
Prolog-based Infrastructure for RDF:

Scalability and Performance

Jan Wielemaker
(University of Amsterdam, The Netherlands

jan@swi.psy.uva.nl)

Guus Schreiber
(Vrije Universiteit Amsterdam, The Netherlands

schreiber@cs.vu.nl)

Bob Wielinga
(University of Amsterdam, The Netherlands

wielinga@swi.psy.uva.nl)

Abstract: The semantic web is a promising application-area for the Prolog program-
ming language for its non-determinism and pattern-matching. In this paper we outline
an infrastructure for loading and saving RDF/XML, storing triples, elementary reason-
ing with triples and visualization. A predecessor of the infrastructure described here
has been used in various applications for ontology-based annotation of multimedia ob-
jects using semantic web languages. Our library aims at fast parsing, fast access and
scalability for fairly large but not unbounded applications upto 40 million triples.

The RDF parser is distributed with SWI-Prolog under the LGPL Free Software licence.
The other components will be added to the distribution as they become stable and
documented.

Key Words: Performance, Logic programming

Category: H.3 Information Systems/Information Storage and Retrieval

Note to the reviewers: This paper has been accepted for the main conference.
Section 2 is shortened and 3.3 has been deleted to fit the 14 page limit. Part of
the reviewers comments are integrated in (now) Sect. 3.3. Double submission
was not considered a problem by the organizers. “Yes, please. We intend to
have the workshop as a forum for implementors so double submissions are no
problem.”

1 Introduction

Semantic-web applications will require multiple large ontologies for indexing and
querying. In this paper we describe an infrastructure for handling such large
ontologies, This work was done on the context of a project on ontology-based
annotation of multi-media objects to improve annotations and querying [12],
for which we use the semantic-web languages RDF and RDFS. The annotations
use a series of existing ontologies, including AAT [9], WordNet [7] and ULAN
[13]. To facilitate this research we require an RDF toolkit capable of handling
approximately 3 million triples efficiently on current desktop hardware. This

paper describes the parser, storage and basic query interface for this Prolog-
based RDF infrastructure. A practical overview using an older version of this
infrastructure is in an XML.com article [8].

We have opted for a purely memory-based infrastructure for optimal speed.
Our tool set can handle the 3 million triple target with approximately 300 Mb.
of memory and scales to approximately 40 million triples on fully equipped 32-
bit hardware. Although insufficient to represent “the whole web”, we assume 40
million triples is sufficient for applications operating in a restricted domain such
as annotations for a set of cultural-heritage collections.

This document is organised as follows. In Sect. 2 we describe and evaluate
the Prolog-based RDF/XML parser. Section 3 discusses the requirements and
candidate choices for a triple storage format. In Sect. 4 we describe the chosen
storage method and the basic query engine. In Sect. 5 we describe the API and
implementation for RDFS reasoning support. This section also illustrates the
mechanism for expressing higher level queries. Section 6 describes visualisation
tools to examine the contents of the database. Finally, Sect. 7 describes some
related work.

Throughout the document we present metrics on time and memory resources
required by our toolkit. Unless specified otherwise these are collected on a dual
AMD 1600+ (approx. Pentium-IV 1600) machine with 2GB memory running
SuSE Linux 8.1, gcc 3.2 and multi-threaded SWI-Prolog 5.1.11.1 The software is
widely portable to other platforms, including most Unix dialects, MS-Windows
and MacOS X. Timing tests are executed on our reference data consisting of 1.5
million triples from WordNet, AAT and ULAN.

2 Parsing RDF/XML

The RDF/XML parser is the oldest component of the system. We started our
own parser because the existing (1999) Java (SiRPAC2) and Pro Solutions Perl-
based3 parsers did not provide the performance required and we did not wish
to enlarge the footprint and complicate the system by introducing Java or Perl
components. The RDF/XML parser translates the output of the SWI-Prolog
SGML/XML parser4 into a Prolog list of triples using the steps summarised in
Fig. 1.

