
Probabilistic Iterative Expansion of Candidates
in Mining Frequent Itemsets

Attila Gyenesei and Jukka Teuhola
Turku Centre for Computer Science, Dept. of Inf. Technology, Univ. of Turku, Finland

Email: {gyenesei,teuhola}@it.utu.fi

Abstract

A simple new algorithm is suggested for frequent
itemset mining, using item probabilities as the basis for
generating candidates. The method first finds all the
frequent items, and then generates an estimate of the
frequent sets, assuming item independence. The candi-
dates are stored in a trie where each path from the root to
a node represents one candidate itemset. The method
expands the trie iteratively, until all frequent itemsets are
found. Expansion is based on scanning through the data
set in each iteration cycle, and extending the subtries
based on observed node frequencies. Trie probing can be
restricted to only those nodes which possibly need exten-
sion. The number of candidates is usually quite moderate;
for dense datasets 2-4 times the number of final frequent
itemsets, for non-dense sets somewhat more. In practical
experiments the method has been observed to make
clearly fewer passes than the well-known Apriori method.
As for speed, our non-optimised implementation is in some
cases faster, in some others slower than the comparison
methods.

1. Introduction

We study the well-known problem of finding frequent
itemsets from a transaction database, see [2]. A trans-
action in this case means a set of so-called items. For
example, a supermarket basket is represented as a trans-
action, where the purchased products represent the items.
The database may contain millions of such transactions.
The frequent itemset mining is a task, where we should
find those subsets of items that occur at least in a given
minimum number of transactions. This is an important
basic task, applicable in solving more advanced data
mining problems, for example discovering association
rules [2]. What makes the task difficult is that the number
of potential frequent itemsets is exponential in the number
of distinct items.

In this paper, we follow the notations of Goethals [7].
The overall set of items is denoted by I. Any subset X ⊆ I
is called an itemset. If X has k items, it is called a k-

itemset. A transaction is an itemset identified by a tid. A
transaction with itemset Y is said to support itemset X, if
X ⊆ Y. The cover of an itemset X in a database D is the set
of transactions in D that support X. The support of itemset
X is the size of its cover in D. The relative frequency
(probability) of itemset X with respect to D is

 D
DXSupportDXP),(),(= (1)

An itemset X is frequent if its support is greater than or
equal to a given threshold σ. We can also express the
condition using a relative threshold for the frequency:
P(X, D) ≥ σrel , where 0 ≤ σrel ≤ 1. There are variants of
the basic ‘all-frequent-itemsets’ problem, namely the
maximal and closed itemset mining problems, see [1, 4, 5,
8, 12]. However, here we restrict ourselves to the basic
task.

A large number of algorithms have been suggested for
frequent itemset mining during the last decade; for
surveys, see [7, 10, 15]. Most of the algorithms share the
same general approach: generate a set of candidate
itemsets, count their frequencies in D, and use the
obtained information in generating more candidates, until
the complete set is found. The methods differ mainly in
the order and extent of candidate generation. The most
famous is probably the Apriori algorithm, developed
independently by Agrawal et al. [3] and Mannila et al.
[11]. It is a representative of breadth-first candidate
generation: it first finds all frequent 1-itemsets, then all
frequent 2-itemsets, etc. The core of the method is clever
pruning of candidate k-itemsets, for which there exists a
non-frequent k-1-subset. This is an application of the
obvious monotonicity property: All subsets of a frequent
itemset must also be frequent. Apriori is essentially based
on this property.

The other main candidate generation approach is depth-
first order, of which the best-known representatives are
Eclat [14] and FP-growth [9] (though the ‘candidate’
concept in the context of FP-growth is disputable). These
two are generally considered to be among the fastest
algorithms for frequent itemset mining. However, we shall
mainly use Apriori as a reference method, because it is
technically closer to ours.

