
Efficiently Using Prefix-trees in Mining Frequent Itemsets

Gösta Grahne and Jianfei Zhu
Concordia University

Montreal, Canada
{grahne, jzhu}@cs.concordia.ca

Abstract

Efficient algorithms for mining frequent itemsets are
crucial for mining association rules. Methods for min-
ing frequent itemsets and for iceberg data cube computa-
tion have been implemented using a prefix-tree structure,
known as an FP-tree, for storing compressed information
about frequent itemsets. Numerous experimental results
have demonstrated that these algorithms perform extremely
well. In this paper we present a novel array-based tech-
nique that greatly reduces the need to traverse FP-trees,
thus obtaining significantly improved performance for FP-
tree based algorithms. Our technique works especially well
for sparse datasets.

Furthermore, we present new algorithms for a number
of common data mining problems. Our algorithms use
the FP-tree data structure in combination with our array
technique efficiently, and incorporates various optimization
techniques. We also present experimental results which
show that our methods outperform not only the existing
methods that use the FP-tree structure, but also all existing
available algorithms in all the common data mining prob-
lems.

1. Introduction

A fundamental problem for mining association rules is
to mine frequent itemsets (FI’s). In a transaction database,
if we know the support of all frequent itemsets, the asso-
ciation rules generation is straightforward. However, when
a transaction database contains large number of large fre-
quent itemsets, miningall frequent itemsets might not be a
good idea. As an example, if there is a frequent itemset with
size`, then all2` nonempty subsets of the itemset have to
be generated. Thus, a lot of work is focused on discover-
ing only all themaximal frequent itemsets(MFI’s). Unfor-
tunately, mining only MFI’s has the following deficiency.
From an MFI and its supports, we know that all its subsets
are frequent and the support of any of its subset is not less

thans, but we do not know the exact value of the support.
To solve this problem, another type of a frequent itemset,
the Closed Frequent Itemset(CFI), has been proposed. In
most cases, though, the number of CFI’s is greater than the
number of MFI’s, but still far less than the number of FI’s.

In this work we mine FI’s, MFI’s and CFI’s by efficiently
using the FP-tree, the data structure that was first introduced
in [6]. The FP-tree has been shown to be one of the most
efficient data structures for mining frequent patterns and for
“iceberg” data cube computations [6, 7, 9, 8].

The most important contribution of our work is a novel
technique that uses an array to greatly improve the perfor-
mance of the algorithms operating on FP-trees. We first
demonstrate that the use of our array-based technique dras-
tically speeds up the FP-growth method, since it now needs
to scan each FP-tree only once for each recursive call ema-
nating from it. We then use this technique and give a new
algorithm FPmax*, which extends our previous algorithm
FPmax, for mining maximal frequent itemsets. In FPmax*,
we use a variant of the FP-tree structure for subset testing,
and give number of optimizations that further reduce the
running time. We also present an algorithm, FPclose, for
mining closed frequent itemsets. FPclose uses yet another
variation of the FP-tree structure for checking the closed-
ness of frequent itemsets.

Finally, we present experimental results that demonstrate
the fact that all of our FP-algorithms outperform previously
known algorithms practically always.

The remaining of the paper is organized as follows. In
Section 2, we briefly review the FP-growth method, and
present our novel array technique that results in the greatly
improved method FPgrowth*. Section 3 gives algorithm
FPmax*, which is an extension of our previous algorithm
FPmax, for mining MFI’s. Here we also introduce our ap-
proach of subset testing needed in mining MFI’s and CFI’s.
In Section 4 we give algorithm FPclose, for mining CFI’s.
Experimental results are given in Section 5. Section 6 con-
cludes, and outlines directions of future research.

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Hanet al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.

a b c e f o
a c g
e i
a c d e g
a c e g l
e j
a b c e f p
a c d
a c e g m
a c e g n

(a)

root

e:8

Header table

item

Head of

node−links c:2

c:6 a:2

a:6

b:2 g:4

f:2 d:1

g:1 d:1

e:8

c:8

a:8

g:5

b:2

f:2

d:2

(b)

Figure 1. An Example FP-tree (minsup=20%)

To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
sentingi, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: ifX andY are two itemsets, the count
of itemsetX ∪ Y in the database is exactly that ofY in
the restriction of the database to those transactions contain-
ing X. This restriction of the database is called thecondi-
tional pattern baseof X, and the FP-tree constructed from
the conditional pattern base is calledX ’s conditional FP-
tree, which we denote byTX . We can view the FP-tree
constructed from the initial database asT∅, the conditional
FP-tree for∅. Note that for any itemsetY that is frequent in
the conditional pattern base ofX, the setX∪Y is a frequent
itemset for the original database.

Given an itemi in the header table of an FP-treeTX ,
by following the linked list starting ati in the header table
of TX , all branches that contain itemi are visited. These
branches form the conditional pattern base ofX ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-treeTX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches ofTX along the linked list ofi one more time
and inserting the corresponding itemsets inTX∪{i}. Note
that the order of items can be different inTX andTX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique

The main work done in the FP-growth method is travers-
ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each itemi in the header of a con-
ditional FP-treeTX , two traversals ofTX are needed for
constructing the new conditional FP-treeTX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base ofX ∪ {i}, and initializes the FP-treeTX∪{i} by con-
structing its header table. The second traversal constructs

the new treeTX∪{i}. We can omit the first scan ofTX by
constructing an arrayAX while buildingTX . The follow-
ing example will explain the idea. In Figure 1 (a), supposing
that the minimum support is 20%, after the first scan of the
original database, we sort the frequent items ase:8, c:8,a:8,
g:5, b:2, f :2,d:2. This order is also the order of items in the
header table ofT∅. During the second scan of the database
we will constructT∅, and an arrayA∅. This array will store
the counts of all 2-itemsets. All cells in the array are initial-
ized as 0.

