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Abstract

Existing association rule mining algorithms suffer
from many problems when mining massive transactional
datasets. Some of these major problems are: (1) the repeti-
tive I/O disk scans, (2) the huge computation involved dur-
ing the candidacy generation, and (3) the high memory de-
pendency. This paper presents the implementation of our
frequent itemset mining algorithm,COFI, which achieves
its efficiency by applying four new ideas. First, it can mine
using a compact memory based data structures. Second,
for each frequent item assigned, a relatively small indepen-
dent tree is built summarizing co-occurrences. Third, clever
pruning reduces the search space drastically. Finally, a sim-
ple and non-recursive mining process reduces the memory
requirements as minimum candidacy generation and count-
ing is needed to generate all relevant frequent patterns.

1 Introduction

Frequent pattern discovery has become a common topic
of investigation in the data mining research area. Its main
theme is to discover the sets of items that occur together
more than a given threshold defined by the decision maker.
A well-known application domain that counts on the fre-
quent pattern discovery is the market basket analysis. In
most cases when the support threshold is low and the num-
ber of frequent patterns “explodes”, the discovery of these
patterns becomes problematic for reasons such as: high
memory dependencies, huge search space, and massive I/O
required. However, recently new studies have been pro-
posed to reduce the memory requirements [8], to decrease
the I/O dependencies [7], still more promising issues need
to be investigated such as pruning techniques to reduce the
search space. In this paper we introduce a new method
for frequent pattern discovery that is based on the Co-
Occurrence Frequent Item tree concept [8, 9]. The new pro-

posed method uses a pruning technique that dramatically
saves the memory space. These relatively small trees are
constructed based on a memory-based structure called FP-
Trees [11]. This data structure is studied in detail in the
following sections. In short, we introduced in [8] the COFI-
tree stucture and an algorithm to mine it. In [7] we pre-
sented a disk based data structure, inverted matrix, that re-
places the memory-based FP-tree and scales the interactive
frequent pattern mining significantly. Our contributions in
this paper are the introduction of a clever pruning technique
based on an interesting property drawn from our top-down
approach, and some implementation tricks and issues. We
included the pruning in the algorithm of building the tree so
that the pruning is done on the fly.

1.1 Problem Statement

The problem of mining association rules over market
basket analysis was introduced in [2]. The problem consists
of finding associations between items or itemsets in trans-
actional data. The data could be retail sales in the form of
customer transactions or even medical images [16]. Asso-
ciation rules have been shown to be useful for other appli-
cations such as recommender systems, diagnosis, decision
support, telecommunication, and even supervised classifi-
cation [5]. Formally, as defined in [3], the problem is stated
as follows: LetI = {i1, i2, ...im} be a set of literals, called
items andm is considered the dimensionality of the prob-
lem. LetD be a set of transactions, where each transaction
T is a set of items such thatT ⊆ I. A unique identifier
TID is given to each transaction. A transactionT is said
to containX , a set of items inI, if X ⊆ T . An associ-
ation rule is an implication of the form “X ⇒ Y ”, where
X ⊆ I, Y ⊆ I, andX ∩ Y = ∅. An itemsetX is said to be
large or frequentif its supports is greater or equal than a
given minimum support thresholdσ. An itemsetX satisfies
a constraint C if and only if C(X) is true. The ruleX ⇒ Y
has asupport sin the transaction setD if s%of the transac-
tions inD containX∪Y . In other words, the support of the



rule is the probability thatX andY hold together among all
the possible presented cases. It is said that the ruleX ⇒ Y
holds in the transaction setD with confidence cif c% of
transactions inD that containX also containY . In other
words, the confidence of the rule is the conditional proba-
bility that the consequentY is true under the condition of
the antecedentX . The problem of discovering all associa-
tion rules from a set of transactionsD consists of generating
the rules that have asupportandconfidencegreater than a
given threshold. These rules are calledstrong rules. This
association-mining task can be broken into two steps:
1. A step for finding all frequentk-itemsets known for its
extremeI/O scan expense, and the massive computational
costs;
2. A straightforward step for generating strong rules.

In this paper and our attached code, we focus exclusively
on the first step: generating frequent itemsets.