Most of the suggested methods are analytical in the
sense that they are based on logical inductions to restrict
the number of candidates to be checked. Our approach
(called PIE) is probabilistic, based on relative item
frequencies, using which we compute estimates for
itemset frequencies in candidate generation. More
precisely, we generate iteratively improving approxi-
mations (candidate itemsets) to the solution. Our general
endeavour has been to develop a relatively simple method,
with fast basic steps and few iteration cycles, at the cost of
somewhat increased number of candidates. However,
another goal is that the method should be robust, i.e. it
should work reasonably fast for all kinds of datasets.

2. Method description

Our method can be characterized as a generate-and-test
algorithm, such as Apriori. However, our candidate
generation is based on probabilistic estimates of the
supports of itemsets. The testing phase is rather similar to
Apriori, but involves special book-keeping to lay a basis
for the next generation phase.

We start with a general description of the main steps of
the algorithm. The first thing to do is to determine the
frequencies of all items in the dataset, and select the
frequent ones for subsequent processing. If there are m
frequent items, we internally identify them by numbers
0, …, m-1. For each item i, we use its probability (relative
frequency) P(i) in the generation of candidates for
frequent itemsets.

The candidates are represented as a trie structure,
which is normal in this context, see [7]. Each node is
labelled by one item, and a path of labels from the root to
a node represents an itemset. The root itself represents the
empty itemset. The paths are sorted, so that a subtrie
rooted by item i can contain only items > i. Note also that
several nodes in the trie can have the same item label, but
not on a single path. A complete trie, storing all subsets of
the whole itemset, would have 2m nodes and be
structurally a binomial tree [13], where on level j there are

)(m
j nodes, see Fig. 1 for m = 4.
The trie is used for book-keeping purposes. However, it

is important to avoid building the complete trie, but only
some upper part of it, so that the nodes (i.e. their root
paths) represent reasonable candidates for frequent sets. In
our algorithm, the first approximation for candidate
itemsets is obtained by computing estimates for their
probabilities, assuming independence of item occurrences.
It means that, for example, for an itemset {x, y, z} the
estimated probability is the product P(x)P(y)P(z). Nodes
are created in the trie from root down along all paths as
long as the path-related probability is not less that the
threshold σrel. Note that the probability values are
monotonically non-increasing on the way down. Fig. 2

Figure 1. The complete trie for 4 items.

Figure 2. An initial trie for the transaction set
{(0, 3), (1, 2), (0, 1, 3), (1)}, with minimum support
threshold σ = 1/6. The virtual nodes with pro-
babilities < 1/6 are shown using dashed lines.

shows an example of the initial trie for a given set of
transactions (with m = 4). Those nodes of the complete
trie (Fig. 1) that do not exist in the actual trie are called
virtual nodes, and marked with dashed circles in Fig. 2.

The next step is to read the transactions and count the
true number of occurrences for each node (i.e. the related
path support) in the trie. Simultaneously, for each visited
node, we maintain a counter called pending support (PS),
being the number of transactions for which at least one

3/16

1/4

2 3 3

1 2 3

0

2

3

3

1

3

2 3

3

2 3 3

1 2 3

0

2

3

3

1

3

2 3

3

1/2 3/4 1/2

3/8 1/8 1/4 3/8 1/8

3/32 3/16 1/16 3/32

3/64

virtual child of the node would match. The pending
support will be our criterion for the expansion of the node:
If PS(x) ≥ σ, then it is possible that a virtual child of node
x is frequent, and the node must be expanded. If there are
no such nodes, the algorithm is ready, and the result can
be read from the trie: All nodes with support ≥ σ represent
frequent itemsets.

Trie expansion starts the next cycle, and we iterate until
the stopping condition holds. However, we must be very
careful in the expansion: which virtual nodes should we
materialize (and how deep, recursively), in order to avoid
trie ‘explosion’, but yet approach the final solution? Here
we apply item probabilities, again. In principle, we could
take advantage of all information available in the current
trie (frequencies of subsets, etc.), as is done in the Apriori
algorithm and many others. However, we prefer simpler
calculation, based on global probabilities of items.

