Using XSLT for Interoperability: DOE and The
Travelling Domain Experiment

Antoine Isaac'-2, Raphaél Troncy''3, and Véronique Malaisé!+*
! Institut National de I’Audiovisuel, Direction de la Recherche, Equipe DCA
4, Av. de ’Europe - 94366 Bry-sur-Marne
{aisaac,rtroncy,vmalaise}@ina.fr
http://www.ina.fr/
% Université de Paris-Sorbonne, LaLICC, http://www.lalic.paris4.sorbonne.fr
3 INRIA Rhéne-Alpes, Equipe EXMO, http://www.inrialpes.fr/exmo
1 AP-HP, Equipe STIM, http://www.biomath. jussieu.fr

1 Introduction

This paper presents the results of the use of the Differential Ontology Editor®
(DOE) during the second experiment on the evaluation of ontology-related tech-
nologies that was initiated by the OntoWeb thematic network®.

The first experiment aimed at evaluating the modeling of an ontology in var-
ious environments through a shared description of the travelling domain written
in natural language. The workshop (organized at the 13th International Confer-
ence on Knowledge Engineering and Knowledge Management (EKAW 2002) in
Spain) showed that the results were very heterogeneous [1]. This second experi-
ment proposes to analyze how an ontology can be exchanged (exported and/or
imported) between different tools.

We have used the following protocol to perform this experiment:

1. Reuse the ontology modeled with the DOE tool for the EON 2002 Workshop;
2. Perform a circular transformation with RDFS as exchange language, that is:
— Export the DOE ontology in RDFS [10], import it in each of the four
following environments: Protégé2000 [5], OilEd [4], OntoEdit [11]
and WebODE |[2] and assess the quality of the transformation;
— Modify the ontology in these environments and export it again in RDF'S;
Import the result in DOE and assess the quality of the transformation;
— Compare the original ontology and the final ontology that results from
this circular transformation.
3. Perform another circular transformation with the same tools, but with OWL
[6] as exchange language.

® The tool is available for free at http://opales.ina.fr/public/. A repository of
ontologies are available in various languages at http://opales.ina.fr/public/
eon2003/.

® See the Special Interest Group homepage at http://delicias.dia.fi.upm.es/
ontoweb/sig-tools/index.html.



The remainder of the paper is organized as follows. In section 2, we draw some
conclusions about the last experiment and the very heterogeneous ontologies
developed. Section 3 presents the DOE methodology, the DOE tool and our
design choices for modeling the travelling domain ontology. We also introduce
the way we use XSLT stylesheets to exchange the ontology model, since all
languages have an XML serialization. The experiment begins in section 4, where
we follow the protocol with RDFS as exchange language, and continues in section
5, with OWL as exchange language. Finally, we give in section 6 the conclusions
that can be derived from these experiments.

2 Lessons Learned From the EON’2002 Workshop

The first EON workshop led to the creation of ten ontologies that were very
heterogeneous with respect to their conceptualization. First of all, the ontologies
can be classified in two categories: the ones with top-level concepts and rela-
tions, and the ones without. The first category is clearly more interested in the
taxonomy structure (with design decisions inspired by the philosophy) whereas
the second one is rather focused on the concepts that the user needs. Regarding
the description of the domain, all ontologies have, more or less, modeled the
same concepts. However, the taxonomies produced are quite different. The main
differences appear in the branches “means of transport” and “reservation”.
According to us, these differences are mainly due to the lack of particular use
cases that could guide the ontology design. The application using this ontology
was not specified and each ontologist has freely interpreted how to define and
classify the concepts. The knowledge representation paradigm supporting the
modeling and the tool itself contribute to the variability of the ontologies built.
For instance, tools based on the frame paradigm support concept attributes
(binary relations) whereas DOE can model n-ary relations between concepts.

