
A Multy-Agent Knowledge Management System for Software Maintenance

Aurora Vizcaíno1 , Jesús Favela2, Mario Piattini1

1Grupo Alarcos,Escuela Superior de Informática, Ciudad Real (Spain)

2Cicese, Ensenada (México)
1. Introduction

Knowledge is to the Information Age as oil was to the Industrial Age (Larson et al., 2001). Nowadays

organisations consider knowledge, also called intellectual capital, to be more important than tangible

capital. To understand the knowledge that an organisation has enables it to grow and survive (Gupta and

Govindarajan, 2000). For this reason, organisations are currently researching techniques and methods to

manage their knowledge systematically.

On the other hand, organisations have different types of knowledge that are often related to each other

and which must be managed in a consistent way. In this paper we focus on the different types of

knowledge that are related to software engineering, concretely, on the software maintenance process.

Software engineering involves the integration of different knowledge sources that are in constant

change. The management of this knowledge and how it can be applied to software development efforts

has received little attention in the software engineering research community so far (Henninger and

Schlabanch, 2001). However, tools and techniques are necessary to capture and process knowledge in

order to facilitate subsequent development efforts.

This paper presents a multi-agent system in charge of manage the knowledge that is produced during the

software maintenance process in order to help the staff to make decisions. The contents of this article are

organised as follows: section 2 describes the different types of knowledge that are generated during the

software maintenance process. Section 3 outlines the roles that the agents play in the knowledge

management system. Finally conclusions are presented in section 4.

2. Knowledge in Software Maintenance

Many studies (Card and Glass, 1990; Pigoski, 1997) have demonstrated that the majority of the overall

expenses incurred during the development of a software product occur during the maintenance stages.

Thus, in recent years researchers have focussed their attention on looking for techniques which help to

increase the efficiency of this problem. Software maintenance is a knowledge intensive activity. This

knowledge comes not only from the expertise of the professionals involved in the process, but also from

the one intrinsic to the product being maintained, the reasons that motivate the maintenance (new

requirements, user complains, etc) and processes, methodologies and tool used in the organization.

During software maintenance several characteristics change substantially. One such example are

changes in the maintenance staff (which could mean that the people's expertise changes as well), or the

frequency with which each type of maintenance (corrective, perceptive, adaptive or preventive) is

carried out. It would be advisable to utilise a system in charge of controlling maintenance information.

The system might produce new knowledge and obtain the maximum performance from the current

information. By reusing information and producing knowledge the high costs of software maintenance

could also be decreased (De Loof, 1990).

One of the most important elements in the software maintenance process are the members of the staff.

They have skills that are necessary in the use of a methodology, which helps to construct a product,

which conforms to standards and satisfies criteria. But what would happen if a person, who has a certain

degree of expertise, plays a role in a project and who is part of a team abandons the project or, what

would be worse, the company. There are several possible answers to this question. One is that the

company would lose the expertise of the person and for this reason the product would perhaps not be

deliberated on time therefore producing an increase in the costs. Another answer is that no problem

would be apparent- at that moment but will rise when something that was done by this person needs to

be modified. The most optimistic response might affirm that nothing would happen since the company

has a knowledge management system where the employees knowledge has been codified with the

finality that such knowledge was accessible to the wider organisation (Kogut and Zander, 1992).

Software maintenance involves many activities where different people intervene. Each person has partial

information that is probably necessary for the rest of the employees. If the knowledge only exists in the

workers and there is no a system in charge of transferring the tacit knowledge (contained in the

employees) to explicit knowledge (stored on paper, in files, etc) when an employee abandons the

organisation part of the intellectual capital goes with him/her. If this fact occurred in a software

maintenance company it could mean the impossibility of continuing to manage a project or maintaining

a software that would cause a huge loss of benefits and what it is more important, a loss of intellectual

capital. Unfortunately, this is often the case.

Another issue that complicates the maintenance process is the scarce documentation that exist related to

a specific software system. For example legacy software from other units often has not documentation

which describes the features of the software.

For an organization that deals with software maintenance it is vital to have a knowledge maintenance

system which stores explicit knowledge and enables the organisation to own of intellectual capital and

share it with the sub-units. Otherwise, the employees own this information and the company depends on

them. Another advantage of using a knowledge management system is that it reduces the time that a

person needs to mature professionally because it favours the professional development of employees and

in this way increases the intellectual capital. With the passing of time, workers acquire knowledge which

they do not normally pass on to the rest of the workers in the same area (let alone to workers in different

areas). For this reason different solutions are often used in order to solve the same problem. Using a

knowledge management system which acquires workers’ knowledge and transmits it, the above

mentioned situation would decrease since all workers could benefit from other employees’ experience

and the organisation would increase its expertise and coherence of information.

Having a knowledge management system the staff may also be informed about where information is. It

is critical for software maintenance workers to have access to the knowledge the organisation has.

Szulanski (1994) carried out a study which found that the number one barrier to knowledge sharing was

"ignorance": the sub-units are ignorant of the knowledge that exists in the organisations, or the sub-units

possessing the knowledge are ignorant of the fact that another sub-unit needs such knowledge.

Sometimes the organisation itself is not aware of the location of the pockets of knowledge or expertise

(Nebus, 2001). This fact has been summarised by management practitioners as "the left hand not only

does not know what the right hand is doing, but it may not even know there is a right hand" (O'Dell and

Grayson, 1998: 157).