Suppose that we have a node x with pending support
PS(x) ≥ σ. Assume that it has virtual child items v0, v1, …,
vs-1 with global probabilities P(v0), P(v1), …, P(vs-1). Every
transaction contributing to PS(x) has a match with at least
one of v0, v1, …, vs-1. The local probability (LP) for a
match with vi is computed as follows:

)(ivLP

)10(matches, , v One of v matches |iv P …=

 matches), , vP(One of v

 matches, vOne of v matchesivP

…

…∧
=

10

))10()((

)10(

)(

 matches, , vOne of vP

 matchesivP

…
=

))(1())1(1))(0(1(1

)(

svPvPvP

 ivP

−−−−
=

K
 (2)

Using this formula, we get an estimated support ES(vi):

))(()()(iVParentPSivLPivES = (3)

If ES(vi) ≥ σ, then we conclude that vi is expected to be
frequent. However, in order to guarantee a finite number
of iterations in the worst case, we have to relax this
condition a bit. Since the true distribution may be very
skewed, almost the whole pending support may belong to
only one virtual child. To ensure convergence, we apply
the following condition for child expansion in the kth
iteration,

σα k
ivES ≥)((4)

with some constant α between 0 and 1. In the worst case
this will eventually (when k is high enough) result in
expansion, to get rid of a PS-value ≥ σ. In our tests, we
used the heuristic value α = average probability of fre-
quent items. The reasoning behind this choice is that it

speeds up the local expansion growth by one level, on the
average (k levels for αk). This acceleration restricts the
number of iterations efficiently. The largest extensions are
applied only to the ‘skewest’ subtries, so that the total size
of the trie remains tolerable. Another approach to choose
α would be to do a statistical analysis to determine confi-
dence bounds for ES. However, this is left for future work.

Fig. 3 shows an example of trie expansion, assuming
that the minimum support threshold σ = 80, α = 0.8, and k
= 1. The item probabilities are assumed to be P(y) = 0.7,
P(z) = 0.5, and P(v) = 0.8. Node t has a pending support of
100, related to its two virtual children, y and z. This means
that 100 transactions contained the path from root to t,
plus either or both of items y and z, so we have to test for
expansion. Our formula gives y a local probability LP(y) =
0.7 / (1−(1−0.7)(1−0.5)) ≈ 0.82, so the estimated support
is 82 > α⋅σ = 64, and we expand y. However, the local
probability of z is only ≈ 0.59, so its estimated support is
59, and it will not be expanded.

Figure 3. An example of expansion for probabili-
ties P(y) = 0.7, P(z) = 0.5, and P(v) = 0.8.

When a virtual node (y) has been materialized, we
immediately test also its expansion, based on its ES-value,
recursively. However, in the recursive steps we cannot
apply formula (2), because we have no evidence of the
children of y. Instead, we apply the unconditional
probabilities of z and v in estimation: LP(z) = 82⋅0.5 = 41
< α⋅σ = 64, and LP(v) = 82⋅0.8 = 65.6 > 64. Node v is
materialized, but z is not. Expansion test continues down
from v. Thus, both in initialization of the trie and in its
expansion phases, we can create several new levels (i.e.
longer candidates) at a time, contrary to e.g. the base
version of Apriori. It is true that also Apriori can be
modified to create several candidate levels at a time, but at
the cost of increased number of candidates.

After the expansion phase the iteration continues with
the counting phase, and new values for node supports and
pending supports are determined. The two phases alternate

t

…

PS=100

ES=82 ES=59

ES=41 ES=65.6

x y z

z v

until all pending supports are less than σ. We have given
our method the name ‘PIE’, reflecting this Probabilistic
Iterative Expansion property.

3. Elaboration

The above described basic version does a lot of extra
work. One observation is that as soon as the pending
support of some node x is smaller than σ, we can often
‘freeze’ the whole subtrie, because it will not give us
anything new; we call it ‘ready’. The readiness of nodes
can be checked easily with a recursive process: A node x
is ready if PS(x) < σ and all its real children are ready.
The readiness can be utilized to reduce work both in
counting and expansion phases. In counting, we process
one transaction at a time and scan its item subsets down
the trie, but only until the first ready node on each path.
Also the expansion procedure is skipped for ready nodes.
Finally, a simple stopping condition is when the root
becomes ready.