2.1 Metrics and Evaluation

The source-code of the parser is 1170 lines, 564 for the first pass creating the
intermediate state, 341 for the generating the triples and 265 for the driver
1 http://www.swi-prolog.org
2 http://www-db.stanford.edu/~melnik/rdf/api.html
3 http://www.pro-solutions.com/rdfdemo/
4 http://www.swi-prolog.org/packages/sgml2pl.html

RDF/XML
Document

XML-Parser

XML-DOM
Dedicated

rewrite
language

RDF
Intermediate

Representation

DCG
rule-set

Prolog List
of

Triples

Figure 1: Steps converting an RDF/XML document into a Prolog list of triples.

File Size (Kb) Time (sec) Triples Triples/Sec.
wordnet-20000620.rdfs 3 0.00 37 –
wordnet glossary-20010201.rdf 14,806 10.64 99,642 9,365
wordnet hyponyms-20010201.rdf 8,064 10.22 78,445 7,676
wordnet nouns-20010201.rdf 9,659 13.84 273,644 19,772
wordnet similar-20010201.rdf 1,763 2.36 21,858 9,262

Total 34,295 37.06 473,626 12,780

Table 1: Statistics loading WordNet

putting it all together. The time to parse the WordNet sources are given in
Tab. 1.

The parser passes the W3C RDF Test Cases5. In the current implementation
however it does not handle the xml:lang tag nor RDF typed literals using
rdf:dataType.

3 Storing RDF triples: requirements and alternatives

3.1 Requirement from integrating different ontology representations

Working with multiple ontologies created by different people and/or organiza-
tions poses some specific requirements for storing and retrieving RDF triples.
We illustrate with an example from our own work on annotating images [11].

Given absence of official RDF versions of AAT and IconClass we created
our own RDF representation, in which the concept hierarchy is modeled as an
RDFS class hierarchy. We wanted to use these ontologies in combination with
5 http://www.w3.org/TR/2003/WD-rdf-testcases-20030123/

the RDF representation of WordNet created by Decker and Melnik6. However,
their RDF Schema for WordNet defines classes and properties for the meta-
model of WordNet. This means that WordNet synsets (the basic WordNet con-
cepts) are represented as instances of the (meta)class LexicalConcept and that
the WordNet hyponym relations (the subclass relations in WordNet) are repre-
sented as tuples of the metaproperty hyponymOf relation between instances of
wns:LexicalConcept. This leads to a representational mismatch, as we are now
unable to treat WordNet concepts as classes and WordNet hyponym relations
as subclass relations.

Fortunately, RDFS provides metamodelling primitives for coping with this.
Consider the following two RDF descriptions:

<rdf:Description rdf:about="&wns;LexicalConcept">

<rdfs:subClassOf rdf:resource="&rdfs;Class"/>

</rdf:Description>

<rdf:Description rdf:about="&wns;hyponymOf">

<rdfs:subPropertyOf rdf:resource="&rdfs;subClassOf"/>

</rdf:Description>

The first statement specifies that the class LexicalConcept is a subclass of the
built-in RDFS metaclass Class, the instances of which are classes. This means
that now all instances of LexicalConcept are also classes. In a similar vein, the
second statement defines that the WordNet property hyponymOf is a subproperty
of the RDFS subclass-of relation. This enables us to interpret the instances of
hyponymOf as subclass links.

We expect representational mismatches to occur frequently in any real-
istic semantic-web setting. RDF mechanisms similar to the ones above can
be employed to handle this. However, this poses the requirement on the
toolkit that the infrastructure is able to interpret subtypes of rdfs:Class and
rdfs:subPropertyOf. In particular the latter was important for our applica-
tions, e.g., to be able to reason with WordNet hyponym relations as subclass
relations or to visualize WordNet as a class hierarchy (cf. Fig. 6).

3.2 Requirements

Based on experiences we stated the following requirements for the RDF storage
formate.

Efficient subPropertyOf handling As illustrated in Sect. 3.1, ontology-
based annotation requires the re-use of multiple external ontologies. The

6 http://www.semanticweb.org/library/

subPropertyOf relation provides an ideal mechanism to re-interpret an ex-
isting RDF dataset.

