if p
⋃

cand exts(p)
is frequent but not maximal, then none of the frequent item-
sets mined from Dp and from p’s right sibling’s conditional
databases can be maximal because all of them are subsets
of p

⋃
cand exts(p).

Lemma 4 Given a frequent itemset p, if p
⋃

freq exts(p)
is frequent but not maximal, then none of the frequent item-
sets mined from Dp can be maximal because all of them are
subsets of p

⋃
freq exts(p).

Based on Lemma 3, before mining Dp, we can first
check whether p

⋃
cand exts(p) is frequent but not max-

imal. This can be done by two techniques.
Superset Pruning Technique: It is to check whether

there exists some maximal frequent itemset such that it is a
superset of p

⋃
cand exts(p). Like frequent closed itemset

mining, subset checking can be challenging when the num-
ber of maximal itemsets is large. We will discuss this issue
in next subsection.

Lookahead Technique: It is to check whether
p

⋃
cand exts(p) is frequent when count frequent items in

Dp. If Dp is represented by AFOPT-tree, the lookahead op-
eration can be accomplished by simply looking at the left-
most branch of AFOPT-tree. If p

⋃
cand exts(p) is fre-

quent, then the length of the left-most branch is equal to
|cand exts(p)|, and the support of the leaf node of the left-
most branch is no less than min sup.

If the superset pruning technique and lookahead tech-
nique fail, then based on Lemma 4 we can use superset
pruning technique to check whether p

⋃
freq exts(p) is

frequent but not maximal. Two other techniques are adopted
in our algorithm.

Excluding items appearing in every transaction of Dp

from subsequent mining: Like frequent closed itemset
mining, if an item i appears in every transaction of Dp, then
a frequent itemset q mined from Dp and not containing i

cannot be maximal because q
⋃
{i} is frequent.

Single Path Trimming: If Dp is represented by AFOPT-
tree and it has only one child i, then we can append i to p

and remove it from subsequent mining.

5.2 Subset checking
When do superset prunning, to check against all fre-

quent maximal itemsets can be costly when the number
of maximal itemsets is large. Zaki et. al proposed a pro-
gressive focusing technique for subset checking [5]. The
observation behind the progressive focusing technique is
that only the maximal frequent itemsets containing p can
be a superset of p

⋃
cand exts(p) or p

⋃
freq exts(p).

The set of maximal frequent itemsets containing p is called
the local maximal frequent itemsets with respect to p, de-
noted as LMFIp. When check whether p

⋃
cand exts(p)

or p
⋃

freq exts(p) is a subset of some existing maxi-
mal frequent itemsets, we only need to check them against
LMFIp. The frequent itemsets in LMFIp can either come
from p’s parent’s LMFI, or from p’s left-siblings’ LMFI.
The construction of LMFIs is very similar to the construc-
tion of conditional databases. The construction consists of
two steps: (1) projecting: after all frequent items F in Dp
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Figure 4. Performance Comparison of FI Mining Algorithms

Data Sets Size #Trans #Items MaxTL AvgTL
T10I4D100k (0.01%) 3.93M 100000 870 30 10.10
T40I10D100k (0.5%) 15.12M 100000 942 78 39.61
BMS-POS (0.05%) 11.62MB 515597 1657 165 6.53

BMS-WebView-1 (0.06%) 1.28M 59601 497 267 2.51
chess (45%) 0.34M 3196 75 37 37.00

connect-4 (75%) 9.11M 67557 129 43 43.00
mushroom (5%) 0.56M 8124 119 23 23.00

pumsb (70%) 16.30M 49046 2113 74 74.00

Table 4. Datasets

are counted, ∀s ∈LMFIp, s is put into LMFI
p
⋃

{i}, where
i is the first item in F appears in s; (2) push-right: after
all the maximal frequent itemsets containing p are mined,
∀s ∈LMFIp, s is put into LMFIq if q is the first right sib-
ling of p containing an item in s. In our implementation,
we use pseudo projection technique to generate LMFIs, i.e.
LMFIp is a collection of pointers pointing to those maximal
itemsets containing p.

6 Experimental results
In this section, we compare the performance of our al-

gorithms with other FIM algorithms. All the experiments
were conducted on a 1Ghz Pentium III with 256MB mem-
ory running Mandrake Linux.

Table 4 shows some statistical information about the
datasets used for performance study. All the datasets were
downloaded from FIMI’03 workshop web site. The fifth
and sixth columns are maximal and average transaction
length. These statistics provide some rough description of
the density of the datasets.

6.1 Mining all frequent itemsets
We compared the efficiency of AFOPT-all algorithm

with Apriori, DCI, FP-growth, H-Mine and Eclat algo-
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Figure 5. Scalability Study

rithms. The Apriori and Eclat algorithms we used are im-
plemented by Christian Borgelt. DCI was downloaded from
its web site. We obtained the source code of FP-growth
from its authors. H-Mine was implemented by ourselves.
We ran H-Mine only on several sparse datasets since it was
designed for sparse datasets and it changes to use FP-tree
on dense datasets. Figure 4 shows the running time of all
algorithms over datasets shown in Table 4. When the min-
imum support threshold is very low, an intolerable number
of frequent itemsets can be generated. So when minimum
support threshold reached some very low value, we turned
off the output. This minimum support value is called out-
put threshold, and they are shown on top of each figure.

