
Towards a benchmark for Semantic Web
reasoners - an analysis of the DAML ontology

library

Christoph Tempich and Raphael Volz

Institute AIFB, University of Karlsruhe, Germany
http://www.aifb.uni-karlsruhe.de

(tempich,volz)@aifb.uni-karlsruhe.de

1 Introduction

Benchmarks are one important aspect of performance evaluation. This paper
concentrates on the development of a representative benchmark for Semantic
Web-type1 ontologies. To this extent we perform a statistical analysis of available
Semantic Web ontologies, in our case the DAML ontology library, and derive
parameters that can be used for the generation of synthetic ontologies. These
synthetic ontologies can be used as workloads in benchmarks.

Naturally, performance evaluation can also be performed using a real work-
load, viz. a workload that is observed on a reasoner being used for normal op-
erations. However, such workloads can usually not be applied repeatedly in a
controlled manner.

Therefore synthetic workloads are typically used in performance evaluations.
Synthetic workloads should be a representation or model of the real workload.
Hence, it is necessary to measure and characterize the workload on existing
reasoners to produce meaningful synthetic workloads.

This should allow us to systematically evaluate different reasoners and rea-
soning techniques using a benchmark to gain realistic practical comparisons of
individual systems.

1.1 Related Work

The development of benchmarks for ontology-based systems is substantially dif-
ferent from the development of a test suite [3] for testing the correctness or
ability of a reasoner in handling particular primitives of an ontology language.
The latter is intended to give yes or no answers to questions like whether a sys-
tem can make certain entailments or find particular inconsistencies. The former,
however, is intended to come up with numbers for a set of performance criteria
(metrics).

Within the Description Logic community benchmarking [8, 6] was performed
repeatedly in the past for empirical system comparsion. However, these represen-
tativeness of the used benchmarkss [1, 7, 6] are questionable for practical cases

1 Hence RDFS, DAML+OIL and OWL



due to several reasons. For example, [8] tested the performance of class satis-
fiability based on a sequence of classes which are (exponentially) increasingly
difficult to compute. These class definitions are hardly representative for practi-
cal cases. The test for ABox reasoning was underdeveloped since most systems
at the time of evaluation did not support any ABox reasoning capabilities.

[6] used both real and synthetically generated knowledge bases as one part
of their evaluation of knowledge representation systems. The study was only
concerned with the terminological part of knowledge representation systems and
used a target representation language of limited expressivity for generating syn-
thetic knowledge bases. The generated knowledge bases, however, are not real-
istic for Semantic Web-type knowledge bases as we will see from our analysis.
Hence, their assumption for class formation 2 is not representative.

1.2 Contribution

In this paper, we provide a systematic approach for the creation of benchmarks
for knowledge representation systems. The key characteristic of our approach is
that we want to use generating functions to create synthetic ontologies ar, which
are derived from structural properties of a given (representative) set of ontolo-
gies. If the set of analyzed ontologies is structurally inhomogeneous, clustering
techniques are applied to come up with k homogeneous subsets, viz. types of
ontologies, for which separate synthetic ontologies can be created. A particular
benchmark then consists of several synthetic ontologies representing individual
types. Instead of reducing language expressivity to the least common denomina-
tor (RDFS in the Semantic Web case), we consider the inability of a particular
reasoner to support certain language primitives in our performance evaluation
design.

1.3 Limitations

While our approach (with proper adaptation) might be reusable to evaluate other
tools relevant to KR-based applications, e.g. editors and visualization tools, our
primary focus is set on evaluation of the inference and data processing core of
knowledge representation systems. Additionally, we do not consider the iden-
tification of a representative list of service requests, which nevertheless are an
important aspect in a benchmark. The actual generation of synthetic ontologies
is subject of our ongoing research, nevertheless the initial results of our analysis
appear to be promising and worth to disseminate.