Avoid frequent cache updates In our first prototype we used secondary
store based on the RDFS data model to speedup RDFS queries. The mapping
from triples to this model is not suitable for incremental update, resulting
in frequent slow re-computation of the derived model from the triples as the
triple set changes.

Scalability We anticipate the use of at least AAT, WordNet and ULAN in the
next generation annotation tools. Together these require 1.5 million triples
in their current form. We would like to be able to handle 3 million triples on
a state-of-the-art notebook (512 MB).

Fast load/save RDF/XML parsing and loading time for the above ontologies
is 108 seconds. This should be reduced using an internal format.

3.3 Storage options

The most natural way to store RDF triples is using facts of the format
rdf(Subject, Predicate, Object) and this is, except for a thin wrapper improving
namespace handling, the representation used in our first prototype. As stan-
dard Prolog systems only provide indexing on the first argument this implies
that asking for properties of a subject is indexed, but asking about inverse rela-
tions is slow. Many queries involve reverse relations: “what are the sub-classes of
X?”. “what instances does Y have?”, “what subjects have label L?” are queries
commonly used on our annotation tool.

Our first tool solved these problems by building a secondary database fol-
lowing the RDFS datamodel. The cached relations included rdfs class(Class,
Super, Meta). rdfs property(Class, Property, Facet), rdf instance(Resource,
Class) and rdfs label(Resource, Label). These relations can be accessed quickly
in any direction. This approach has a number of drawbacks. First of all, the
implications of even adding or deleting a single triple are potentially enormous,
leaving the choice between complicated incremental synchronisation of the cache
with the triple set or frequent slow total recompute of the cache. Second, storing
the cache requires considerable memory resources and third there are many more
relations that could profit from caching.

Using an external DBMS for the triple store is an alternative. Assuming
some SQL database, there are three possible designs. The simplest one is to
use Prolog reasoning and simple SELECT statements to query the DB. This ap-
proach does not exploit query optimization and causes many requests involving
large amounts of data. Alternatively, one could either write a mixture of Prolog
and SQL or automate part of this process, as covered by the Prolog to SQL

converter of Draxler [3]. Our own (unpublished) experiences indicate a simple
database query is at best 100 and in practice often over 1,000 times slower than
using the internal Prolog database. Query optimization is likely to be of lim-
ited effect due to poor handling of transitive relations in SQL. Many queries
involve rdfs:subClassOf, rdfs:subPropertyOf and other transitive relations.
Using an embedded database such as BerkeleyDB7 provides much faster sim-
ple queries, but still imposes a serious efficiency penalty. This is due to both the
overhead of the formal database API and to the mapping between the in-memory
Prolog atom handles and the resource representation used in the database.

In another attempt we used Predicate(Subject, Object) as database repre-
sentation and stored the inverse relation as well in InversePred(Object, Subject)
with a wrapper to call the ‘best’ version depending on the runtime instantia-
tion. This approach, using native Prolog syntax for fast load/safe satisfies the
requirements with minor drawbacks. The 3 million triples, the software and OS
together require about 600MB of memory. Save/load using Prolog native syn-
tax is, despite the fast SWI-Prolog parser, only twice as fast as parsing the
RDF/XML.

In the end we opted for a Prolog foreign-language extension: a module written
in C to extend the functionality of Prolog.8 A significant advantage using an ex-
tension to Prolog rather than a language independent storage module separated
by a formal API is that the extension can use native Prolog atoms, significantly
reducing memory requirements and access time.