1.2 Related Work

Several algorithms have been proposed in the literature
to address the problem of mining association rules [12, 10].
One of the key algorithms, which seems to be the most pop-
ular in many applications for enumerating frequent item-
sets, is theapriori algorithm [3]. Thisapriori algorithm
also forms the foundation of most known algorithms. It
uses ananti-monotoneproperty stating that for ak-itemset
to be frequent, all its (k-1)-itemsets have to be frequent. The
use of this fundamental property reduces the computational
cost of candidate frequent itemset generation. However, in
the cases of extremely large input sets with big frequent 1-
items set, theApriori algorithm still suffers from two main
problems of repeated I/O scanning and high computational
cost. One major hurdle observed with most real datasets
is the sheer size of the candidate frequent 2-itemsets and
3-itemsets.

TreeProjection is an efficient algorithm presented in [1].
This algorithm builds a lexicographic tree in which each
node of this tree presents a frequent pattern. The authors
report that their algorithm is one order of magnitude faster
than the existing techniques in the literature. Another inno-
vative approach of discovering frequent patterns in transac-
tional databases, FP-Growth, was proposed by Han et al.
in [11]. This algorithm creates a compact tree-structure,
FP-Tree, representing frequent patterns, that alleviates the
multi-scan problem and improves the candidate itemset
generation. The algorithm requires only two full I/O scans
of the dataset to build the prefix tree in main memory and
then mines directly this structure. The authors of this al-
gorithm report that their algorithm is faster than theApri-
ori and the TreeProjection algorithms. Mining the FP-tree
structure is done recursively by building conditional trees
that are of the same order of magnitude in number as the

frequent patterns. This massive creation of conditional trees
makes this algorithm not scalable to mine large datasets be-
yond few millions. In [14] the same authors propose a new
algorithm, H-mine, that invokes FP-Tree to mine condensed
data. This algorithm is still not scalable as reported by its
authors in [13].

1.3 Preliminaries, Motivations and Contributions

The Co-Occurrence Frequent Item tree (or COFI-tree for
short) and theCOFI algorithm presented in this paper are
based on our previous work in [7, 8]. The main motivation
of our current research is the pruning technique that reduces
the memory space needed by the COFI-trees. The presented
algorithm is done in two phases in which phase 1 requires
two full I/O scans of the transactional database to build the
FP-Tree structure[11]. The second phase starts by building
small Co-Occurrence Frequent trees for each frequent item.
These trees are pruned first to eliminate any non-frequent
items with respect to the COFI-tree based frequent item.
Finally the mining process is executed.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the Frequent Pattern tree, design and con-
struction. Section 3 illustrates the design, constructions,
pruning, and mining of the Co-Occurrence Frequent Item
trees. Section 4 presents the implementation procedure of
this algorithm. Experimental results are given in Section 5.
Finally, Section 6 concludes by discussing some issues and
highlighting our future work.

2 Frequent Pattern Tree: Design and Con-
struction

The COFI-tree approach we propose consists of two
main stages. Stage one is the construction of a modified
Frequent Pattern tree. Stage two is the repetitive building of
small data structures, the actual mining for these data struc-
tures, and their release.

2.1 Construction of the Frequent Pattern Tree

The goal of this stage is to build the compact data struc-
ture called Frequent Pattern Tree [11]. This construction is
done in two phases, where each phase requires a full I/O
scan of the dataset. A first initial scan of the database iden-
tifies the frequent 1-itemsets. The goal is to generate an or-
dered list of frequent items that would be used when build-
ing the tree in the second phase.

This phase starts by enumerating the items appearing in
the transactions. After enumeration these items (i.e. after
reading the whole dataset), infrequent items with a support
less than the support threshold are weeded out and the re-
maining frequent items are sorted by their frequency. This



Table 1. Transactional database
T.No. Items

T1 A G D C B
T2 B C H E D
T3 B D E A M
T4 C E F A N
T5 A B N O P
T6 A C Q R G
T7 A C H I G
T8 L E F K B
T9 A F M N O
T10 C F P G R
T11 A D B H I
T12 D E B K L
T13 M D C G O
T14 C F P Q J
T15 B D E F I
T16 J E B A D
T17 A K E F C
T18 C D L B A

list is organized in a table, called header table, where the
items and their respective support are stored along with
pointers to the first occurrence of the item in the frequent
pattern tree. Phase 2 would construct a frequent pattern tree.