�

�

�

�

�

�

� � � � � � � � � � �

	

	 �

� � � � �

 � � � �

 � � � � �

� � � � � � � � �

�

�

� � �

�

� � �

������ ����� ���

Figure 2. Two array examples

In A∅, each cell is a counter of a 2-itemset, cell
A∅[d, e] is the counter for itemset{d, e}, cell A∅[d, c]
is the counter for itemset{d, c}, and so forth. Dur-
ing the second scan for constructingT∅, for each trans-
action, first all frequent items in the transaction are ex-
tracted. Suppose these items form itemsetI. To insert
I into T∅, the items inI are sorted according to the or-
der in header table ofT∅. When we insertI into T∅,
at the same timeA∅[i, j] is incremented by 1 if{i, j}
is contained inI. For example, for the first transaction,
{a, b, c, e, f} is extracted (itemo is infrequent) and sorted
as e, c, a, b, f . This itemset is inserted intoT∅ as usual,
and at the same time,A∅[f, e], A∅[f, c], A∅[f, a], A∅[f, b],
A∅[b, a], A∅[b, c],A∅[b, e], A∅[a, e],A∅[a, c], A∅[c, e] are all
incremented by 1. After the second scan, arrayA∅ keeps the
counts of all pairs of frequent items, as shown in table (a)
of Figure 2.

Next, the FP-growth method is recursively called to mine
frequent itemsets for each item in header table ofT∅. How-
ever, now for each itemi, instead of traversingT∅ along
the linked list starting ati to get all frequent items ini’s
conditional pattern base,A∅ gives all frequent items fori.
For example, by checking the third line in the table forA∅,
frequent itemse, c, a for the conditional pattern base ofg
can be obtained. Sorting them according to their counts, we
get a, c, e. Therefore, for each itemi in T∅ the arrayA∅
makes the first traversal ofT∅ unnecessary, andT{i} can be
initialized directly fromA∅.

For the same reason, from a conditional FP-treeTX ,
when we construct a new conditional FP-tree forX ∪ {i},
for an item i, a new arrayAX∪{i} is calculated. Dur-
ing the construction of the new FP-treeTX∪{i}, the array

AX∪{i} is filled. For instance, in Figure 1, the cells of
arrayA{g} is shown in table (b) of Figure 2. This array
is constructed as follows. From the arrayA∅, we know
that the frequent items in the conditional pattern base of
{g} are, in order,a, c, e. By following the linked list of
g, from the first node we get{e, c, a} : 4, so it is inserted as
(a : 4, c : 4, e : 4) into the new FP-treeT{g}. At the same
time,A{g}[e, c], A{g}[e, a] andA{g}[c, a] are incremented
by 4. From the second node in the linked list,{c, a} : 1 is
extracted, and it is inserted as(a : 1, c : 1) into T{g}. At the
same time,A{g}[c, a] is incremented by 1. Since there are
no other nodes in the linked list, the construction ofT{g} is
finished, and arrayA{g} is ready to be used for construction
of FP-trees in next level of recursion. The construction of
arrays and FP-trees continues until the FP-growth method
terminates.

Based on above discussion, we define a variation of the
FP-tree structure in which besides all attributes given in [6],
an FP-tree also has an attribute,array, which contains the
corresponding array.

Now let us analyze the size of an array. Suppose the
number of frequent items in the first FP-tree isn. Then
the size of the associated array is

∑n−1
i=1 i = n(n − 1)/2.

We can expect that FP-trees constructed from the first FP-
tree have fewer frequent items, so the sizes of the associated
arrays decrease. At any time, since an array is an attribute
of an FP-tree, when the space for the FP-tree is freed, the
space for the array is also freed.

2.3. Discussion

The array technique works very well especially when the
dataset is sparse. The FP-tree for a sparse dataset and the re-
cursively constructed FP-trees will be big and bushy, due to
the fact that they do not have many shared common pre-
fixes. The arrays save traversal time for all items and the
next level FP-trees can be initialized directly. In this case,
the time saved by omitting the first traversals is far greater
than the time needed for accumulating counts in the associ-
ated array.

However, when a dataset is dense, the FP-trees are more
compact. For each item in a compact FP-tree, the traversal
is fairly rapid, while accumulating counts in the associated
array may take more time. In this case, accumulating counts
may not be a good idea.

Even for the FP-trees of sparse datasets, the first levels of
recursively constructed FP-trees are always conditional FP-
trees forthe most common prefixes. We can therefore expect
the traversal times for the first items in a header table to be
fairly short, so the cells for these first items are unnecessary
in the array. As an example, in Figure 2 table (a), since
e, c, anda are the first 3 items in the header table, the first
two lines do not have to be calculated, thus saving counting
time.

Note that the datasets (the conditional pattern bases)
change during the different depths of the recursion. In order
to estimate whether a dataset is sparse or dense, during the
construction of each FP-tree we count the number of nodes
in each level of the tree. Based on experiments, we found
that if the upper quarter of the tree contains less than 15% of
the total number of nodes, we are most likely dealing with
a dense dataset. Otherwise the dataset is likely to be sparse.