4 Realising an RDF store as C-extension to Prolog

4.1 Storage format

Triples are stored as a C-structure holding the three fields and 7 hash-table links
for index access on all 7 possible instantiation patterns with at least one-field
instantiated. The size of the hash-tables is automatically increased as the triple
set grows. In addition, each triple is associated with a source-reference consisting
of an atom (normally the filename) and an integer (normally the line-number)
and a general-purpose set of flags, adding to 13 machine words (52 bytes on
32-bit hardware) per triple, or 149 Mbytes for the intended 3 million triples.
Our reference-set of 1.5 million triples uses 890,000 atoms. In SWI-Prolog an
atom requires 7 machine words overhead excluding the represented string. If we
estimate the average length of an atom representing a fully qualified resource
at 30 characters the atom-space required for the 1.8 million atoms in 3 million
7 http://www.sleepycat.com/
8 Extending Prolog using modules written in the C-language is provided in most to-

days Prolog systems although there is no established standard foreign interface and
therefore the connection between the extension and Prolog needs to be rewritten
when porting to other implementation of the Prolog language [1].

pred1

Pred2 Pred3

Pred4

‘Root’ Property

rdfs:subPropertyOf

cached ‘root’ predicate

Figure 2: All predicates are hashed on the root of the predicate hierarchy.

triples is about 88 Mbytes. The required total of 237 Mbytes for 3 million triples
fits easily in 512 Mbytes.

To accommodate active queries safely, deletion of triples is realised by flagging
them as erased. Garbage collection can be invoked if no queries are active.

4.1.0.1 Indexing

Subjects and resource Objects use the immutable atom-handle as hash-key. Lit-
eral Objects use a case-insensitive hash to speedup case-insensitive lookup of
labels, a common operation in our annotation tool. The Predicate field needs
special attention due to the requirement to handle subPropertyOf efficiently.
The storage layer has an explicit representation for all known predicates which
are linked directly in a hierarchy built using the subPropertyOf relation. Each
predicate has a direct pointer to the root predicate: the topmost predicate in
the hierarchy. If the top is formed by a cycle an arbitrary node of the cycle is
flagged as the root, but all predicates in the hierarchy point to the same root
as illustrated in Fig. 2. Each triple is now hashed using the root-predicate that
belongs to the predicate of the triple.

The above representation provides fully indexed lookup of any instantiation
pattern, case insensitive on literals and including sub-properties. As a compro-
mise to our requirements, the storage layer must know the fully qualified resource
for subPropertyOf and must rebuild the predicate hierarchy and hash-tables if
subPropertyOf relations are added to or deleted from the triple store. The pred-
icate hierarchy and index are invalidated if such a triple is added or deleted. The
index is re-build on the first indexable query. We assume that changes to the
constsubPropertyOf relations are infrequent.

4.2 Fast save/load format

Although attractive, the Prolog-only prototype has indicated that storing triples
using the native representation of Prolog terms does not provide the required

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/7/owl#
xsd http://www.w3.org/2000/10/XMLSchema#
dc http://purl.org/dc/elements/1.1/
eor http://dublincore.org/2000/03/13/eor#

Table 2: Initial registered namespace abbreviations

speedup, while the files are, mainly due to the expanded namespaces, larger than
the RDF/XML source. An efficient format can be realised by storing the atom-
text only the first time. Later references to the same atom simply store this as
the N-th atom. A hash-table is used to keep track of the atoms already seen. An
atom on the file thus has two formats: X 〈integer〉 or A 〈length〉 〈text〉. Loading
requires an array of already-loaded atoms. The resulting representation has the
same size as the RDF/XML within 10%, and our reference dataset of 1.5 million
triples is loaded 22 times faster, or 5 seconds.

4.3 Namespace handling

Fully qualified resources are long, hard to read and difficult to maintain in appli-
cation source-code. On the other hand, representing resources as atoms holding
the fully qualified resource is attractive because it is compact and compares very
fast: the only test between two atoms as well as two resources is the equivalence
test. Prolog optimises this test by ensuring there are no two atoms representing
the same characters and therefore comparing atom-handles decides on equiva-
lence.