Another tailoring, not yet implemented, relates to the
observation that most of the frequent itemsets are found in
the first few iterations, and a lot of I/O effort is spent to
find the last few frequent sets. For those, not all
transactions are needed in solving the frequency. In the
counting phase, we can distinguish between relevant and
irrelevant transactions. A transaction is irrelevant, if it
does not increase the pending support value of any non-
ready node. If the number of relevant transactions is small
enough, we can store them separately (in main memory or
temporary file) during the next scanning phase.

Our implementation of the trie is quite simple; saving
memory is considered, but not as the first preference. The
child linkage is implemented as an array of pointers, and
the frequent items are renumbered to 0, …, m-1 (if there
are m frequent items) to be able to use them as indices to
the array. A minor improvement is that for item i, we need
only m-i-1 pointers, corresponding to the possible children
i+1, …, m-1.

The main restriction of the current implementation is
the assumption that the trie fits in the main memory.
Compression of nodes would help to some extent: Now
we reserve a pointer for every possible child node, but
most of them are null. Storing only non-null pointers
saves memory, but makes the trie scanning slower. Also,
we could release the ready nodes as soon as they are
detected, in order to make room for expansions. Of
course, before releasing, the related frequent itemsets
should be reported. However, a fully general solution
should work for any main memory and trie size. Some
kind of external representation should be developed, but
this is left for future work.

A high-level pseudocode of the current implementation
is given in the following. The recursive parts are not
coded explicitly, but should be rather obvious.

Algorithm PIE − Probabilistic iterative expansion of
candidates in frequent itemset mining

Input: A transaction database D, the minimum
support threshold σ.
Output: The complete set of frequent itemsets.

1. // Initial steps.
2. scan D and collect the set F of frequent items;
3. α := average probability of items in F;
4. iter := 0;

5. // The first generation of candidates, based on

 // item probabilities.
6. create a PIE-trie P so that it contains all such

 ordered subsets S ⊆ F for which
 Π(Prob(s∈S)) ⋅ |D| ≥ σ ; // Frequency test

7. set the status of all nodes of P to not-ready;

8. // The main loop: alternating count, test and
 // expand.

9. loop
10. // Scan the database and check readiness.
11. scan D and count the support and pending

 support values for non-ready nodes in P;
12. iter := iter + 1;
13. for each node p∈P do
14. if pending_support(p) < σ then
15. if p is a leaf then set p ready
16. else if the children of p are ready then
17. set p ready;
18. if root(P) is ready then exit loop;

19. // Expansion phase: Creation of subtries on

 // the basis of observed pending supports.
20. for each non-ready node p in P do
21. if pending_support(p) ≥ σ then
22. for each virtual child v of p do
23. compute local_prob(v) by formula (2);
24. estim_support(v) :=

 local_prob(v) ⋅ pending_support(p);
25. if estim_support(v) ≥ αiterσ then
26. create node v as the child of p;
27. add such ordered subsets S ⊆ F\{1..v}

 as descendant paths of v, for which
 Π(Prob(s∈S)) ⋅ estim_support(v)
 ≥ αiterσ ;

28. // Gather up results from the trie
29. return the paths for nodes p in P such that

 support(p) ≥ σ;
30. end

4. Experimental results

For verifying the usability of our PIE algorithm, we
used four of the test datasets made available to the
Workshop on Frequent Itemset Mining Implementations
(FIMI’03) [6]. The test datasets and some of their
properties are described in Table 1. They represent rather
different kinds of domains, and we wanted to include both
dense and non-dense datasets, as well as various numbers
of items.