Item Counter Item Counter Item Counter Item Counter
A 11 N 3 A 11 F 7
B 10 O 3 B 10 E 8
C 10 P 3 C 10 D 9
D 9 Q 2 D 9 C 10
G 4 R 2 E 8 B 10
E 8 I 3 F 7 A 11
H 3 K 3
F 7 L 3
M 3 J 3

Step 2 Step 3Step 1

Figure 1. Steps of phase 1

Phase 2 of constructing the Frequent Pattern tree struc-
ture is the actual building of this compact tree. This phase
requires a second complete I/O scan from the dataset. For
each transaction read, only the set of frequent items present
in the header table is collected and sorted in descending or-
der according to their frequency. These sorted transaction
items are used in constructing the FP-Trees as follows: for
the first item on the sorted transactional dataset, check if it
exists as one of the children of the root. If it exists then
increment the support for this node. Otherwise, add a new
node for this item as a child for the root node with 1 as
support. Then, consider the current item node as the new
temporary root and repeat the same procedure with the next
item on the sorted transaction. During the process of adding
any new item-node to the FP-Tree, a link is maintained be-

tween this item-node in the tree and its entry in the header
table. The header table holds as one pointer per item that
points to the first occurrences of this item in the FP-Tree
structure.

2.2 Illustrative Example

For illustration, we use an example with the transactions
shown in Table 1. Let the minimum support threshold be set
to 4. Phase 1 starts by accumulating the support for all items
that occur in the transactions. Step 2 of phase 1 removes all
non-frequent items, in our example (G, H, I, J, K, L,M, N,
O, P, Q and R), leaving only the frequent items (A, B, C, D,
E, and F). Finally all frequent items are sorted according to
their support to generate the sorted frequent 1-itemset. This
last step ends phase 1 in Figure 1 of the COFI-tree algorithm
and starts the second phase. In phase 2, the first transaction
(A, G, D, C, B) is filtered to consider only the frequent items
that occur in the header table (i.e. A, D, C and B). This fre-
quent list is sorted according to the items’ supports (A, B,
C and D). This ordered transaction generates the first path
of the FP-Tree with all item-node support initially equal to
1. A link is established between each item-node in the tree
and its corresponding item entry in the header table. The
same procedure is executed for the second transaction (B,
C, H, E, and D), which yields a sorted frequent item list (B,
C, D, E) that forms the second path of the FP-Tree. Trans-
action 3 (B, D, E, A, and M) yields the sorted frequent item
list (A, B, D, E) that shares the same prefix (A, B) with an
existing path on the tree. Item-nodes (A and B) support is
incremented by 1 making the support of (A) and (B) equal
to 2 and a new sub-path is created with the remaining items
on the list (D, E) all with support equal to 1. The same pro-
cess occurs for all transactions until we build the FP-Tree
for the transactions given in Table 1. Figure 2 shows the
result of the tree building process. Notice that in our tree
structure, contrary to the original FP-tree [11], our links are
bi-directional. This, and other differences presented later,
are used by our mining algorithm.

3 Co-Occurrence Frequent-Item-trees: Con-
struction, Pruning and Mining

Our approach for computing frequencies relies first on
building independent, relatively small trees for each fre-
quent item in the header table of the FP-Tree called COFI-
trees. A pruning technique is applied to remove all non-
frequent items with respect to the main frequent item of
the tested COFI-tree. Then we mine separately each one
of the trees as soon as they are built, minimizing the candi-
dacy generation and without building conditional sub-trees
recursively. The trees are discarded as soon as mined. At



Root

A 11 B 4 C 3
F 7
E 8 F 1 C 4 B 6 C 1 E 1 D 2 F 2 D 1
D 9
C 10 E 2 C 2 D 3 D 1 F 1 E 2
B 10
A 11 F 2 D 2 E 2 E 1 F 1

Figure 2. Frequent Pattern Tree.

any given time, only one COFI-tree is present in main mem-
ory. In our following examples we always assume that we
are building the COFI-trees based on the modified FP-Tree
data-structure presented above.

3.1 Pruning the COFI-trees

Pruning can be done after building a tree or, even better,
while building it. We opted for pruning on the fly since the
overhead is minimal but the consequences are drastic reduc-
tion in memory requirements. We will discuss the pruning
idea, then present the building algorithm that considers the
pruning on the fly.