To merge as much as possible of the advantages the API described in
Tab. 3 is encapsulated in a macro-expansion mechanism based on Prolog
goal expansion/2 rules. For each of the arguments that can receive a resource
a term of the format 〈NS〉:〈Identifier〉, where 〈NS〉 is a registered abbreviation
of a namespace and 〈Identifier〉 is a local name, is mapped to the fully quali-
fied resource.9 The predicate rdf db:ns/2 maps registered short local namespace
identifiers to the fully qualified namespaces. Declared as multifile, this predi-
cate can be extended by the user. The initial definition contains the well-known
abbreviations used in the context of the sematic web. See Tab. 2.
9 In our original prototype we provided a more powerful version of this mapping at

runtime. In this version, output-arguments could be split into their namespace and
local name as well. After examining actual use of this extra facility in the prototype
and performance we concluded a limited compile-time alternative is more attractive.

rdf(?Subject, ?Predicate, ?Object)
Elementary query for triples. Subject and Predicate are atoms representing the fully
qualified URL of the resource. Object is either an atom representing a resource or
literal(Text) if the object is a literal value. For querying purposes, Object can be
of the form literal(+Query, -Value), where Query is one of
exact(+Text)

Perform exact, but case-insensitive match. This query is fully indexed.
substring(+Text)

Match any literal that contains Text as a case-insensitive substring.
word(+Text)

Match any literal that contains Text as a ‘whole word’.
prefix(+Text)

Match any literal that starts with Text.
rdf has(?Subject, ?Predicate, ?Object, -TriplePred)

This query exploits the rdfs:subPropertyOf relation. It returns any triple whose
stored predicate equals Predicate or can reach this by following the transi-
tive rdfs:subPropertyOf relation. The actual stored predicate is returned in
TriplePred.

rdf reachable(?Subject, +Predicate, ?Object)
True if Object is, or can be reached following the transitive property Predicate
from Subject. Either Subject or Object or both must be specified. If one of Subject
or Object is unbound this predicate generates solutions in breath-first search order.
It maintains a table of visited resources, never generates the same resource twice
and is robust against cycles in the transitive relation.

rdf subject(?Subject)
Enumerate resources appearing as a subject in a triple. The reason for this pred-
icate is to generate the known subjects without duplicates as one would get using
rdf(Subject, ,). The storage layer ensures the first triple with a specified Subject
is flagged as such.

rdf assert(+Subject, +Predicate, +Object)
Assert a new triple into the database. Subject and Predicate are resources. Object
is either a resource or a term literal(Value).

rdf retractall(?Subject, ?Predicate, ?Object)
Removes all matching triples from the database.

rdf update(+Subject, +Predicate, +Object, +Action)
Replaces one of the three fields on the matching triples depending on Action:
subject(Resource)

Changes the first field of the triple.
predicate(Resource)

Changes the second field of the triple.
object(Object)

Changes the last field of the triple to the given resource or literal(Value).

Table 3: API summary for accessing the triple store

With these declarations, we can write the following to get all individuals of
http://www.w3.org/2000/01/rdf-schema#Class on backtracking:

rdf(X, rdf:type, rdfs:’Class’)

4.4 Performance evaluation

We studied two queries using our reference set. First we generated all so-
lutions for rdf(X, rdf:type, wns:’Noun’). The 66025 nouns are generated in

rdfs_individual_of(Resource, Class) :-

nonvar(Resource), !,

rdf_has(Resource, rdf:type, MyClass),

rdfs_subclass_of(MyClass, Class).

rdfs_individual_of(Resource, Class) :-

nonvar(Class), !,

rdfs_subclass_of(SubClass, Class),

rdf_has(Resource, rdf:type, SubClass).

rdfs_individual_of(_Resource, _Class) :-

throw(error(instantiation_error, _)).

Figure 3: Implementation of rdfs individual of/2

0.0464 seconds (1.4 million alternatives/second). Second we asked for the type
of randomly generated nouns. This deterministic query is executed at 526,000
queries/second. Tests comparing rdf/3 with rdf has/4, which exploits the
rdfs:subPropertyOf relation show no significant difference in performance.

5 Querying and RDFS

Queries at the RDFS level are implemented using trivial Prolog rules exploit-
ing the primitives in Tab. 3. For example, Fig. 3 realises testing and generating
individuals. The first rule tests whether an individual belongs to a given class
or generates all classes the individual belongs to. The second rule generates all
individuals that belong to a specified class. The last rule is called in the unbound
condition. There is not much point generating all classes and all individuals that
have a type that is equal to or a subclass of the generated class and therefore
we generate a standard Prolog exception.