If the dataset appears to be dense, we do not calculate
the array for the next level of the FP-tree. Otherwise, we
calculate array for each FP-tree in the next level, but the
cells for the first several (say 5) items in its header table are
not set.

2.4. FPgrowth* : an improved FP-growth method
Figure 3 contains the pseudocode for our new method

FPgrowth*. The procedure has an FP-treeT as parameter.
The tree has attributes:base, headerand array. T.base
contains the itemsetX, for whichT is a conditional FP-tree,
the attributeheadercontains the head table, andT.array
contains the arrayAX .

Procedure FPgrowth* (T)
Input: A conditional FP-tree T
Output: The complete set of FI’s

corresponding to T .
Method:
1. if T only contains a single path P
2. then for each subpath Y of P
3. output pattern Y ∪ T.base with

count = smallest count of nodes
in Y

4. else for each i in T.header
5. output Y = T.base ∪ {i} with i.count
6. if T.array is not NULL
7. construct a new header table

for Y ’s FP-tree from T.array
8. else construct a new header table

from T ;
9. construct Y ’s conditional

FP-tree TY and its array AY ;
10. if TY 6= ∅
11. call FPgrowth* (TY);

Figure 3. Algorithm FPgrowth*

In FPgrowth*, line 6 tests if the array of the current FP-
tree is NULL. If the FP-tree corresponds to a sparse dataset,
its array is not NULL, and line 7 will be used to construct
the header table of the new conditional FP-tree from the
array directly. One FP-tree traversal is saved for this item
compared with the FP-growth method in [6]. In line 9, dur-
ing the construction, we also count the nodes in the different

levels of the tree, in order to estimate whether we shall re-
ally calculate the array, or just setTY .array = NULL.

From our experimental results we found that an FP-tree
could have millions of nodes, thus, allocating and deallo-
cating those nodes takes plenty of time. In our implementa-
tion, we used our own main memory management for allo-
cating and deallocating nodes. Since all memory for nodes
in an FP-tree is deallocated after the current recursion ends,
a chunk of memory is allocated for each FP-tree when we
create the tree. The chunk size is changeable. After gen-
erating all frequent itemsets from the FP-tree, the chunk is
discarded. Thus we successfully avoid freeing nodes in the
FP-tree one by one, which is more time-consuming.

3. FPmax*: Mining MFI’s

In [5] we developed FPmax, a variation of the FP-growth
method, for mining maximal frequent itemsets. Since the
array technique speeds up the FP-growth method for sparse
datasets, we can expect that it will be useful in FPmax too.
This gives us an improved method, FPmax*. Compared to
FPmax, the improved method FPmax* also has a more ef-
ficient subset test, as well as some other optimizations. It
turns out that FPmax* outperforms GenMax[4] and MAFIA
[3] for all cases we discussed in [5].

3.1. The MFI-Tree

Since FPmax is a depth-first algorithm, a frequent item-
set can be a subset only of an already discovered MFI. In
FPmax we introduced a global data structure, theMaxi-
mal Frequent Itemset tree(MFI-tree), to keep the track of
MFI’s. A newly discovered frequent itemset is inserted into
the MFI-tree, unless it is a subset of an itemset already in
the tree. However, for large datasets, the MFI-tree will be
quite large, and sometimes one itemset needs thousands of
comparisons for subset testing. Inspired by the way subset
checking is done in [4], in FPmax*, we still use the MFI-
tree structure, but for each conditional FP-treeTX , a small
MFI-treeMX is created. The treeMX will contain all max-
imal itemsets in the conditional pattern base ofX. To see if
a local MFIY generated from a conditional FP-treeTX is
maximal, we only need to compareY with the itemsets in
MX . This achieves a significant speedup of FPmax.

Each MFI-tree is associated with a particular FP-tree.
Children of the root of the MFI-tree are item prefix sub-
trees. In an MFI-tree, each node in the subtree has three
fields: item-name, level and node-link. The level-field will
be useful for subset testing. All nodes with same item-name
are linked together, as in an FP-tree. The MFI-tree also
has a header table. However, unlike the header table in an
FP-tree, which is constructed from traversing the previous
FP-tree or using the associated array, the header table of an

MFI-tree is constructed based on the item order in the ta-
ble of the FP-tree it is associated with. Each entry in the
header table consists of two fields, item-name and head of a
linked list. The head points to the first node with the same
item-name in the MFI-tree.

Header table

item
Head of
node−links

e
c
a
g
b
f
d

Header table

item
Head of
node−links

e
c
a
g
b
f
d

e:1

c:2

a:3

e:1

c:2

a:3

c:1

a:2

d:3

b:4

f:5

g:4b:4

f:5

d:3

a:2

c:1

root:0 root:0

(a) (b)

Figure 4. Construction of MFI-Tree

The insertion of an MFI into an MFI-tree is similar to the
insertion of a frequent set into an FP-tree. Figure 4 shows
the insertions of three MFI’s into an MFI-tree associated
with the FP-tree in Figure 1 (b). In Figure 4, a nodex : `
means that the node is for itemx and its level is̀ . Figure 4
(a) shows the tree after(c, a, d) and(e, c, a, b, f) have been
inserted. In Figure 4 (b), since new MFI(e, c, a, b, g) shares
prefix (e, c, a) with (e, c, a, b, f), only one new node forg
is inserted.