In this section we are introducing a newanti-monotone
property called global frequent/local non-frequent property.
This property is similar to theApriori one in the sense that
it eliminates at theith level all non-frequent items that will
not participate in the (i+1) level of candidate itemsets gen-
eration. The difference between the two properties is that
we extended our property to eliminate also frequent items
which are among thei-itemset and we are sure that they
will not participate in the (i+1) candidate set. TheApriori
property states thatall nonempty subsets of a frequent item-
set must also be frequent. An example is given later in this
section to illustrate both properties. In our approach, we
are trying to find all frequent patterns with respect to one
frequent item, which is the base item of the tested COFI-
tree. We already know that all items that participate in the
creation of the COFI-tree are frequent with respect to the
global transaction database, but that does not mean that they
are also locally frequent with respect to the based item in the
COFI-tree. The global frequent/local non-frequent property
states thatall nonempty subsets of a frequent itemset with
respect to the itemA of the A-COFI-tree , must also be
frequent with respect to itemA. For each frequent item
A we traverse the FP-Tree to find all frequent items that
occur withA in at least one transaction (or branch in the
FP-Tree) with their number of occurrences. All items that
are locally frequent with itemA will participate in build-
ing the A-COFI-tree, other global frequent items, locally
non-frequent items will not participate in the creation of the
A-COFI-tree. In our example we can find that all items
that participate in the creation of the F-COFI-tree are lo-

cally not frequent with respect to item F as the support for
all these items are not greater than the support thresholdσ
which is equal to 4, Figure 3. From knowing this, there
will be no need to mine the F-COFI-tree, we already know
that no frequent patterns other than the item F will be gen-
erated. We can extend our knowledge at this stage to know
that item F will not appear in any of the frequent patterns.
The COFI-tree for item E indicates that only items D, and
B are frequent with respect to item E, which means that
there will be no need to test patterns as EC, and EA. The
COFI-tree for item D indicates that item C will be elimi-
nated, as it is not frequent with respect to item D. C-COFI-
tree ignores item B for the same reason. To sum up the
Apriori property states in our example of 6 1-frequent item-
set that we need to generate 15 2-Candidate itemset which
are (A,B), (A,C), (A,D), (A,E), (A,F), (B,C), (B,D), (B,E),
(B,F), (C,D), (C,E), (C,F), (D,E), (D,F), (E,F), using our
property we have eliminated (not generated or counted) 9
patterns which are (A,E), (A,F), (B,C), (B,F), (C,D), (C,E),
(C,F), (D,F), (E,F) leaving only 6 patterns to test which are
(A,B), (A,C), (A,D), (B,D), (B,E), (D,E).

3.2 Construction of the Co-Occurrence Frequent-
Item-trees

The small COFI-trees we build are similar to the condi-
tional FP-Trees [11] in general in the sense that they have
a header with ordered frequent items and horizontal point-
ers pointing to a succession of nodes containing the same
frequent item, and the prefix tree per se with paths repre-
senting sub-transactions. However, the COFI-trees have bi-
directional links in the tree allowing bottom-up scanning as
well, and the nodes contain not only the item label and a
frequency counter, but also a participation counter as ex-
plained later in this section. The COFI-tree for a given fre-
quent itemx contains only nodes labeled with items that are
more frequent or as frequent asx.

To illustrate the idea of the COFI-trees, we will explain
step by step the process of creating COFI-trees for the FP-
Tree of Figure 2. With our example, the first Co-Occurrence
Frequent Item tree is built for item F as it is the least fre-
quent item in the header table. In this tree for F, all frequent
items, which are more frequent than F, and share transac-



tions with F, participate in building the tree. This can be
found by following the chain of item F in the FP-Tree struc-
ture. The F-COFI-tree starts with the root node containing
the item in question, then a scan of part of the FP-Tree is ap-
plied following he chain of the F item in the FP-Tree. The
first branch FA has frequency of 1, as the frequency of the
branch is the frequency of the test item, which is F. The goal
of this traversal is to count the frequency of each frequent
item with respect to item F. By doing so we can find that
item E occurs 4 times, D occurs 2 times, C occurs 4 times,
B 2 times, and A 3 times, by applying theanti-monotone
constraint property we can predict that item F will never
appear in any frequent pattern except itself. Consequently
there will be no need to continue building the F-COFI-tree.