5.1 A few User-queries

Let us study the question ‘Give me an individual of WordNet ‘Noun’ labeled
right ’. This non-deterministic query can be coded in two ways:

right_noun_1(R) :-

rdfs_individual_of(R, wns:’Noun’),

rdf_has(R, rdfs:label, literal(right)).

right_noun_2(R) :-

multi_cat(Label, CatList) :-

setof(Label, wn_label(Label), Labels),

member(Label, Labels),

setof(Cat, lexical_category(Label, Cat), CatList),

CatList = [_,_|_].

lexical_category(Label, Category) :-

rdf_has(SynSet, rdfs:label, literal(Label)),

rdfs_individual_of(SynSet, Category),

rdf_has(Category, rdfs:subClassOf, wns:’LexicalConcept’).

wn_label(Label) :-

rdfs_individual_of(SynSet, wns:’LexicalConcept’),

rdf_has(SynSet, rdfs:label, literal(Label)).

Figure 4: Finding all words that belong to multiple lexical categories

rdf_has(R, rdfs:label, literal(right)),

rdfs_individual_of(R, wns:’Noun’).

The first query enumerates the subclasses of wns:Noun, generates their 66025
individuals and tests each for having the literal ‘right’ as label. The second
generates the 8 resources in the 1.5 million triple set labeled ‘right’ and tests
them to belong to wns:Noun. The first query requires 0.17 seconds and the second
0.37 milli-seconds to generate all alternatives.

A more interesting question is ‘Give me a WordNet word that belongs to
multiple lexical categories’. The program is shown in Fig. 4. The first setof/3
generates the 123497 labels (a subproperty of wns:wordForm) defined in this
WordNet version. Next we examine the labels one by one, generating the lexi-
cal categories and selecting the 6584 words that belongs to multiple categories.
The query completes in 9.33 seconds after 2.27 million calls on rdf has/4 and
rdf reachable/3.

6 Visualisation

For our annotation application we developed interactive editors. We are reorgan-
ising these into a clean modular design for building RDF/RDFS and OWL tools.
The current toolkit provides a hierarchical browser with instance and class-view
on resources and a tool to generate classical RDF diagrams. Both tools provide

Figure 5: The RDF browser after searching for right and selecting this term as a
refinement of turn. The right tabbed-window can show a resource from various
different viewpoints. This resource can be visualised as a generic resource or as
a class.

menus that exploit the registered source-information to view the origin of a triple
in a text-editor. Currently these tools help developers to examine the content of
the database. Figure 5 and Fig. 6 visualise the WordNet resource labeled right
in one of its many meanings.

7 Related Work

7.0.0.2 Protege

[4] is a modular Java-based ontology editor that can be extended using plugins.
We regard Protege as complementary, providing interactive editing where we
only provide simple interactive browsing. The Protege ontology language does
not map one-to-one to RDFS, providing both extensions (e.g. cardinality) and
limitations (notably in handling subPropertyOf). New versions of Protege and
the introduction of OWL reduce this mismatch.

7.0.0.3 Jena

[6] is a Java implementation for basic RDF handling. It aims at standard com-
pliance and a friendly access from Java. Although its focus and coverage are
slightly different the main difference is the choice of language.

7.0.0.4 Sesame

[2] is an extensible Java-based architecture realising load/save of RDF/XML,
modify the triple model and RQL [5] queries. It stresses a modular design where

(*)

Figure 6: From the browser we selected the Diagram option and expanded a few
relations. The grey boxes represent literal values. The two marked relations turn
WordNet into an RDFS class-hierarchy as explained in Sect. 3.1.

notably the storage module can be replaced. Although scalable, the modular
approach with generic DBMS performs poorly (section 6.5 of [2]: Scalability
Issues).