3.2. FPmax*

Figure 5 gives algorithm FPmax*. The first call will be
for the FP-tree constructed from the original database, and
it will have an empty MFI-tree. Before a recursive callFP-
max*(T,M), we already know from line 10 that the set con-
tainingT.base and the items in the current FP-tree is not a
subset of any existing MFI. During the recursion, if there
is only one single path inT , this single path together with
T.base is an MFI of the database. In line 2, the MFI is in-
serted intoM . If the FP-tree is not a single-path tree, then
for each itemi in the header table, we start preparing for the
recursive callFPmax*(TY ,MY), for Y = T.base ∪ {i}.
The items in the header table ofT are processed in increas-
ing order of frequency, so that maximal frequent itemsets
will be found before any of their frequent subsets. Lines
5 to 8 use the array technique, and line 10 calls function
subsetcheckingto check if Y together with all frequent
items inY ’s conditional pattern base is a subset of any ex-
isting MFI in M (thus we do superset pruning here). If
subsetcheckingreturn false,FPmax* will be called recur-
sively, with (TY ,MY). The implementation of function
subsetcheckingwill be explained shortly.

Note that before and after callingsubsetchecking, if Y ∪
Tail is not subset of any MFI, we still do not know whether
Y ∪ Tail is frequent. If, by constructingY ’s conditional

Procedure FPmax*(T,M)
Input: T , an FP-tree

M , the MFI-tree for T.base
Output: Updated M
Method:
1. if T only contains a single path P
2. insert P into M
3. else for each i in T.header
4. set Y = T.base ∪ {i};
5. if T.array is not NULL
6. Tail ={frequent items for i in

T.array}
7. else
8. Tail ={frequent items in i’s

conditional pattern base }
9. sort Tail in decreasing order of

the items’ counts
10. if not subset checking (Y ∪ Tail,M)
11. construct Y ’s conditional

FP-tree TY and its array AY ;
12. initialize Y ’s conditional

MFI-tree MY ;
13. call FPmax*(TY ,MY);
14. merge MY with M

Figure 5. Algorithm FPmax*

FP-treeTY , we find out thatTY only has a single path, we
can conclude thatY ∪Tail is frequent. SinceY ∪Tail was
not a subset of any previously discovered MFI, it is a new
MFI and will be inserted intoMY .

3.3. Implementation of subset testing

The functionsubsetcheckingworks as follows. Suppose
Tail = i1i2, . . . ik, in decreasing order of frequency accord-
ing to the header table ofM . By following the linked list of
i, for each noden in the list, we test ifTail is a subset of the
ancestors ofn. Here, the level ofn can be used for saving
comparison time. First we test if the level ofn is smaller
thank. If it is, the comparison stops because there are not
enough ancestors ofn for matching the rest ofTail. This
pruning technique is also applied as we move up the branch
and towards the front ofTail.

Unlike an FP-tree, which is not changed during the ex-
ecution of the algorithm, an MFI-tree is dynamic. At line
12, for eachY , a new MFI-treeMY is initialized from the
predecessor MFI-treeM . Then after the recursive call,M
is updated on line 14 to contain all newly found frequent
itemsets. In the actual implementation, we however found
that it was more efficient to update all MFI-trees along the
recursive path, instead of merging only at the current level.
In other words, we omitted line 14, and instead on line 2,P

is inserted into the currentM , and also into all predecessor
MFI-trees that the implementation of the recursion needs to
keep in main memory in any case.

SinceFPmax* is a depth-first algorithm, it is straight-
forward to show that the above subset checking is correct.
Based on the correctness of the FP-growth method, we can
conclude thatFPmax*returns all and only the maximal fre-
quent itemsets in a given dataset.

3.4. Optimizations
In the method FPmax*, one more optimization is used.

Suppose, that at some level of the recursion, the header table
of the current FP-tree isi1, i2, . . . , im. Then starting from
im, for each item in the header table, we may need to do
the work from line 4 to line 14. If for any item, sayik,
wherek ≤ m, its maximal frequent itemset contains items
i1, i2, . . . , ik−1, i.e., all the items that have not yet called
FPmax* recursively, these recursive calls can be omitted.
This is because for those items, their tails must be subsets
of {i1, i2, . . . , ik−1}, sosubset checking(Y ∪Tail) would
always return true.

FPmax* also uses the memory management described in
Section 2.4, for allocating and deallocating space for FP-
trees and MFI-trees.

3.5. Discussion
One may wonder if the space required for all the MFI-

trees of a recursive branch is too large. Actually, before
the first call ofFPmax*, the first FP-tree has to fit in main
memory. This is also required by the FP-growth method.
The corresponding MFI-tree is initialized as empty. Dur-
ing recursive calls ofFPmax*, new conditional FP-trees are
constructed from the first FP-tree or from an ancestors FP-
tree. From the experience of [6], we know the recursively
constructed FP-trees are relatively small. We can expect
that the total size of these FP-trees is not greater than the
final size of the MFI-tree for∅. Similarly, the MFI-trees
constructed from ancestors are also small. All MFI-trees
grow gradually. Thus we can conclude that the total main
memory requirement for runningFPmax* on a dataset is
proportional to the sum of the size of the FP-tree and the
MFI-tree for∅.