1.4 Structure of the paper

The paper is structured as follows. Section 2 describes our approach to per-
formance evaluations using benchmarks. Section 3 presents our analysis of the
DAML ontology collection, which motivates the necessity for a categorization
into several types of ontologies. Section 4 describes the clustering and shows
2 each class definition is a conjunction containing one or two class symbols (super-

classes) zero or one cardinality restriction and zero, one or two value restrictions



how we come up with three categories of ontologies, which are more homoge-
nous. We conclude in Section 5 summarizing our results and giving an outlook
to ongoing and future work.

2 Performance Comparisons

We consider benchmarking as the process of performance comparison of two or
more reasoners by measurements. A benchmark is the workload used in such
measurements. Each performance comparison draws itself on a set of perfor-
mance criteria or metrics. The choice of the metrics directly depends on the list
of services offered by the reasoner.

Reasoner

Request for
service i

Can Answer Cannot answer

Event kIncorrectCorrect

Error j

Response
Time

ResourceRate

Time between
ErrorsProbability

Time between
EventsDuration

Metrics

Fig. 1. Services and Metrics in Benchmarks

2.1 Reasoning Services

For each service request several possible outcomes exist (cf. Figure 1). Generally,
we can assume that a particular system can either respond correctly, incorrectly
or cannot answer the request. A reasoner usually offers query services to interface
with the system, several systems also allow update services for manipulation of
the knowledge base.

Unlike databases, a reasoner supporting DAML+OIL or OWL, will usually
offer several different query services w.r.t. an ontology O. These query services
primarily target queries about classes:

1. class-instance membership queries: given a class C,
(a) ground: determine whether a given individual a is an instance of C;



(b) open: determine all the individuals in O that are instances of C;
(c) “all-classes”: given an individual a, determine all the (named) classes in

O that a is an instance of;
2. class subsumption queries: i.e., given classes C and D, determine if C is a

subclass of D w.r.t. O;
3. class hierarchy queries: i.e., given a class C return all/most-specific (named)

superclasses of C in the T-Box and/or all/most-general (named) subclasses
of C in the T-Box;

4. class satisfiability queries, i.e., given a class C, determine if the definition of
C is generally satisfiable (consistent).

There are similar queries about properties, viz. property-instance member-
ship, property subsumption, property hierarchy, and property satisfiability, and
also the possibility to check the consistency of the whole ontology / knowledge
base.

A single service does not suffice One might want to argue that it is suf-
ficient to measure the performance of the satisfiability, since it is well known,
that all queries about classes can be reduced to satisfiability testing. It is impor-
tant, however, to distinguish different types services, since optimizations can be
made for particular services. Naturally the effect of those optimization should be
measurable. For example, we might want to measure the performance of a classi-
fication service, which can be reduced to several class-subsumption queries (and
in turn satisfiability), but reasoners may use different classification algorithms
to minimize the number of issued subsumption queries.

2.2 Metrics

For each of the different service requests and their corresponding responses, we
can observe a number of metrics. These metrics are later evaluated in the com-
parison of systems. We may measure successful performance by time-throughput-
resource metrics, which measure the responsiveness and productivity and utiliza-
tion (of system resources) of the reasoner. Notably it is not sufficient to consider
response time as the only metric. Some reasoners may be able to respond to
requests in parallel, which might lead to a higher throughput. Another reasoner
may have a small memory footprint and therefore have a better utilization of
system resources. Of course, individual evaluations might consider further met-
rics.

If the response is incorrect, errors should be returned by the reasoner. Such
errors can be classified and it is interesting to determine probabilities for each
class of errors and measure the time between such errors. Notably, it is not
sufficient to only measure correct performance, since errors are common [6] (even
if the reasoning procedures are supposed to be sound and complete).

Several reasons may exist that a reasoner fails to provide an answer at all.
Similar to errors, it is sensible to classify failures and determine the probabil-
ities and time between failures for each class. For example, a reasoner may be
unavailable due to network errors or software errors or due to lack of support
for certain language primitives.