The next frequent item to test is E. The same process
is done to compute the frequency of each frequent items
with respect to item E. From this we can find that only two
globally frequent items are also locally frequent which are
(D:5 and B:6). For each sub-transaction or branch in the
FP-Tree containing item E with other locally frequent items
that are more frequent than E which are parent nodes of E,
a branch is formed starting from the root node E. the sup-
port of this branch is equal to the support of the E node
in its corresponding branch in FP-Tree. If multiple fre-
quent items share the same prefix, they are merged into one
branch and a counter for each node of the tree is adjusted
accordingly. Figure 3 illustrates all COFI-trees for frequent
items of Figure 2. In Figure 3, the rectangle nodes are nodes
from the tree with an item label and two counters. The first
counter is asupport-countfor that node while the second
counter, calledparticipation-count, is initialized to 0 and is
used by the mining algorithm discussed later, a horizontal
link which points to the next node that has the sameitem-
namein the tree, and a bi-directional vertical link that links
a child node with its parent and a parent with its child. The
bi-directional pointers facilitate the mining process by mak-
ing the traversal of the tree easier. The squares are actually
cells from the header table as with the FP-Tree. This is a
list made of all frequent items that participate in building
the tree structure sorted in ascending order of their global
support. Each entry in this list contains theitem-name, item-
counter, and apointer to the first node in the tree that has
the sameitem-name.

To explain the COFI-tree building process, we will high-
light the building steps for the E-COFI-tree in Figure 3. Fre-
quent item E is read from the header table and its first loca-
tion in the FP-Tree is located using the pointer in the header
table. The first location of item E indicate that it shares a
branch with items CA, with support = 2, since none of these
items are locally frequent then only the support of the E root
node is incremented by 2. the second node of item E indi-
cates that it shares items DBA with support equals to 2 for
this branch as the support of the E-item is considered the

F COFI-tree

E 4 F ( 7 0 )
D 2

C 4

B 2

A 3

E COFI-tree
E ( 8 0 )

D 5
C 3

B 6 D 5 D ( 5 0 ) B ( 1 0 )
A 4 B 6

B ( 5 0 )

D COFI-tree
D ( 9 0 )

C 4 B 8

B 8 A 5 B ( 8 0 )
A 5

A ( 5 0 )

C COFI-tree
C ( 10 0 )

B 3
A 6 A 6

A ( 6 0 )

B COFI-tree
B ( 10 0 )

A 6 A 6

A ( 6 0 )

Figure 3. COFI-trees

support for this branch (following the upper links for this
item). Two nodes are created, for items D and B with sup-
port equals to 2, D is a child node of B, and B is a child node
of E. The third location of E indicate having EDB:1, which
shares an existing branch in the E-COFI-tree, all counters
are adjusted accordingly. A new branch of EB: 1 is created
as the support of E=1 for the fourth occurrences of E. The
final occurrence EDB: 2 uses an existing branch and only
counters are adjusted. Like with FP-Trees, the header con-
stitutes a list of all frequent items to maintain the location
of first entry for each item in the COFI-tree. A link is also
made for each node in the tree that points to the next lo-
cation of the same item in the tree if it exists. The mining
process is the last step done on the E-COFI-tree before re-
moving it and creating the next COFI-tree for the next item
in the header table.



E COFI-tree STEP1 Pattern
E ( 8 0 ) E ( 8 5 ) E D B 5

 E D 5

D 5 D ( 5 0 ) B ( 1 0 ) D ( 5 1 ) E B 5

B 6 E D B 5

B ( 5 0 ) B ( 5 5 )

E COFI-tree STEP2
E ( 8 5 ) Pattern

E ( 8 6 ) E B  1

D 5 D ( 5 5 ) B ( 1 0 ) E D 5

B 6 B ( 1 1 ) E B 6

E D B 5
B ( 5 5 )

E COFI-tree STEP3
E ( 8 6 ) Pattern

E ( 8 7 ) E D  0

D 5 D ( 5 5 ) B ( 1 1 )
B 6 D ( 6 6 )

Frequent Patterns are:
B ( 5 5 ) ED:5, EB: 6, EDB: 5

Figure 4. Steps needed to generate frequent
patterns related to item E

3.3 Mining the COFI-trees

The COFI-trees of all frequent items are not constructed
together. Each tree is built, mined, then discarded before the
next COFI-tree is built. The mining process is done for each
tree independently with the purpose of finding all frequent
k-itemset patterns in which the item on the root of the tree
participates.