3 DOE: The Differential Ontology Editor

Many approaches (for a complete survey, the reader can refer to the OntoWeb
Technical RoadMap”) have been reported to build ontologies, but only few of
them detail the steps needed to obtain and structure the taxonomies. This ob-
servation has previously led us to propose a methodology entailing a semantic
commitment to normalize the meaning of the concepts [3]. We briefly present
this methodology in section 3.1. In section 3.2, we describe how the DOE ed-
itor implements this methodology, and particularly how its exchange facilities,
via import and export procedures, are performed by XSLT transformations. Fi-
nally, we present the design decisions that we have made to model the travelling
domain ontology (section 3.3).

" http://babage.dia.fi.upm.es/ontoweb/wpl/0OntoRoadMap/index.html



3.1 General DOE Methodology

As shown in [3], none of the methodologies reported to build ontologies force the
ontologist to explicit the real meanings of the concepts. The terms used to refer
to the concepts are still liable to multiple interpretations. This results in possible
misunderstandings and consequently bad modeling and use of the ontology. As
a solution, we have already suggested a three-steps methodology that consists
in:

— a semantic normalization: aims at reaching a semantic agreement about the
meaning of the labels used for naming the concepts;

— a formalization: aims at formalizing the ontology, that is, define the concepts
(in the Description Logics sense), constrain the relations, add axioms (e.g.
algebra properties), add instances, etc.

— an operationalization: allows to equip the concepts with the possible compu-
tational operations available in a particular knowledge representation lan-
guage.

The first step is based on differential semantics [8]. Practically, the ontologist
has to express, in natural language, the similarities and differences of each notion
(concept or relation) with respect to its neighbors: its parent-notion and its
siblings-notions. The result is a taxonomy of notions, where the meaning of a
node is given by the gathering of all similarities and differences attached to the
notions found on the way from the root notion (the more generic) to this node.
We follow four principles to explicit this information:

— The similarity with parent principle (or SWP): explicits why the notion
inherits properties of the one that subsumes it;

— The similarity with siblings principle (or SWS): gives a semantic axis, a
property — assuming exclusive values — allowing to compare the notion with
its siblings.

— The difference with siblings principle (or DWS): precises here the property
value allowing to distinguish the notion from its siblings;

— The difference with parent principle (or DWP): explicits the difference al-
lowing to distinguish the notion from its parent;

For example, Figure 1 gives the differential principles bound to the notion
MeansOfTransport.

In the second step, the notions that come from this conceptualization are
added with a formal meaning. The ontologist can define some concepts, precise
the domains of the relations, add axioms and rules or give instances for some
concepts. Tools make also some consistency checking. For instance, they have to
check the propagation of the arity along the hierarchy of relations — if specified —
and the inheritance of the domains. The third and last step of the methodology
allows to export the ontology modeled into a knowledge representation language.



3.2 The DOE Editor

DOE is a simple prototype that supports partially the three steps of the method-
ology detailed above. It is not intended to bring a direct competition with other
existing environments. Rather, its purpose is to demonstrate by experimentation
how taxonomy structuring can benefit from our proposed methodology.

- Differential Ontology Editor - TravellingOntology 1ol x|
File Edit Metadata Language Help

Differential Ontology
~Tree Browser “|-Editor

Concept

Artefact S
? @ StaticArtefact e It is an artefactthat can move

@ (€ IndependantStaticAretact || Simitarity edit SWP
gg with Parent :

Differential Principles

TownSight
@ LodgingFacility
& (C) Hotel 4
BedandBreakiast 1
G (€ TransportF acility e e
© Airport 22 0 e
¢ (€ DependantStaticArtefact E : It has a specific purpose
© Room | Similarity odit SWS
Q@ © DynamicArtefact || Z)| with Siblings :
@ {€)MeansOfTransport M
L Flane
% BoeingPlane
AirhusFlane
& (©) EarthiyMoT 2
¢ © UrbanOniyMoT e It helps maoving other entities
Underground |l | Difference
CityBus |l ] with siblings :
Tramuay 12 M
§ (@ InterurbanMOT
@ (©) CollectivelnterUrbanMoT
Train
@ © IndividualinterUrbanMoT
@ (€ Car