2.3 Workloads

The workload of a reasoner consists of the knowledge base which is loaded by the
reasoner and the list of service requests issued by users. We do not consider the
identification of a representative list of service requests, which are an important
aspect in a benchmark, but concentrate on creating a representative synthetic
knowledge base that is subject to user queries.

3 Characterizing Semantic Web ontologies

In order to generate sensible synthetic ontologies, an analysis of available on-
tologies is necessary, this is the subject of this section.

3.1 Selecting a list of Semantic Web ontologies

For our experiment we chose the DAML.org list of ontologies [4], which contained
247 ontologies at the time of the analysis. Our selection of this set of ontologies
is intentional and motivated by the following facts: Firstly, we are not related
with the authors of the ontologies in any form. Secondly, most ontologies are
created by different people with diverse technical backgrounds (ranging from
students to researchers). In this sense, they can be understood as representative
for the Semantic Web. Interestingly, many of the ontologies in the library turn
out to be just conversions of ontologies, which were initially created in some
other representation language. For example, the famous wine ontology is with
us since ’Classic’ times (for more than 15 years !). This also seems to be a valid
assumption for the Semantic Web, which is for sure not created from scratch.

We processed these ontologies using the 1.6.1 version of JENA, we used the
Jena DAML API to access the data. The collection contained 189 ontologies in
DAML-ONT or DAML+OIL formats, which should be processable by the API
in general.

Unfortunately more than 50% of the ontologies contained RDF errors or did
not contain valid URIs or did not use RDF(S) namespaces correctly. We did
not make any attempt to fix these problems, therefore we could only process 95
ontologies in practise. This results seems shocking, but underlines the need of
software that can cope with such errors3.

The correctness of namespace4 and RDF usage is, however, not the only
relevant property. For example, 21% of the parsable ontologies did not specify the
type of properties, viz. whether they are in fact Datatype- or ObjectProperties.
In practise, further heuristics need to be applied to make use of these ontologies
in reasoners, i.e. deriving the missing type information (e.g. such as done in [2]).
Again, we did not make any attempt to fix these problems.

3 Analogous to HTML browsers, which can cope with all sorts of HTML errors !
4 A good example for namespace confusion is the NASDAQ ontology

(http://www.daml.org/ontologies/342). Quiz question: can you spot the in-
consistency ?



We based our analysis on the structural properties of asserted information,
hence no reasoning was applied. Detailed numbers and sources for the analysis
package can be found online5.

Average Std Dev Median Min Max C.O.V.
Primitive Classes 154,29 1.016,07 5 1 9.795 6,59
Class Expressions 175,20 1.016,39 19 1 9.795 5,80
Restrictions 19,13 44,52 7 - 327 2,33
Enumeration 0,33 1,72 - - 16 5,26
Set Operation 1,45 8,62 - - 78,00 5,94
Properties 28,41 43,47 13 - 269 1,53
Object Properties 8,34 31,26 2 - 269 3,75
Datatype Properties 12,57 23,15 4 - 145 1,84
Individuals6 29,48 222,32 - - 2.157 7,54
EquivalentClass 0,73 3,15 - - 20,00 4,34

Table 1. Average Usage of some language primitives (across all ontologies)

3.2 Average Characterizations

One part of our analysis was concerned with simply counting the usage of certain
features. Table 1 summarizes the average usage of language primitives in the
ontologies. One important aspect of the summary given in table 1 is that the
coefficient of variation (C.O.V.), viz. the ratio of standard deviation and the
mean, is high. This shows that the particular ontologies vary tremendously, that
is the distribution is highly skewed, hence the median is a more representative
characterization of the different numbers than the average.