Steps to produce frequent patterns related to the E item
for example, as the F-COFI-tree will not be mined based
on the pruning results we found on the previous step, are
illustrated in Figure 4. From each branch of the tree, us-
ing the support-countand theparticipation-count, candi-
date frequent patterns are identified and stored temporarily
in a list. The non-frequent ones are discarded at the end
when all branches are processed. The mining process for
the E-COFI-tree starts from the most locally frequent item
in the header table of the tree, which is item B. Item B ex-
ists in two branches in the E-COFI-tree which are (B:5, D:5
and E:8), and (B:1, and E:8). The frequency of each branch
is the frequency of the first item in the branch minus the
participation value of the same node. Item B in the first
branch has a frequency value of 5 and participation value
of 0 which makes the first pattern EDB frequency equals
to 5. The participation values for all nodes in this branch
are incremented by 5, which is the frequency of this pat-
tern. In the first pattern EDB: 5. We need to generate all
sub-patterns that item E participates in, which are ED: 5,
EB: 5, and EDB: 5. The second branch that has B gener-

D COFI-tree STEP1 Pattern
D ( 9 0 ) D ( 9 5 ) D B A 5

B 8 D B A 5
A 5 B ( 8 0 ) B ( 8 5 ) D B 5

D A 5

A ( 5 0 ) A ( 5 5 )

D COFI-tree STEP2 Pattern
D ( 9 5 ) D ( 9 5 ) D B  3

B 8 D B A 5
A 5 B ( 8 5 ) B ( 8 5 ) D B 8

D A 5

A ( 5 5 ) Frequent Patterns are:
DBA:5, DB: 8, DA: 5

Figure 5. Steps needed to generate frequent
patterns related to item D

ates the pattern EB: 1. EB already exists and its counter
is adjusted to become 6. The COFI-tree of Item E can be
removed at this time and another tree can be generated and
tested to produce all the frequent patterns related to the root
node. The same process is executed to generate the fre-
quent patterns. The D-COFI-tree (Figure 5) is created after
the E-COFI-tree. Mining this tree generates the following
frequent patterns: DBA: 5, DA: 5, and DB:8. The same pro-
cess occurs for the remaining trees that would produce AC:
6 for the C-COFI-tree and BA:6 for the B-COFI-tree.

The following is our algorithm for building and mining
the COFI-trees with pruning.

Algorithm COFI: Creating with pruning and Mining
COFI-trees
Input: modified FP-Tree, a minimum support thresholdσ
Output: Full set of frequent patterns
Method:
1. A = the least frequent item on the header table of
FP-Tree
2. While (There are still frequent items) do

2.1 count the frequency of all items that share item (A)
a path. Frequency of all items that share the same path
are the same as of the frequency of the (A) items
2.2 Remove all non-locally frequent items for
the frequent list of item (A)
2.3 Create a root node for the (A)-COFI-tree with both
frequency-countandparticipation-count= 0
2.3.1 C is the path of locally frequent items in the path
of item A to the root
2.3.2 Items on C form a prefix of the (A)-COFI-tree.
2.3.3 If the prefix is new then Setfrequency-count=
frequency of (A) node andparticipation-
count= 0 for all nodes in the path
Else



2.3.4 Adjust thefrequency-countof the already
exist part of the path.
2.3.5 Adjust the pointers of theHeader list
if needed
2.3.6 find the next node for item A in the FP-tree and
go to 2.3.1

2.4 MineCOFI-tree (A)
2.5 Release (A) COFI-tree
2.6 A = next frequent item from the header table

3. Goto 2

Function: MineCOFI-tree (A)
1. nodeA = selectnext node //Selection of nodes starts with
the node of most locally frequent item and following its
chain, then the next less frequent item with its chain, un-
til we reach the least frequent item in theHeader listof the
(A)-COFI-tree
2. while there are still nodes do