4. FPclose: Mining CFI’s

For mining frequent closed itemsets, FPclose works sim-
ilarly to FPmax*. They both mine frequent patterns from
FP-trees. Whereas FPmax* needs to check that a newly
found frequent itemset is maximal, FPclose needs to verify
that the new frequent itemset is closed. For this we use a
CFI-tree, which is another variation of an FP-tree.

One of the first attempts to use FP-trees in CFI mining
was the algorithm CLOSET+ [9]. This algorithm uses one

global prefix-tree for keeping track of all closed itemsets.
As we pointed out before, one global tree will be quite big,
and thus slows down searches. In FPclose we will therefore
use multiple, conditional CFI-trees for checking closedness
of itemsets. We can thus expect that FPclose outperforms
CLOSET+.

4.1. The CFI-tree and algorithm FPclose

Similar to an MFI-tree, a CFI-tree is related to an FP-tree
and an itemsetX, and we will denote the CFI-tree asCX .
The CFI-treeCX always stores all already found CFI’s con-
taining itemsetX, and their counts. A newly found frequent
itemsetY that containsX only needs to be compared with
the CFI’s inCX . If in CX , there is no superset ofY with
same count asY , Y is closed.

In a CFI-tree, each node in the subtree has four fields:
item-name, count, node-link and level. Here, the count field
is needed because when comparing aY with a setZ in the
tree, we are trying to verify that it is not the case thatY ⊂
Z, andY andZ have the same count. The order of the items
in a CFI-tree’s header table is same as the order of items in
header table of its corresponding FP-tree.

Header table

item
Head of
node−links

e
c
a
g
b
f
d

c:1:8

d:3:2 g:3:5 d:3:2 g:3:5

Header table

item
Head of
node−links

e
c
a
g
b
f
db:4:2

f:5:2

e:1:8

c:2:6

a:3:6

g:4:4b:4:2

f:5:2

e:1:2

c:2:2

a:3:2

a:2:5

c:1:5

a:2:8

root root

(a) (b)

Figure 6. Construction of CFI-Tree

The insertion of a CFI into a CFI-tree is similar to the
insertion of a transaction into an FP-tree, except now the
count of a node is not incremented, it is always replaced by
the maximal count up-to-date. Figure 6 shows some snap-
shots of the construction of a CFI-tree with respect to the
FP-tree in Figure 1 (b). The item order in two trees are
same because they are both for base∅. Note that insertions
of CFI’s into the top level CFI-tree will occur only after re-
cursive calls have been made. In the following example, the
insertions would in actuality be performed during various
stages of the execution, not in bulk as the example might
suggest. In Figure 6, a nodex : ` : c means that the node is
for itemx, its level is` and its count isc. In Figure 6 (a), af-
ter inserting(c, a, d) and(e, c, a, b, f) with count 2, then we
insert(c, a, g) with count 5. Since(c, a, g) shares the pre-
fix (c, a) with (c, a, d), only nodeg is appended, and at the
same time, the counts for nodesc anda are both changed
to be 5. In part (b) of Figure 6, the CFI’s(e, c, a, g) : 4,

(c, a) : 8, (c, a, e) : 6 and(e) : 8 are inserted. At this stage
the tree contains all CFI’s for the dataset in Figure 1 (a).

Procedure FPclose (T,C)
Input: T , an FP-tree

C, the CFI-tree for T.base
Output: Updated C
Method:
1. if T only contains a single path P
2. generate all CFI’s from P
3. for each CFI X generated
4. if not closed checking (X,C)
5. insert X into C
6. else for each i in T.header
7. set Y = T.base ∪ {i};
8. if not closed checking (Y,C)
9. if T.array is not NULL
10. Tail = {frequent items for

i in T.array}
11. else
12. Tail ={frequent items in i’s

conditional pattern base }
13. sort Tail in decreasing order

of items’ counts
14. construct the FP-tree TY and

its array AY ;
15. initialize Y ’s conditional

CFI-tree CY ;
16. call FPclose (TY , CY);
17. merge CY with C

Figure 7. Algorithm FPclose

Figure 7 gives algorithmFPclose. Before callingFP-
closewith some(T,C), we already know from line 8 that
there is no existing CFIX such thatT.base ⊂ X, and
T.base andX have the same count. If there is only one sin-
gle path inT , the nodes and their counts in this single path
can be easily used to list theT.base-local closed frequent
itemsets. These itemsets will be compared with the CFI’s
in C. If an itemset is closed, it is inserted intoC. If the
FP-treeT is not a single-path tree, we execute line 6. Lines
9 to 12 use the array technique. Lines 4 and 8 call function
closed checking(Y,C) to check if a frequent itemsetY is
closed. If it is, the function returns true, otherwise, false is
returned. Lines 14 and 15 constructY ’s conditional FP-tree
and CFI-tree. Then FPclose is called recursively forTY and
CY .

Note that line 17 is not implemented as such. As in algo-
rithm FPmax*, we found it more efficient to do the insertion
of lines 3–5 into all CFI-trees currently in main memory.

CFI-trees are initialized similarly to MFI-trees, de-
scribed in Section 3.3. The implementation of function

closedchecking is almost the same as the implementa-
tion of functionsubsetchecking, except now we also con-
sider the count of an itemset. Given an itemsetY =
{i1, i2, . . . , ik} with countc, suppose the order of the items
in header table of the current CFI-tree isi1, i2, . . . , ik. Fol-
lowing the linked list ofik, for each node in the list, first we
check if its count is equal to or greater thanc. If it is, we
then test ifY is a subset of the ancestors of that node. The
functionclosedcheckingreturns true only when there is no
existing CFIZ in the CFI-tree such thatZ is a superset of
Y and the count ofY is equal to or greater than the count
of Z.