As we can see primitive classes7 are the predominant form of class expres-
sions. Different sorts of restrictions are the second most important form of class
expressions, interestingly only one ontology actually made use of a single cardi-
nality restriction that would not be expressible in OWL Lite. Seldom enumera-
tions are used, even considering hasValue8. Actually, only seven ontologies used
set operations to define classes, which are also not available in OWL Lite9. An-
other interesting aspect is that equality is rarely used to define classes (and also
rarely used to make properties and individuals synonymous). Also ontologies
typically do not contain any individuals. We assume that the pool of individuals
will be distributed through the web and is consequently rarely specified together
with the ontology.

3.3 Ratios of Primitives

The second part of our analysis concerned the ratio of different primitives in
ontologies. The variability of these ratios is smaller than the average counts (cf.

5 http://kaon.semanticweb.org/owl/evaluation/
7 By primitive class we denote the atomic named classes that occur on the left-hand

sides of subClassOf statements
8 which can be understood as a syntactically convenient form to express value restric-

tions with a nominal value
9 viz. complementOf, disjointUnionOf or unionOf



Ratios Average Std Dev Median Min Max C.O.V.
Primitive/Class Expr. 50% 0,34 39% 6% 100% 0,67

Obj. Prop. / Prop. 24% 0,27 16% 0% 100% 1,12
Dat. Prop. / Prop . 52% 0,38 67% 0% 100% 0,72
Prop. / Prim. Class 3,54 3,89 2,00 - 21,00 1,10
Trans. Prop. / Prop. 0,05 0,10 - - 0,40 2,30

Obj. Prop./ Prim. Class 0,61 0,83 0,50 - 5,57 1,35
Dat. Prop./ Prim. Class 2,25 3,33 1,00 - 15,75 1,48

Ex. Rest. / Rest. 1% 0,08 0% 0% 65% 5,79
Univ. Rest. / Rest. 48% 0,44 52% 0% 100% 0,91
Card. Rest./ Rest. 34% 0,38 20% 0% 100% 1,11
Rest./Primitive 2,32 2,70 1,50 - 16,00 1,17

Asserted Ind. / Primitive 0,60 4,18 - - 40,50 6,97

Table 2. Ratio between some language primitives (across all ontologies)

Table 2) since we aggregated relativized numbers. Another effect is of course
that numbers do not necessarily add up anymore.

One aspect that can be observed is that the DAML.org library typically
contains ontologies and not schemas, since the ratio between Data Properties and
Primitive Classes is very low. However, datatype properties are the predominant
type of properties. Also some of the ontologies, particularly those with high
numbers of classes do not contain any properties, hence the average number of
properties per primitive class is very low.

Some 5% of the defined object properties were declared to be transitive.
None of the analyzed ontologies contained any functional or inverse functional
properties.

Among the restrictions, universal restrictions are predominant, in fact they
almost half of all restrictions on average. Typically, a primitive class is further
defined by more than two restrictions. Not surprisingly, if we recall our argument
for the low number of individuals, at least half of all primitive classes have no
direct asserted individuals.

3.4 Distributions of elements in class definitions

The third part of analysis was concerned with determining distributions of the
elements contained in class definitions, viz. trying to get answers on questions
like: ’How many super-classes does a class typically have ?’, ’How many sub-
classes ?’, and ’How many classes are defined using property restrictions ?’. We
did not consider determining distributions for EquivalentClass-statements, as
these statements occurred too rarely to come up with a statistically sound, viz.
significant, argument.

Figure 2 displays the distribution of sub-classes, super-classes and restric-
tions per class expression. The y-Axis displays the percentage of class expres-
sions, which have a certain number of subclasses, superclasses or restrictions. The
x-Axis represents this number. The last value (15) aggregates all greater num-
bers, hence the percentage of class expressions is also aggregated. As we can see
the distributions are highly inhomogeneous. As our analysis was performed on
the syntactic declarations, the semantic properties of description logics, namely



SubClass Distribution

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SuperClass Distribution

0

0,2

0,4

0,6

0,8

1

1,2

#0 # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13 # 14

Restriction Distribution

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 2. Distribution of SubClass, SuperClass and Restrictions per Class Expression

that each class is a subclass of daml:Thing are not considered in the distribu-
tions, if this were done every class but daml:Thing would have one super-class.
Actually, the found ontologies were inconsistent in this respect. Several ontolo-
gies redeclared daml:Thing in another namespace (usually the namespace of the
ontology). Thing was explicitly assigned as the super-class of a class repeat-
edly (although this automatically sanctioned by the semantics of the language).
Again, these effects were not considered in the analysis.