Table 1. Test dataset description

Dataset #Transactions #Items
Chess 3 196 75
Mushroom 8 124 119
T40I10D100K 100 000 942
Kosarak 900 002 41 270

For the PIE method, the interesting statistics to be
collected are the number of candidates, depth of the trie,
and the number of iterations. These results are given in
Table 2 for selected values of σ, for the ‘Chess’ dataset.
We chose values of σ that keep the number of frequent
itemsets reasonable (extremely high numbers are probably
useless for any application). The table shows also the
number of frequent items and frequent sets, to enable
comparison with the number of candidates. For this dense
dataset, the number of candidates varies between 2-4
times the number of frequent itemsets. For non-dense
datasets the ratio is usually larger. Table 2 shows also the
values of the ‘security parameter’ α, being the average
probability of frequent items. Considering I/O perfor-
mance, we can see that the number of iteration cycles (=
number of file scans) is quite small, compared to the base
version of the Apriori method, for which the largest

frequent itemset dictates the number of iterations. This is
roughly the same as the trie depth, as shown in Table 2.

The PIE method can also be characterized by describ-
ing the development of the trie during the iterations. The
most interesting figures are the number of nodes and the
number of ready nodes, given in Table 3. Especially the
number of ready nodes implies that even though we have
rather many candidates (= nodes in the trie), large parts of
them are not touched in the later iterations.

Table 3. Development of the trie for dataset
‘Chess’, with three different values of σ.

σ Iteration #Frequent
sets found #Nodes #Ready

nodes
1 4 720 4 766 2 021
2 6 036 9 583 9 255
3 6 134 10 296 10 173

2600

4 6 135 10 516 10 516
1 15 601 15 760 5 219
2 20 344 34 995 25 631
3 20 580 47 203 46 952 2400

4 20 582 47 515 47 515
1 44 022 44 800 1 210
2 58 319 112 370 64 174
3 59 176 206 292 196 782
4 59 181 216 931 216 922

2200

5 59 181 216 943 216 943

For speed comparison, we chose the Apriori and FP-

growth implementations, provided by Bart Goethals [6].
The results for the four test datasets and for different
minimum support thresholds are shown in Table 4. The
processor used in the experiments was a 1.5 GHz Pentium
4, with 512 MB main memory. We used a g++ compiler,
using optimizing switch –O6. The PIE algorithm was
coded in C.

Table 2. Statistics from the PIE algorithm for dataset ‘Chess’.

σ #Frequent
items

#Frequent
sets Alpha #Candidates Trie

depth #Iterations #Apriori’s
iterations

3 000 12 155 0.970 400 6 3 6
2 900 13 473 0.967 1 042 8 4 7
2 800 16 1 350 0.953 2 495 8 4 8
2 700 17 3 134 0.947 5 218 9 4 8
2 600 19 6 135 0.934 10 516 10 4 9
2 500 22 11 493 0.914 18 709 11 4 10
2 400 23 20 582 0.907 47 515 12 4 11
2 300 24 35 266 0.900 131 108 13 4 12
2 200 27 59 181 0.877 216 943 14 5 13

Table 4. Comparison of execution times (in
seconds) of three frequent itemset mining

programs for four test datasets.

(a) Chess

σ #Freq.
sets Apriori FP-

growth PIE

3 000 155 0.312 0.250 0.125
2 900 473 0.469 0.266 0.265
2 800 1 350 0.797 0.297 1.813
2 700 3 134 1.438 0.344 6.938
2 600 6 135 3.016 0.438 14.876
2 500 11 493 10.204 0.610 26.360
2 400 20 582 21.907 0.829 78.325
2 300 35 266 42.048 1.156 203.828
2 200 59 181 73.297 1.766 315.562

(b) Mushroom

σ #Freq.
sets Apriori FP-

growth PIE

5 000 41 0.375 0.391 0.062
4 500 97 0.437 0.406 0.094
4 000 167 0.578 0.438 0.141
3 500 369 0.797 0.500 0.297
3 000 931 1.062 0.546 1.157
2 500 2 365 1.781 0.610 6.046
2 000 6 613 3.719 0.750 27.047
1 500 56 693 55.110 1.124 153.187