Memory management allocating and deallocating space
for FP-trees and CFI-trees is similar to the memory man-
agement ofFPgrowth*andFPmax*.

By a similar reasoning as in Section 3.5, we conclude
that the total main memory requirement for runningFP-
closeon a dataset is approximately sum of the size of the
first FP-tree and its CFI-tree.

5. Experimental Evaluation

We now present a performance comparison of our FP-
algorithms with algorithms dEclat, GenMax, CHARM and
MAFIA. Algorithm dEclat is a depth-first search algorithm
proposed by Zaki and Gouda in [10]. dEclat uses a linked
list to organize frequent patterns, however, each itemset
now corresponds to an array of transaction IDs (the “TID-
array”). Each element in the array corresponds to a trans-
action that contains the itemset. Frequent itemset mining
and candidate frequent itemset generation are done by TID-
array intersections. A technique calleddiffset, is used for
reducing the memory requirement of TID-arrays. The diff-
set technique only keeps track of differences in the TID’s of
a candidate itemsets when it is generating frequent itemsets.
GenMax, also proposed by Gouda and Zaki [4], takes an
approach calledprogressive focusingto do maximality test-
ing. CHARM is proposed by Zaki and Hsiao [11] for CFI
mining. In all three algorithms, the main operation is the in-
tersection of TID-arrays. Each of them has been shown as
one of the best algorithms for mining FI’s, MFI’s or CFI’s.
MAFIA is introduced in [3] by Burdicket al. for mining
maximal frequent itemsets. It also has options for mining
FI’s and CFI’s. We give the results of three different sets
of experiments, one set for FI’s, one for MFI’s and one for
CFI’s.

The source codes for dEclat, CHARM, GenMax and
MAFIA were provided by their authors. We ran all algo-
rithms on many synthetic and real datasets. Due to the lack
of space, only the results for two synthetic datasets and two
real datasets are shown here. These datasets should be rep-
resentative, as recent research papers [2, 3, 4, 11, 10, 8, 9],
use these or similar datasets.

The two synthetic datasets,T40I10D100K and
T100I20D100K, were generated from the application
on the website of IBM1. They both use 100,000 transac-
tions and 1000 items. The two real datasets,pumsb*and
connect-4, were also downloaded from the IBM website2.
Datasetconnect-4is compiled from game state information.
Datasetpumsb*is produced from census data of Public Use
Microdata Sample (PUMS). These two real datasets are
both quite dense, so a large number of frequent itemsets can
be mined even for very high values of minimum support.

All experiments were performed on a 1Ghz Pentium III
with 512 MB of memory running RedHat Linux 7.3. All
times in the figures refer to CPU time.

5.1. FI Mining

In [6], the original FPgrowth method has been shown
to be an efficient and scalable algorithm for mining fre-
quent itemsets. FPgrowth is about an order of magnitude
faster than the Apriori. Subsequently, it was shown in [10],
that the algorithm dEclat outperforms FPgrowth on most
datasets. Thus, in the first set of experiments, FP-growth*
is compared with the original FP-growth method and with
dEclat. The original FP-growth method is implemented on
the basis of the paper [6]. In this set of experiments we also
included with MAFIA [3], which has an option for mining
all FI’s. The results of the first set of experiments are shown
in Figure 8.

Figure 8 (a) shows the CPU time of the four algorithms
running on datasetT40I10D100K. We see that FPgrowth*
is the best algorithm for this dataset. It outperforms dEclat
and MAFIA at least by a factor of two. Main memory is
used up by dEclat when the minimum support goes down to
0.25%, while FPgrowth* can still run for even smaller levels
of minimum support. MAFIA is the slowest algorithm for
this dataset and its CPU time increases rapidly.

Due to the use of the array technique, and the fact that
T40I10D100Kis a sparse dataset, FPgrowth* turns out to
be faster than FPgrowth. However, when the minimum sup-
port is very low, we can expect the FP-tree to achieve a good
compactification, starting at the initial recursion level. Thus
the array technique does not offer a big gain. Consequently,
as verified in Figure 8 (a), for very low levels minimum sup-
port, FPgrowth* and FPgrowth have almost the same run-
ning time.

Figure 8 (b) shows the CPU time for running the four al-
gorithms on datasetT100I20D100K. The result is similar to
the result in Figure 8 (a). FPgrowth* is again the best. Since
the datasetT100I20D100Kis sparser thanT40I10D100K,
the speedup from FPgrowth to FPgrowth* is increased.

From Figure 8 (c) and (d), we can see that the FP-
methods are faster than dEclat by an order of magnitude

1http://www.almaden.ibm.com/cs/quest/syndata.html
2http://www.almaden.ibm.com/cs/people/bayardo/resources.html

in both experiments. Sincepumsb*andconnect-4are both
very dense datasets, FPgrowth* and FPgrowth have almost
same running time, as the array technique does not achieve
a significant speedup for dense datasets.