It has a specific purpose : It helps

Taxi E 1 3 L
% RertalCar | Dpifference  maving other entities TN
% Motarhike || withParent:

Eike i

4

Fig. 1. The differential principles bound to the notion MeansOfTransport in the DOE
tool

During the first step, the ontologist can enter the definition of the notions
according to our principles. The tool automatizes partly this task. The Figure 1
shows the interface with the concept Means0fTransport highlighted, and its dif-
ferential principles fillers. For the second step, the taxonomies built previously
are shown and the editor allows the ontologist to specialize existing concepts
and relations (without the differential information), as well as to specify the
arity and domains of the relations. The last step is implemented by exporting
the referential ontology into commonly-used knowledge representation languages



(RDFS, DAML+OIL or OWL for instance) that can be used by specific appli-
cation environments. This export mechanism also allows to refine the ontologies
built, using other editors and the features they support.

All the exchange facilities (import and export from various languages®) are
performed, in an original way, with XSLT [12] transformations. Actually, all
proposed languages for representing ontologies on the Web have an XML serial-
ization and the ontology editors themselves have usually their model described in
XML. Therefore, XSLT, which is a language for transforming XML documents
into other XML documents, seems adapted to perform this task. The ontologist
can also use its own stylesheet, dynamically from the file menu, in order to im-
port (resp. export) ontologies. In this case, the user has to specify the URI of
the stylesheet and the input (resp. output) source. This feature provides a flex-
ible way to accomplish the interoperability between DOE and others ontology
builder tools.

3.3 The Travelling Domain Ontology

After comparing with the other ontologies presented at the previous workshop,
we made some minor changes in our ontology (add some concepts and relations).
Our ontology contains a top level to be consistent with our methodology. The
first distinction that we make concerns the possibility for entities to be spatio-
temporally located or not (ConcreteEntity and AbstractEntity).

The ConcreteEntity is then considered mostly in regard of its spatial or
temporal location. TemporalEntity includes the Reservation types. One dif-
ference with other ontologies is the treatment of flight. Here, this concept is
seen as a special reservation. For any kind of reservation, the relation motUsed
can be established with a particular means of transport (e.g. Plane for the
FlightReservation). There are three kinds of SpatialEntity: Biological-
Object (the travel agent or the customer), GeographicObject (continent, coun-
try, city or resort) and Artefact. This last branch is composed of the different
means of transport (by air, sea or earth) and of all types of building (town sight,
hotel or transport facility).

The taxonomy of relations is not very deep. They are grouped according
to their domain, like attributes (or slots) in other knowledge representation
paradigms. The DOE editor, because of its Conceptual Graphs model, supports
n-ary relations. We found this possibility particularly useful to model the relation
distance that involves two spatial objects and the distance metrics.

Finally, it is not possible to write axioms in DOE because its purpose is
mainly to guide the ontologist during the very first steps of the ontology con-
ceptualization. Therefore, we could not specify that a travel between America
and Europe could only be done with an airplane or a ship, or that the one to
five star hotels were the only possible hotel categories.

8 Technically, our editor can import ontologies written in RDFS and OWL, and sup-
ports export in RDFS, OWL, DAML+OIL and CGXML (a language for Conceptual
Graphs specification). For adequacy concerns, we have limitted our paper to the lan-
guages currently focused on by the Semantic Web community.



4 RDFS as Exchange Language

The four following environments (Protégé2000 v2.0 beta, OilEd v3.5, OntoEdit
v2.6 free release and DOE v1.5) can import and export RDFS ontologies. Con-
sequently, we can do the export/import loop from DOE to each of them and
come back. The RDFS import functionality seems to be unavailable online for
the WebODE v2.0 tool and hence, cannot be tested. However, the export feature
is available and we tested it after having imported our ontology via OWL.

4.1 From DOE To Other Environments

As seen in section 3.1, the main contribution of the DOE tool is to force the
ontologist to assign a clear meaning to concepts through the use of differential
principles. Our experiment has shown that we can keep a trace of this semantic
commitment in produced RDFS ontologies by exporting all the related informa-
tion into the rdfs:comment element.