2.1 D = set of nodes from nodeA to the root
2.2 F = nodeA.frequency-count-nodeA.
participation-count
2.3 Generate all Candidate patterns X from items in D.
Patterns that do not have A will be discarded.
2.4 Patterns in X that do not exist in the A-Candidate
List will be added to it with frequency = F otherwise
just increment their frequency with F
2.5 Increment the value ofparticipation-count
by F for all items in D
2.6 nodeA = selectnext node

3. Goto 2
4. Based on support thresholdσ remove non-frequent pat-
terns from A Candidate List.

4 Experimental Studies

To study the COFI-tree mining strategies we have con-
ducted several experiments on a variety of data sizes com-
paring our approach with the well-known FP-Growth [11]
algorithm written by its original authors. The experiments
were conducted on 2.6 GHz CPU machine with 2 Gbytes
of memory using Win2000 operating system. Transactions
were generated using IBM synthetic data generator [4]. We
have conducted several types of experiments to test the ef-
fect of changing the support, transaction size, dimension,
and transaction length. The first set of experiments were
tested on a transaction database of 500K transactions, 10K
the dimension, and the average transaction length was 12.
We have varied the support from absolute value of 500 to
2 in which frequent patterns generated varied from 15K to
3400K patterns. FP-Growth could not mine the last experi-
ment in this set as it used all available memory space. In all
experiments the COFI-tree approach outperforms the FP-
Growth approach. The major accomplishment of our ap-
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Figure 6. Mining dataset of 500K transactions

proach is in the memory space saved. Our algorithm outper-
forms the FP-Growth by one order of magnitude in terms of
memory space requirements. We have also tested the mem-
ory space used during the mining process only, (i.e, isolat-
ing the memory space used to create the FP-Tree by both
FP-growth and COFI-tree FP-Tree based algorithms). We
have found also that the COFI-tree approach outperforms
the FP-tree by one order of magnitude in terms of mem-
ory space used by the COFI-tree compared with the condi-
tional trees used by FP-Growth during the mining process.
Figure 6A presents the time needed to mine 500K transac-
tions using different support levels. Figure 6B depicts the
memory needed during the mining process of the previous
experiments. Figure 6C illustrates the memory needed by



Table 2. Time and Memory Scalability with re-
spect to support on the T10I4D100K dataset

Time in Seconds Memory in KB
Support % COFI FP-Growth COFI FP-Growth

0.50 1.5 3.0 18 173
0.25 1.7 5.2 19 285
0.10 2.7 12.3 26 289
0.05 14.0 20.9 19 403

the COFI-trees and Conditional trees during the mining pro-
cess. Other experiments were conducted to test the effect of
changing the dimension, transaction size, transaction length
using the same support which is 0.05%. Some of these ex-
periments are represented in Figure 7. Figures 7A and 7B
represent the time needed during the mining process. Fig-
ures 7C and 7D represent the memory space needed during
the whole mining process. Figures 7E and 7F represent
the memory space needed by the COFI-trees or conditional
trees during the mining process. In these experiments we
have varied the dimension, which is the number of distinct
items from 5K to 10K, the average transaction length from
12 to 24 items in one transaction, and the number of trans-
actions from 10K to 500K. All these experiments depicted
the fact that our approach is one order of magnitude better
than the FP-Growth approach in terms of memory usage.

We also run experiments using the public UCI datasets
provided on the FIMI workshop website, which are
Mushroom, Chess, Connect, Pumsb, T40I10D100K, and
T10I4D100K. The COFI algorithm scales relatively well
vis-à-vis the support threshold with these datasets. Re-
sults are not reported here for lack of space. Our ap-
proach revealed good results with high support value on all
datasets. However, like with other approaches, in cases of
low support value, where the number of frequent patterns
increases significantly, our approach faces some difficulties.
For such cases it is recommended to consider discovering
closed itemsets or maximal patterns instead of just frequent
itemsets. The sheer number of frequent itemsets becomes
overwhelming, and some argue even useless. Closed item-
sets and maximal itemsets represent all frequent patterns by
eliminating the redundant ones. For illustration, Table 2
compares the CPU time and memory requirement for COFI
and FP-Growth on the T10I4D100K dataset.