In Figure 8 (c), the CPU time increases drastically when
the minimum support goes down below 25%. However, this
is not a problem for FPgrowth and FPgrowth*, which still
are able to produce results. The main reason for the never-
theless steeply increased CPU time is that a long time has
to be spent listing frequent itemsets. Recall, that if there is
a frequent “long” itemset of sizè, then we have to generate
2` frequent sets from it.

We also ran the four algorithms on many other datasets,
and we found that FPgrowth* was always the fastest.

To see why FPgrowth* is the fastest, let us consider the
main operations in the algorithms. As discussed before, FP-
growth* spends most of its time on constructing and travers-
ing FP-trees. The main operation in dEclat is to generate
new candidate FI’s by TID-array intersections. In MAFIA,
generating new candidate FI’s by bitvectorand-operations
is the main work. Since FPgrowth* uses the compact FP-
tree, further boosted by the array technique, the time it
spends constructing and traversing the trees, is less than the
time needed for TID-array intersections and bitvectorand-
operations. Moreover, the main memory space needed for
storing FP-trees is far less than that for storing diffsets or
bitvectors. Thus FPgrowth* runs faster than the other two
algorithms, and it scales to very low levels of minimum sup-
port.

Figure 11 (a) shows the main memory consumption of
three algorithms by running them on datasetconnect-4. We
can see that FP-growth* always use the least main memory.
And even for very low minimum support, it still uses a small
amount of main memory.

5.2. MFI Mining

In our paper [5], we analyzed and verified the perfor-
mance of algorithm FPmax. We learned that FPmax out-
performed GenMax and MAFIA in some, but not all cases.
To see the impact of the new array technique and the new
subsetcheckingfunction that we are using in FPmax*, in
the second set of experiments, we compared FPmax* with
FPmax, GenMax, and MAFIA.

Figure 9 (a) gives the result for running these algorithms
on the sparse datasetT40I10D100K. We can see that FP-
max is slower than GenMax for all levels of minimum sup-
port, while FPmax* outperforms GenMax by a factor of at
least two. Figure 9 (b) shows the results for the very sparse
datasetT100I20D100K, FPmax is the slowest algorithm,
while FPmax* is the fastest algorithm. Figure 9 (c) shows
that FPmax* is the fastest algorithm for the dense dataset
pumsb*, even though FPmax is the slowest algorithm on
this dataset for very low levels of minimum support. In

T40I10D100K

1

10

100

1000

10000

00.250.50.7511.251.51.7522.25

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(a)

T100I20D100K

1

10

100

1000

10000

024681012

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(b)

Pumsb_star

0.1

1

10

100

1000

10000

152025303540

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.1

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(c)

Connect-4

0.01

0.1

1

10

100

1000

10000

102030405060708090100

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.01

0.1

1

10

100

1000

10000
FP-growth*
dEclat
MAFIA
FP-growth

(d)

Figure 8. Mining FI’s

T40I10D100K

1

10

100

1000

10000

00.250.50.7511.251.51.7522.25

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000

FPMAX*
GenMax
MAFIA
FPMAX

(a)

T100I20D100K

1

10

100

1000

10000

024681012

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000

FPMAX*
GenMax
MAFIA
FPMAX

(b)

Pumsb_star

0.1

1

10

100

1000

0510152025303540

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.1

1

10

100

1000

FPMAX*
GenMax
MAFIA
FPMAX

(c)

Connect-4

0.01

0.1

1

10

100

1000

020406080100

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.01

0.1

1

10

100

1000

FPMAX*
GenMax
MAFIA
FPMAX

(d)

Figure 9. Mining MFI’s

T40I10D100K

1

10

100

1000

10000

00.250.50.7511.251.51.7522.25

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000

FPclose

MAFIA

Charm

(a)

T100I20D100K

1

10

100

1000

10000

024681012

Minimum Support (%)

C
P

U
 T

im
e(

s)

1

10

100

1000

10000

FPclose

MAFIA

Charm

(b)

Pumsb_star

0.01

0.1

1

10

100

1000

0510152025303540

Minimum Support (%)

C
P

U
 T

im
e(

s)

0.01

0.1

1

10

100

1000
FPclose

MAFIA

Charm

(c)

Connect-4

0.01

0.1

1

10

100

1000

0102030405060708090100

Minimum Support (%)
C

P
U

 T
im

e(
s)

0.01

0.1

1

10

100

1000
FPclose

MAFIA

Charm

(d)

Figure 10. Mining CFI’s

Connect-4

1

10

100

1000

102030405060708090100

Minimum Support (%)

M
ai

n
 M

em
o

ry
 (

M
)

1

10

100

1000
FPgrowth*

MAFIA-FI

dEclat

(a)

Connect-4

1

10

100

0102030405060708090100

Minimum Support (%)

M
ai

n
 M

em
o

ry
 (

M
)

1

10

100

FPMAX*

GenMax

MAFIA-MFI

(b)

Connect-4

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

CPU Time (s)

M
ai

n
 M

em
o

ry
 (

M
)

FP-tree

MFI-tree

Total

(c)

Connect-4

1

10

100

1000

10000

0102030405060708090100

Minimum Support (%)

M
ai

n
 M

em
o

ry
 (

M
)

1

10

100

1000

10000

Charm

MAFIA-CFI

FPclose

(d)

Figure 11. Main Memory used by the algorithms

Figure 9 (d), FPmax outperforms GenMax and MAFIA for
high levels of minimum support, but it is slow for very low
levels. FPmax*, on the other hand is about one to two or-
ders of magnitude faster than GenMax and MAFIA for all
levels of minimum support.