Regarding formal expressiveness, our model is very limited. In fact it is very
close to RDFS: DOE allows concept/relation specialization, domain and range
assignment for relations, and concept instanciation. Therefore, it is not surprising
that our editor easily manages to translate this information.

We then tried to open the produced RDFS file in other environments (the
results are summarized in Table 1). OilEd was able to read it properly, like
Protégé2000, which nevertheless encountered some problems dealing with the
accents on letters found in the ontology. However, these two editors were not
able to import the metadata associated to the ontology even if they were written
according to the Dublin Core recommendation. OntoEdit managed to import the
ontology model, but transformed the Dublin Core container by adding 11 DC
elements to the relation list. It also added a mysterious instance that did not
appear anywhere in the display and, after a glance at the exported RDFS file,
proved to be a generated instance that has the DC attributes entered in the
container. Finally, its pure frame-oriented interface did not show properties that
had no domain defined, whereas they still existed in the model, which is quite
disturbing.

4.2 From Other Environments To DOE

More problems occurred when trying to import back the RDFS ontologies ex-
ported by other environments. Firstly, we could not properly import the file
exported by Protégé2000. We must mention that neither OilEd nor OntoEdit
succeeded in this ordeal: it is due to RDFS errors, such as the use of rdfs:label
as an attribute (instead of a sub-element) of rdfs:Class.

Secondly, both OntoEdit and WebODE do not use the RDF abbreviated
syntax to encode the ontology. All class and property definitions are serialized
as rdf :Description instead of rdfs:Class and rdf:Property. Consequently,



DOE | Protégé | OilEd | OntoEdit |WebODE

Number of Concepts 79 79¢ 79 79
Number of Relations 48 48° 48 59
Number of Instances 22 22 22 23 NOT

Multiple Inheritance |exported |preserved |preserved |preserved available
Domains assignment |exported |preserved |preserved |preserved online
Ontology metadata |exported |omitted [omitted |transformed

Differential Definition |exported |displayed |displayed |displayed

“ Protégé adds 15 system classes.
b Protégé adds 34 system slots.

Table 1. Statistics of the travelling ontology modeled in DOE, exported in RDFS and
imported in several environments

we built a more intricate XSLT stylesheet® in order to deal with every possible
serialization. We also have to specify, by hand, an XML encoding information
adapted for the letter with accents. With this minor change, we are able to
properly import OntoEdit and WebODE outputs. The only thing we do not
get back is the relation hierarchy, which is not exported by WebODE: during
the OWL import, this information is translated into logical axioms that are
not serialized into rdfs:subProperty0f subelements during the export. Both
tools export our differential definitions, but we cannot import them properly:
since they are stored in unstructured rdfs:comment elements, it would require
string parsing to get the original structure. Consequently, we store them in a
text element that is usually used in our model to store unstructured definition
elements.

Things were more simple with OilEd, which uses “pure” RDFS serialization.
We got our two taxonomies back, as well as the domain and range assignments
for the relations. However, instances are not dealt with by OilEd’s simple-RDFS
export. Our differential information was forgotten too: whereas OilEd success-
fully gets and displays rdfs:comment content, it does not export it. Therefore,
we lost the most valuable piece of information issued by our editor.

4.3 Conclusion

Roughly speaking, there is no loss of information when exporting our ontologies
in other environments with RDFS. One may ironically insist on the fact that it is
because we have little formal information to lose. However, it is very important
for us that such a step be a success, since we advocate using our tool as a
precondition for using other tools to further formalize ontologies.

The problems with RDFS import (in fact, OntoEdit and WebODE RDFS)
is strongly linked to the fuzziness of this norm syntax. We have dealt with every

? It also has to deal with other alternatives, such as using rdf:about or rdf:ID to
specify the name of an entity.



possible encoding for a class statement, but one may wonder whether the best
solution is to question the variability of RDFS encoding.