8 Discussion and Conclusions

We have outlined alternatives and an existing implementation of a library for
handling semantic web languages in the Prolog language. We have demonstrated
that this library can handle moderately large RDF triple sets (3 million) using
237 MB memory, ranging upto 40 million on 32-bit hardware providing a 3.5 GB
address-space to applications. Further scaling either requires complicated seg-
mentation of the store or hardware providing a larger (e.g. 64-bit) address-space.
The library requires approx. 220 sec. to read 3 million triples from RDF/XML
and 10 sec. from its proprietary file-format. Updating the subPropertyOf cache
requires 3.3 sec. on this data-set. The library requires approx. 2 µs for the first
answer and 0.7 µs for providing alternatives from the result-set through Prolog
backtracking. All measurements on AMD Athlon 1600+ with 2 GB memory. The
perfermance of indexed queries is constant with regard to the size of the triple
set. The time required for not-indexed queries and cache-updates is proportional
with the size of the triple set.

Section 5.1 illustrates that subclause ordering can be very important for per-
formance. Although Prolog users are used to this it is desirable to have more
high-level query optimisation. Constraint logic programming (CLP) and tabling
[10] possibly can improve efficiency and allow a more declarative programming
style in the presence of cycles in relations and other abnormalities in the search-
space.

Although Prolog queries are not strictly declarative due to required ordering,
cut and database manipulatons, experience with our first prototype has indicated
that the queries required for our annotation and search process are expressed
easily and concise in the Prolog language. We anticipate this infra structure is
also suitable for the prototyping and implementation of end-user query langages.

References

1. Roberto Bagnara and Manuel Carro. Foreign language interfaces for Prolog: A
terse survey. ALP newsletter, Mey 2002.

2. Jeen Broekstra and Arjohn Kampman. Sesame: A generic architec-
ture for storing and querying RDF and RDF Schema. Technical Re-
port OTK-del-10, Aidministrator Nederland bv, October 2001. URL:
http://sesame.aidministrator.nl/publications/del10.pdf.

3. C. Draxler. Accessing relational and NF 2 databases through database set predi-
cates. In Geraint A. Wiggins, Chris Mellish, and Tim Duncan, editors, ALPUK91:
Proceedings of the 3rd UK Annual Conference on Logic Programming, Edinburgh
1991, Workshops in Computing, pages 156–173. Springer-Verlag, 1991.

4. W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu,
and M. A. Musen. Knowledge modeling at the millennium: The de-
sign and evolution of Protégé-2000. In 12th Banff Workshop on Knowl-
edge Acquisition, Modeling, and Management. Banff, Alberta, 1999. URL:
http://smi.stanford.edu/projects/protege (access date: 18 December 2000).

5. G. Karvounarakis, V. Christophides, D. Plexousakis, and
S. Alexaki. Querying community web portals. URL:
http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.html.

6. Brian McBride. Jena: Implementing the rdf model and syntax specification. 2001.
7. G. Miller. WordNet: A lexical database for english. Comm. ACM, 38(11), Novem-

ber 1995.
8. Bijan Parsia. RDF applications with Prolog. O’Reilly XML.com, 2001.

http://www.xml.com/pub/a/2001/07/25/prologrdf.html.
9. T. Peterson. Introduction to the Art and Architecture Thesaurus. Oxford Univer-

sity Press, 1994. See also: http://www.getty.edu/research/tools/vocabulary/aat/.
10. I. V. Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Terrance Swift, and

David S. Warren. Efficient tabling mechanisms for logic programs. In Leon Ster-
ling, editor, Proceedings of the 12th International Conference on Logic Program-
ming, pages 697–714, Cambridge, June 13–18 1995. MIT Press.

11. A. Th. Schreiber. The web is not well-formed. IEEE Intelligent Systems,
March/April 2002.

12. A. Th. Schreiber, B. Dubbeldam, J. Wielemaker, and B. J. Wielinga. Ontology-
based photo annotation. IEEE Intelligent Systems, 16(3):66–74, May/June 2001.

13. ULAN: Union List of Artist Names. The Getty Foundation. URL:
http://www.getty.edu/research/tools/vocabulary/ulan/, 2000.