All experiments in this second set show that the array
technique and the newsubsetcheckingfunction are indeed
very effective. Figure 11 (b) shows the main memory used

by three algorithms when running them on datasetconnect-
4. From the figure, we can see that FPmax* uses less main
memory than the other algorithms. Figure 11 (c) shows the
main memory used by FP-trees, MFI-trees and the whole
algorithm when running FPmax* on datasetconnect-4. The
minimum support was set as 10%. In the figure, the last
point of the line for FP-tree is for the main memory of the
first FP-tree (T∅), since at this point the space for all condi-

tional FP-trees has been freed. The last point of the line for
MFI-tree is for the main memory of the MFI-tree that con-
tains whole set of MFI’s, i.e.,M∅. The figure confirms our
analysis of main memory used by FPmax* in Section 3.5.

We also run these four algorithms on many other
datasets, and we found that FPmax* always was the fastest
algorithm.

5.3. CFI Mining

In the third set of experiments, the performances of FP-
close, CHARM and MAFIA, with the option of mining
closed frequent itemset, were compared.

Figure 10 shows the results of running FPclose, CHARM
and MAFIA on datasetsT40I10D100K, T100I20D100K,
pumsb*andconnect-4. FPclose shows good performance
on all datasets, due to the fact that it uses the compact FP-
tree and the array technique. However, for very low lev-
els of minimum support FPclose has performance similar to
CHARM and MAFIA. By analyzing the three algorithms,
we found that FPclose generates more non-closed frequent
itemsets than the other algorithms. For each of the gener-
ated frequent itemsets, the functionclosedcheckingmust
be called. Although theclosedcheckingfunction is very
efficient, the increased number of calls to it means higher
total running time. For high levels of minimum support,
the time saved by using the compact FP-tree and the ar-
ray technique compensates for the time FPclose spends on
closedchecking. In all cases, FPclose uses less main mem-
ory for mining CFI’s than CHARM and MAFIA. Figure 11
(d) shows the memory used by three algorithms by run-
ning them on datasetconnnect-4. We can see that for very
low levels of minimum support, CHARM and MAFIA were
aborted because they ran out of memory, while FPclose was
still able to run and produce output.

6. Conclusions

We have introduced a novel array-based technique that
allows using FP-trees more efficiently when mining fre-
quent itemsets. Our technique greatly reduces the time
spent traversing FP-trees, and works especially well for
sparse datasets. Furthermore, we presented new algorithms
for mining maximal and closed frequent itemsets.

The FPgrowth* algorithm, which extends original FP-
growth method, also uses the novel array technique to mine
all frequent itemsets.

For mining maximal frequent itemsets, we extended our
earlier algorithm FPmax to FPmax*. FPmax* not only uses
the array technique, but also a new subset-testing algorithm.
For the subset testing, a variation of the FP-tree, an MFI-
tree, is used for storing all already discovered MFI’s. In FP-
max*, a newly found FI is always compared with a small set

of MFI’s that are kept in an MFI-tree, thus making subset-
testing much more efficient.

For mining closed frequent itemsets we give the FPclose
algorithm. In the algorithm, a CFI-tree —another variation
of a FP-tree— is used for testing the closedness of frequent
itemsets.

For all of our algorithms we have presented several opti-
mizations that further reduce their running time.

Our experimental results showed that FPgrowth* and
FPmax* always outperforms existing algorithms. FPclose
also demonstrates extremely good performance. All of the
algorithms need less main memory because of the compact
FP-trees, MFI-trees, and CFI-trees.

Though the experimental results given in this paper show
the success of our algorithms, in the future we will test them
on more applications to further study their performance. We
are also planning to explore ways to improve the FPclose al-
gorithm by reducing the number of closedness-tests needed.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. InProceedings of VLDB’94, pages 487–499,
1994.

[2] R. J. Bayardo, Jr. Efficiently mining long patterns from
databases. InProceedings of ACM SIGMOD’98, pages 85–
93, 1998.

[3] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A max-
imal frequent itemset algorithm for transactional databases.
In Proceedings of ICDE’01, pages 443–452, Apr. 2001.

[4] K. Gouda and M. J. Zaki. Efficiently mining maximal fre-
quent itemsets. InProceedings of ICDM’01, San Jose, CA,
Nov. 2001.

[5] G. Grahne and J. Zhu. High performance mining of maxi-
mal frequent itemsets. InSIAM’03 Workshop on High Per-
formance Data Mining: Pervasive and Data Stream Mining,
May 2003.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. InProceedings of ACM SIGMOD’00,
pages 1–12, May 2000.

[7] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k fre-
quent closed patterns without minimum support. InPro-
ceedings of ICDM’02, pages 211–218, Dec. 2002.

[8] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm
for mining frequent closed itemsets. InACM SIGMOD’00
Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pages 21–30, 2000.

[9] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best
strategies for mining frequent closed itemsets. InProceed-
ings of ACM SIGKDD’03, Washington, DC, 2003.

[10] M. Zaki and K. Gouda. Fast vertical mining using diffsets.
In Proceedings of ACM SIGKDD’03, Washington, DC, Aug.
2003.

[11] M. Zaki and C. Hsiao. Charm: An efficient algorithm for
closed itemset mining. InProceedings of SIAM’02, Arling-
ton, Apr. 2002.