5 Implementations

The COFI-tree program submitted with this paper is a
C++ code. The executable of this code runs with 3 param-
eters, which are: (1) the path to the input file name. (2)
a positive integer that presents the absolute support. (3)

An optional file name for the out patterns. This code gen-
erates ALL frequent patterns from the provided input file.
The code scans the database twice. The goal of the first
database scan is to find the frequency of each item in this
transactional database. These frequencies are stored in a
data structure called Candidate-Items. Each entry of this
candidate items is a structure called ItemsStructure that is
made of two long integers representing the item and its fre-
quency. All frequent items are then stored in a special data
structure called F1-Items. This data structure is sorted in
descending order based on the frequency of each item. To
access the location of each item we map it with a specific
location using a new data structure called FindInHashTable.
In brief, since we do not know the number of unique items
at runtime, and thus can’t create an array for counting the
items, rather than having a linked list of items, we create
blocks ofp items. The numberp could arbitrarily be 100 or
1000. Indeed, following links in a linked list each time to
find and increment a counter could be expensive. Instead,
blocs of items are easily indexed. In the worst case, we
could lose the space ofp− 1 unused items.

The second scan starts by eliminating all non frequent
items from each transaction read and then sort this trans-
action based on the frequency of each frequent item. This
process occurred in the Sort-Transaction method. The FP-
tree is built based on the sub-transaction made of the fre-
quent items. The FP-tree data structure is a tree ofn chil-
dren. The structure struct FPTTree{ long Element; long
counter; FPTTree* child; FPTTree* brother; FPTTree* fa-
ther; FPTTree* next;} has been used to create each node
of this tree, where a link is created between each node and
its first child, and the brother link is maintained to create a
linked list of all children of the same node. This linked list
is built ordered based on the frequency of each item. The
header list is maintained using the structure FrequentStruc
{ long Item; long Frequency; long COFIFrequency; long
COFIFrequency1; FPTTree* first; COFITree* firstCOFI;};
After building the FP-tree we start building the first COFI-
tree by selecting the item with least frequency from the fre-
quent list. A scan is made of the FP-tree starting from the
linked list of this item to find the frequency of other items
with respect to this item. After that, the COFI-tree is created
based on only the locally frequent items. Finally frequent
patterns are generated and stored in the FrequentTree data
structure. All nodes that have support greater or equal than
the given support present a frequent pattern. The COFI-tree
and the FrequentTree are removed from memory and the
next COFI-tree is created until we mine all frequent trees.

One interesting implementation improvement is the fact
that the participation counter was also added to the header
table of the COFI-tree this counter cumulates the partici-
pation of the item in all paterns already discovered in the
current COFI-tree. The difference between the participa-



tion in the node and the participation in the header is that the
counter in the node counts the participation of the node item
in all paths where the node appears, while the new counter
in the COFI-tree header counts the participation of the item
globally in the tree. This trick does not compromise the
effectiveness and usefulness of the participation counting.
One main advantage of this counter is that it looks ahead
to see if all nodes of a specific item have already been tra-
versed or not to reduce the unneeded scans of the COFI-tree.

6 Conclusion and future work

The COFI algorithm, based on our COFI-tree structure,
we propose in this paper is one order of magnitude better
than the FP-Growth algorithm in terms of memory usage,
and sometimes in terms of speed. This Algorithm achieves
this results thanks to: (1) the non recursive technique used
during the mining process, in which with a simple traver-
sal of the COFI-tree a full set of frequent patterns can be
generated. (2) The pruning method that is used to remove
all locally non frequent patterns, leaving the COFI-tree with
only locally frequent items.

The major advantage of our algorithmCOFI over FP-
Growth is that it needs a significantly smaller memory foot-
print, and thus can mine larger transactional databases with
smaller main memory available. The fundamental differ-
ence, is that COFI tries to find a compromise between a
fully pattern growth approach, that FP-Growth adopts, and
a total candidacy generation approach that apriori is known
for. COFI grows targeted patterns but performs a reduced
and focused generation of candidates during the mining.
This is to avoid the recursion that FP-growth uses, and no-
torious to blow the stack with large datasets.

We have developed algorithms for closed itemset min-
ing and maximal itemset mining based on our COFI-tree
approach. However, their efficient implementations were
not ready by the deadline of this workshop. These effi-
cient algorithms and experimental results will be compared
to existing algorithms such as CHARM[17], MAFIA[6] and
CLOSET+[15], and will be reported in the future.
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Figure 7. Mining dataset of different sizes