With high minimum support threshold, all algorithms
showed comparable performance. When minimum sup-
port threshold was lowered, the gaps between algorithms
increased. The two candidate generate-and-test approaches,
Apriori and DCI, showed satisfactory performance on sev-
eral sparse datasets, but took thousands of seconds to ter-
minate on dense datasets due to high cost for generat-
ing and testing a large number of candidate itemsets. H-
Mine demonstrated similar performance with FP-growth on
dataset T10I4D100k, but it was slower than FP-growth on
the other three sparse datasets. H-Mine uses pseudo con-
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Figure 6. Performance Comparison of FCI Mining Algorithms

struction strategy, which cannot reduce traversal cost as ef-
fective as physical construction strategy. Eclat uses verti-
cal mining techniques. Support counting is performed effi-
ciently by transaction id list join. But Eclat is not scale well
with respect to the number of transactions in a database.
The running time of AFOPT-all was rather stable over all
tested datasets, and it outperformed other algorithms.

6.2 Scalability
We studied the scalability of our algorithm by perturb-

ing the IBM synthetic data generator along two dimensions:
the number of transactions was varied from 200k to 1000k
and the average transaction length was varied from 10 to
50. The default values of these two parameters were set
to 1000k and 40 respectively. We compared our algorithm
with algorithm DCI. Other algorithms took long time to fin-
ish on large datasets, so we exclude them from comparison.
Figure 5 shows the results when varying the two parameters.

6.3 Mining frequent closed itemsets
We compared AFOPT-close with MAFIA [4] and Apri-

ori algorithms. Both algorithms have an option to gen-
erate only closed itemsets. We denoted these two algo-
rithms as Apriori-close and MAFIA-close respectively in
figures. MAFIA was downloaded from its web site. We
compared with Apriori-close only on sparse datasets be-
cause Apriori-close requires a very long time to terminate
on dense datasets. On several sparse datasets, AFOPT-
close and Apriori-close showed comparable performance.
Both of them were orders of magnitude faster than MAFIA-
close. MAFIA-close uses vertical mining technique. It uses
bitmaps to represent tid lists. AFOPT-close showed better
performance on tested dense datasets due to its adaptive na-
ture and the efficient subset checking techniques described
in Section 4. On dense datasets, AFOPT-close uses tree

structure to store conditional databases. The tree structure
has apparent advantages on dense datasets because many
transactions share their prefixes.

6.4 Mining maximal frequent itemsets
We compared AFOPT-max with MAFIA and Apriori

algorithms. The Apriori algorithm also has an option to
produce only maximal frequent itemsets. It is denoted as
“Apriori-max” in figures. Again we only compare with
it on sparse datasets. Apriori-max explores the search
space in breadth-first order. It finds short frequent item-
sets first. Maximal frequent itemsets are generated in a
post-processing phase. Therefore Apriori-max is infeasi-
ble when the number of frequent itemsets is large even if
it adopts some pruning techniques during the mining pro-
cess. AFOPT-max and MAFIA generate frequent itemsets
in depth-first order. Long frequent itemsets are mined first.
All the subsets of a long maximal frequent itemsets can
be pruned from further consideration by using the super-
set pruning and lookahead technique. AFOPT-max uses
tree structure to represent dense conditional databases. The
AFOPT-tree introduces more pruning capability than tid list
or tid bitmap. For example, if a conditional database can
be represented by a single branch in AFOPT-tree, then the
single branch will be the only one possible maximal item-
set in the conditional database. AFOPT-max also benefits
from the progressive focusing technique for superset prun-
ing. MAFIA was very efficient on small datasets, e.g chess
and mushroom when the length of bitmap is short.

7 Conclusions
In this paper, we revisited the frequent itemset mining

problem and focused on investigating the algorithmic per-
formance space of the pattern growth approach. We iden-
tified four dimensions in which existing pattern growth al-
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Figure 7. Performance Comparison of MFI Mining Algorithms

gorithms differ: (1) item search order: static lexicograph-
ical order or ascending frequency order; (2) conditional
database representation: tree-based structure or array-based
structure; (3) conditional database construction strategy:
physical construction or pseudo construction; and (4) tree
traversal strategy: bottom-up or top-down. Existing algo-
rithms adopted different strategies on these four dimensions
in order to reduce the total number of conditional databases
and the mining cost of each individual conditional database.

we described an efficient pattern growth algorithm
AFOPT in the paper. It adaptively uses three different struc-
tures: arrays, AFOPT-tree and buckets, to represent condi-
tional databases according to the density of a conditional
database. Several parameters were introduced to control
which structure should be used for a specific conditional
database. We showed that the adaptive conditional database
representation strategy requires less space than using array-
based structure or tree-based structure solely. We also ex-
tended AFOPT algorithm to mine closed and maximal fre-
quent itemsets, and described how to incorporate pruning
techniques into AFOPT framework. Efficient subset check-
ing techniques for both closed and maximal frequent item-
sets mining were presented. A set of experiments were con-
ducted to show the efficiency of the proposed algorithms.
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