(c) T40I10D100K

σ #Freq.
sets Apriori FP-

growth PIE

20 000 5 2.797 6.328 0.797
18 000 9 2.828 6.578 1.110
16 000 17 3.001 7.250 1.156
14 000 24 3.141 8.484 1.187
12 000 48 3.578 14.750 1.906
10 000 82 4.296 23.874 4.344

8 000 137 7.859 41.203 11.796
6 000 239 20.531 72.985 29.671
4 000 440 35.282 114.953 68.672

(c) Kosarak

σ #Freq.
sets Apriori FP-

growth PIE

20 000 121 27.970 30.141 5.203
18 000 141 28.438 31.296 6.110
16 000 167 29.016 32.765 7.969
14 000 202 29.061 33.516 9.688
12 000 267 29.766 34.875 12.032
10 000 376 34.906 37.657 18.016

8 000 575 35.891 41.657 30.453
6 000 1 110 39.656 51.922 70.376

We can see that in some situations the PIE algorithm is

the fastest, in some others the slowest. This is probably a
general observation: the performance of most frequent
itemset mining algorithms is highly dependent on the data
set and threshold. It seems that PIE is at its best for sparse
datasets (such as T40I10D100K and Kosarak), but not so
good for very dense datasets (such as ‘Chess’ and
‘Mushroom’). Its speed for large thresholds probably
results from the simplicity of the algorithm. For smaller
thresholds, the trie gets large and the counting starts to
consume more time, especially with a small main memory
size.

One might guess that our method is at its best for
random data sets, because those would correspond to our
assumption about independent item occurrences. We
tested this with a dataset of 100 000 transactions, each of
which contained 20 random items out of 30 possible. The
results were rather interesting: For all tested thresholds for
minimum support, we found all the frequent itemsets in
the first iteration. However, verification of the complete-
ness required one or two additional iterations, with a
clearly higher number of candidates, consuming a
majority of the total time. Table 5 shows the time and
number of candidates both after the first and after the final
iteration. The stepwise growth of the values reveals the
levelwise growth of the trie. Apriori worked well also for
this dataset, being in most cases faster than PIE. Results
for FP-growth (not shown) are naturally much slower,
because randomness prevents a compact representation of
the transactions.

We wish to point out that our implementation was an
initial version, with no special tricks for speed-up. We are
convinced that the code details can be improved to make
the method still more competitive. For example, buffering
of transactions (or temporary files) were not used to
enhance the I/O performance.

5. Conclusions and future work

A probability-based approach was suggested for
frequent itemset mining, as an alternative to the ‘analytic’
methods common today. It has been observed to be rather
robust, working reasonably well for various kinds of
datasets. The number of candidate itemsets does not
‘explode’, so that the data structure (trie) can be kept in
the main memory in most practical cases.

The number of iterations is smallest for random
datasets, because candidate generation is based on just that
assumption. For skewed datasets, the number of iterations
may somewhat grow. This is partly due to our simplifying
premise that the items are independent. This point could
be tackled by making use of the conditional probabilities
obtainable from the trie. Initial tests did not show any
significant advantage over the basic approach, but a more

Table 5. Statistics from the PIE algorithm for a random dataset.

PIE
After iteration 1. After the last iteration (final) Apriori

σ #Freq.
sets #Freq.

sets
Time
(sec.) #Cand. #Cand. #Iter-

ations
Time
(sec.)

#Iter-
ations

Time
(sec.)

50 000 30 30 0.500 30 464 2 2.234 2 3.953
44 000 42 42 2.016 465 509 3 2.704 3 5.173
43 800 124 124 1.875 465 1 247 3 10.579 3 6.015
43 700 214 214 1.876 465 1 792 3 20.250 3 7.235
43 600 331 331 1.891 465 2 775 3 37.375 3 9.657
43 500 413 413 1.860 465 3 530 3 48.953 3 11.876
40 000 465 465 1.844 465 4 443 2 62.000 3 13.875
28 400 522 522 60.265 4 525 4 900 3 64.235 4 15.016
28 300 724 724 61.422 4 525 5 989 3 82.140 4 15.531
28 200 1 270 1 270 61.469 4 525 8 697 3 115.250 4 19.265
28 100 2 223 2 223 61.734 4 525 13 608 3 167.047 4 31.266
28 000 3 357 3 357 60.969 4 525 19 909 3 219.578 4 69.797

sophisticated probabilistic analysis might imply some
ways to restrict the number of candidates. The exploration
of these elaborations, as well as tuning the buffering, data
structure, and parameters, is left for future work.