We also have to improve the theoretical validity (with respect to our own
approach) of our translations: for example, when importing a concept inheriting
from multiple parents in the hierarchy corresponding to our first methodological
step, we choose the “differential image” of the first parent encountered to be the
parent of the “differential image” examined concept!®.

5 OWL as Exchange Language

Among the five environments we study, three of them are able to import and
export OWL ontologies: Protégé2000 v2.0 beta, WebODE v2.0 and DOE v1.5.
However, OilEd has the ability to export models in OWL format: to test it, we
have imported an RDFS ontology in OilEd and then exported it in OWL.

5.1 From DOE To Other Environments

Our experiment with Protégé2000 has been quite successful (see Table 2). It
managed to import our OWL file, getting back the two taxonomies with multiple
inheritance, differential definitions, domain and range assignments, as well as
instance definitions. However, some instances whose name did not follow XML
specification were collapsed after their first digits being truncated. For example,
reading 717 and 777, two instances of the BoeingPlane concept, resulted in
creating one instance whose name was an empty string.

Furthermore, all instances that are not in the Protégé namespace'! were
not imported. Consequently, the OWL export of DOE puts all instances in this
namespace, which is a strange hack to allow the interoperability between these
two tools.

Concerning WebODE, concept and relation hierarchies were properly im-
ported, as were the differential definitions and domain and range assignments.
However, it failed in getting back the instances, whatever namespace they are
linked to.

5.2 Other Environments To DOE

When importing Protégé2000 OWL file, DOE got very limited information. It is
partly due to the restrictions of our model, which is limited compared to OWL
expressiveness, and partly due to the choice of XSLT. For instance, we could not
import individuals, since Protégé2000 declares them using the RDFS elements
<namespace:ClassName rdf:ID="instanceID"/> which are difficult to catch

10 Our differential taxonomy is a tree. However, our referential one is not, which implies
that there is no real loss of formal inheritance information when importing a concept
with multiple parents.

Y http://owl.protege.stanford.edu



DOE Protégé WebODE

Number of Concepts 79 79¢ 80°
Number of Relations 48 48¢ 48
Number of Instances 22 20 0
Multiple Inheritance |yes yes? yes

Domains assignment |exported preserved preserved®

Ontology metadata |exported missing missing
Differential Definitions |exported displayed displayed

“ Protégé adds 15 system classes and 19 OWL-related classes.

® WebODE adds the owl:Thing concept.

¢ Protégé adds 34 system slots and 21 OWL-related slots.

4 Slot inheritance is not displayed in the interface, but preserved in the model.

¢ WebODE explicitly assigns owl:Thing to relation domains and ranges that are not
defined.

Table 2. Statistics of the travelling ontology modeled in DOE, exported in OWL and
imported in Protégé and WebODE

and to transform with XSLT features. We could use string-parsing features, but
the result would be quite hazardous.

The problem of instance import does not appear any more when import-
ing OilEd OWL ontologies. Since instances are serialized using the element
owl:Individual from the OWL Presentation Syntax [7], DOE could easily
get them back using an XSLT stylesheet dedicated to the translation of OWL-
Presentation Syntax ontologies. But OilEd has a weird strategy in encoding the
ontologies, mixing the OWL RDF-XML exchange syntax for the terminological
part and the OWL Presentation Syntax for the assertional part of the model.

OWL individuals are not exported by WebODE, as well as the subsumption
relation between relations (during the import, it is translated into logical axioms
which are not translated back into rdfs: subProperty0f subelements). However,
we got back the hierarchy of concepts, together with the rdfs:comment includ-
ing our differential definitions. We also imported the list of relations with their
domain definition, but this one is incomplete if it uses the owl:Thing concept
explicitly introduced by WebODE, an error due to an incomplete namespace
declaration when using owl:Thing in the export file.

6 Conclusion

We have carried out the experiment proposed by the EON Workshop in order to
prove that the interoperability between different ontology editors is feasible. We
started from DOE, a tool implementing a methodology for building ontologies
based on differential semantics. We then exported the travelling domain ontology
in various environments and came back to DOE using XSLT transformations.
The model of the DOE editor is very simple. It can be easily exported to other



environments, which confirms our primary intuition: DOE can interoperate with
them.