A knowledge management system also help employees to have a shared vision, since the same

codification is used and misunderstanding in staff communications may be avoided. Several studies

have shown that a shared vision may hold together a loosely coupled system and promote the integration

of an entire organisation (e. g., Orton and Weick, 1990)

The above explained issues motivated us to design a knowledge management system for obtaining,

managing and transmitting knowledge in a software maintenance company, thus increasing the workers’

expertise, and making easier their work since advises which decision must be made.

3. A Multi-agent System to Manage knowledge in Software Maintenance

The changeable character of the software maintenance process requires that the information generated to

be controlled and stored. Thus it might be shared and besides inconsistency between different

information could be detected. We propose in order to manage the knowledge generated during

maintenance a multi-agent system where each agent is in charge of controlling a different kind of

knowledge such as, information about products, standards, criteria, processes, activities, tools,

methodologies, projects and staffs’ roles and skills.

The roles of the agent are:

• Capturing information related to the entities that they control

• Comparing new information with that which has already been stored in order to detect

inconsistency between old and new information. If an inconsistency is detected the agent must

inform the rest of the agents in order to discover why the inconsistency has occurred.

• Informing other agents about the new information received. Trying to ensure that all agents

share their information and in this way avoiding inconsistencies and ensuring that information is

always up to date.

• Predicting new client's demands. Similar software projects often require similar maintenance

demands. What a company has done before tends to predict what it can do in the future (Gupta

and Govindarajan, 2000).

• Predicting possible mistakes by using historic knowledge. Since, as Henninger and Schlabach

(2001) claim, knowledge management avoids the repetition of common mistakes.

• Advising solutions to problems. Storing solutions that have worked correctly in previous

maintenance situations helps to avoid the effect that Zell (2001) comments upon, indicating that

due to the limited transfer of knowledge companies are forced to reinvent new practices,

resulting in costly duplication of effort. The best practices often linger in companies for years

unrecognised and unshared (Zell, 2001, pp 77).

• Helping to make decisions. For instance to evaluate whether it is convenient to outsource certain

maintenance activities. When knowledge is enhanced it is easier to improve problem

identification, development of alternative solutions and the selection of the best solution

(Gnyawali, Stwart and Grant, 1997).

• Advising certain employee to do a specific job. The system has information about each

employee's skills and about where and in what has each person worked. Agents may process this

information to suggest which person is most suitable to carry out a task.

• Estimating the cost of future interventions. Information available may be used to make

statistical analyses that help to predict maintenance effort and costs.

4. Conclusions

Software maintenance is one of the most important stage in the software life cycle. This process takes a

lot time, effort and costs. Besides, it generates a huge amount of different kinds of knowledge that must

be suitably managed. A system with different agents in charge of manage each kind of knowledge might

improve the process of maintenance since agents would help the staff to find information and solutions

to problems and to make decisions, increasing in this way the organization competitive.

References
Card, D.M and Glass, R.L (1990) Measuring Software Design Quality. EE UU: Englewood Cliffs.

De Looff, L. Information Systems Outsourcing Decisión Making: a Managerial Approach. Hershey, PA: Idea

Group Publishing, 1990.

Gnyawali, D.R., Stewart, A.C., and Grant J.H. (1997). Creating and Utilization of Organizational Knowledge: An

Empirical Study of the Roles of Organizational Learning on Strategic Decision Making", Academy of

Management Best Paper Proceedings, pp. 16-20.

Gupta, A., and Govindarajan, V. (2000). Knowledge Flows within Multinational Corporations. Strategic

Management Journal, 21(4), pp. 473-496.

Henninger, S., and Schlabach, J. (2001). A Tool for Managing Software Development Knowledge, 3ª International

Conference on Product Focused Software Process Improvement. PROFES 2001, Lecture Notes in

Computer Science, Kaiserslautern, Germany, pp 182-195.

Kogut, B. and Zander, U. (1992) Knowledge Of The Firm, Combinative Capabilities, And The Replication Of

Technology, Organization Science, Vol. 3; pp. 383-97.

Larson, L., Nidiffer, K.E., Rose, L.C., Small, R., Stankosky, M. (2001). Knowledge Management: Insights from

the Trenches. IEEE Software, Vol. 18, No. 6, pp 66-68.

Nebus, J. (2001). Framing the Knowledge Search Problem: Whom Do We Contact, and Why Do We Contact

Them? Academy of Management Best Papers Proceedings, pp h1-h7.

O'Dell, C., and Grayson, C.J. If Only We Knew What We Know: Identification and Transfer on Internal Best

Practice. California Management Review, Vol. 40, No. 3, pp 154-174.

Orton, J.D., and Weick, K.E. (1990) Loosely coupled systems: A reconceputalization. Academy of Management

Review, 15(2), pp 203-223.

Stewart, T. A., (1997) La nueva riqueza de las organizaciones: el capital intelectual, Ediciones Granica, Buenos

Aires, 950-641-253-7.

Szulanski, G., (1994). Intra-Firm Transfer of Best Practices Project. American Productivity and Quality Centre,

Houston, Texas.

Pigoski, T.M. (1997). Practical Software Maintenance. Best Practices for Managing Your Investment. Ed. John

Wiley & Sons, USA, 1997.

Zell, D. (2001) Overcoming Barriers to Work Innovations: Lessons Learned at Hewlet-Packard. Organizational

Dynamics, 30 (1), pp 77-86.

	3. A Multi-agent System to Manage knowledge in Software Maintenance