References

 [1] R. Agrawal, C. Aggarwal, and V.V.V. Prasad, “Depth First

Generation of Long Patterns”, In R. Ramakrishnan, S.
Stolfo, R. Bayardo, and I. Parsa (eds.), Proc. of the Int.
Conf. on Knowledge Discovery and Data Mining, ACM,
Aug. 2000, pp. 108-118.

 [2] R. Agrawal, T. Imielinski, and A. Swami, “Mining Associ-

ation Rules Between Sets of Items in Large Databases”, In
P. Buneman and S. Jajodia (eds.), Proc. of ACM SIGMOD
Int. Conf. of Management of Data, May 1993, pp. 207-216.

 [3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules in Large Databases”, In J.B. Bocca, M.
Jarke, and C. Zaniolo (eds.), Proc. of the 20th VLDB Conf.,
Sept. 1994, pp. 487-499.

 [4] R.J. Bayardo, “Efficiently Mining Long Patterns from

Databases”, In L.M. Haas and A. Tiwary (eds.), Proc. of
the ACM SIGMOD Int. Conf. on Management of Data,
June 1998, pp. 85-93.

 [5] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: a

Maximal Frequent Itemset Algorithm for Transactional
Databases”, Proc. of IEEE Int. Conf. on Data Engineering,
April 2001, pp. 443-552.

 [6] Frequent Itemset Mining Implementations (FIMI’03)

Workshop website, http://fimi.cs.helsinki.fi, 2003.

 [7] B. Goethals, “Efficient Frequent Pattern Mining”, PhD

thesis, University of Limburg, Belgium, Dec. 2002.

 [8] K. Gouda and M.J. Zaki, “Efficiently Mining Maximal
Frequent Itemsets”, In N. Cercone, T.Y. Lin, and X. Wu
(eds.), Proc. of 2001 IEEE International Conference on
Data Mining, Nov. 2001, pp. 163-170.

 [9] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns

Without Candidate Generation”, In W. Chen, J. Naughton,
and P.A. Bernstein (eds.), Proc. of ACM SIGMOD Int.
Conf. on Management of Data, 2000, pp. 1-12.

[10] J. Hipp, U. Güntzer, and N. Nakhaeizadeh, “Algorithms

for Association Rule Mining - a General Survey and
Comparison”, ACM SIGKDD Explorations 2, July 2000,
pp. 58-65.

[11] H. Mannila, H. Toivonen, and A.I. Verkamo, “Efficient

Algorithms for Discovering Association Rules”, In U.M.
Fayyad and R. Uthurusamy (eds.), Proc. of the AAAI
Workshop on Knowledge Discovery in Databases, July
1994, pp. 181-192.

[12] J. Pei, J. Han, and R. Mao, “Closet: An Efficient Algo-

rithm for Mining Frequent Closed Itemsets”, Proc. of ACM
SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, May 2000, pp. 21-30.

[13] J. Vuillemin, “A Data Structure for Manipulating Priority

Queues”, Comm. of the ACM, 21(4), 1978, pp. 309-314.

[14] M.J. Zaki, “Scalable Algorithms for Association Mining”,

IEEE Transactions on Knowledge and Data Engineering
12 (3), 2000, pp. 372-390.

[15] Z. Zheng, R. Kohavi, and L. Mason, “Real World Perfor-

mance of Association Rule Algorithms”, In F. Provost and
R. Srikant (eds.), Proc. of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2001, pp. 401-406.