Export Import
Global comments OK, put aside some string|OK, but difficult when multi-
encoding and namespace pro-|ple serializations are allowed
blems for a single fact
Concept /relation lists |OK OK, but new concept and re-
lation roots were added
Instances almost OK difficult with the abbreviated
syntax
Formal definitions OK, but limited information|OK, but limited information
was exported had to be imported
Differential definitions |OK, displayed in unstructu-|{OK, but imported in un-
red comments fields structured comments fields
Ontology metadata Dublin Core not properly/Dublin Core not dealt with
dealt with by other environ-|by other environments
ments

Table 3. Summary of the experiment

Using XSLT transformations in a limited expressiveness context has shown
both successes and limits: we are able to export ontologies to other ontological
frameworks, in a satisfactory way, the information we are interested in (the re-
sults are summarized in table 3). However, when we import ontologies built in
those frameworks, we face more problems: some are linked to theoretical consid-
erations (the status of the imported information regarding our methodology),
others are linked to practical implementation shortfalls (the limited expressive-
ness of our formal apparatus), and others are linked to the lack of maturity of
Semantic Web standards. However, the most important information is quite suc-
cessfully dealt with, which comfort us in thinking that a limited but satisfying
interoperability can be easily achieved by simple, syntax-based means.

Acknowledgments

We would like to thank Oscar Corcho for its helpful comments and for reviewing
early drafts of this paper.

References

1. J. Angele, and York Sure (eds.). Evaluation of Ontology-based Tools (EON’02),
Proceedings of the 1st International Workshop EON2002, Sigiienza, Spain, CEUR-
WS Publication, Vol. 62. http://CEUR-WS.org/Vol-62/



9.

. J. Arpirez, O. Corcho, M. Fernidndez-Lépez, and A. Gémez-Pérez. WebODE : a
Workbench for Ontological Engineering. In Proc. of the 1st international Conference
on Knowledge Capture (K-CAP’01), Victoria, Canada, 2001.

. B. Bachimont, A. Isaac, and R. Troncy. Semantic Commitment for Designing On-
tologies: A Proposal. In Proc. of the 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW’02), Lecture Notes in Artificial
Intelligence, Vol 2473, pages 114-121, Sigilienza, Spain, 2002.

. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able Ontology
Editor for the Semantic Web. In Proc. of KI2001, Joint German/Austrian con-
ference on Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol 2174,
pages 396-408, Vienna, Austria, 2001.

. N.F. Noy, R.W. Fergerson, and M.A. Musen. The Knowledge Model of Protégé2000:
Combining Interoperability and Flexibility. In Proc. of the 12th International Con-
ference on Knowledge Engineering and Knowledge Managment (EKAW’00), Juan-
les-Pins, France, 2000.

. OWL, Web Ontology Language Reference. W3C Candidate Recommendation, 18
August 2003. http://www.w3.org/TR/owl-ref/

. OWL Web Ontology Language XML Presentation Syntax. W3C Note, 11 June 2003.
http://www.w3.org/TR/owl-xmlsyntax/

. F. Rastier, M. Cavazza, and A. Abeillé. Sémantique pour I’analyse. Masson, Paris,

France, 1994.

RDF, Ressource Description Framework Primer. W3C Working Draft, 05 September

2003. http://www.w3.org/TR/rdf-primer/

10. RDF Schema, RDF Vocabulary Description Language 1.0. W3C Working Draft,

1

1

05 September 2003. http://www.w3.org/TR/rdf-schema/

1. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer and D. Wenke. OntoEdit:
Collaborative Ontology Engineering for the Semantic Web. In Proc. of the 1st Inter-
national Semantic Web Conference 2002 (ISWC 2002), Lecture Notes in Computer
Science, Vol 2342, pages 221-235, Sardinia, Italia, 2002.

2. XSLT, XSL Transformations W3C Recommendation, 16 November 1999.
http://www.w3.org/TR/xslt