4 Categories of Ontologies

As discussed before, the distributions of different language primitives is inho-
mogeneous. However, a quick glimpse on the ontologies suggests that there are
different classes of ontologies with a more homogeneous use of those primitives.
Thus we applied a clustering algorithm to the data, and indeed found three
different clusters.

4.1 Clustering

In order to apply the clustering, a normalization of the data was carried out
by using the number of defined classes as denominator. Input values for the
clustering algorithm were those language primitives, which were used at least
11 times across all ontologies10. The data set consisted of the 95 error-free on-
10 We chose this number due to the consideration, that a primitive with lower usage,

given the small number of ontologies, can only disturb the result.



tologies, which were characterized by 10 attributes, namely Class expressions
(95)11, Primitive Classes(95), Restrictions(69), All Restrictions (48), Cardinality
Restrictions (52), Cardinality Restriction covered by OWL Lite (52), Properties
(92), Datatype Properties (68), Object Properties (63), and Individuals (19).

We used the WEKA machine learning package to analyze the data, in par-
ticular the clustering packages. All attributes have a value range as real value.
Hence, we expect unambiguous results from the clustering algorithm, since no
transformations need to be applied.

The best results were identified using the k-means[5] clustering algorithm,
which initially chooses k random seed points as cluster centroids. It then repeat-
edly aligns data points to the nearest seed point and calculates the new cluster
centers by averaging the assigned data points. This procedure terminates when
a certain terminating condition is reached, in our case that no data point is
reassigned to another cluster anymore.

A critical decision with k-means is the number of cluster k. We did not
evaluate measures like information loss or others in order to define the best
number of clusters. We simply evaluated the attributes defined in table 3 for
different k and found that k = 3 assigns the ontologies in a reasonable way, that
is the the coefficient between the improvement of the homogenization (reduction
of the COV measure) and the number of clusters k is maximal. More specifically,
the clustering allowed us to decrease the c.o.v coefficient to almost half, namely
an average of 2,4 in contrast to the 4,5 in 2 using k = 3 clusters.

Average Std Dev Median Min Max C.O.V.
Primitive Classes 414 1683 12 1 9795 4,0
Class Expressions 418 1710 15 1 9795 4,0

Restrictions 1,5 4,7 0 0 25 3,1
Properies 39 46 20 0 179 1,2

Object Properties 8 26 0 0 144 3,0
Datatyp Properties 13 25 0 0 108 1,9

Individuals 73 370 0 0 2157 5,1

Table 3. Average Usage of some language primitives (across clustered ontologies(C1))

4.2 Cluster contents

A closer examination of the ontologies assigned to the different clusters reveals
that the clusters correspond more or less to three types of ontologies. The largest
cluster of ontologies seems to contain ontologies of taxonomic or terminological
nature. The ontologies are characterized by few properties and a large number
of classes, cf. Table 3.

The second largest cluster contains description logic-style ontologies. This
cluster is characterized by a high number of axioms per class and a low number of
primitive classes. These ontologies also contain a very high number of restrictions
and properties (especially datatype properties), however almost no individuals.

The third cluster contains database schema-like ontologies. The ontologies
are medium size containing on average 65 class expressions and 25 properties.

11 The value in brackets specifies the number of ontologies, where values occured



This cluster is more inhomogeneous as indicated by high standard deviations
per primitive.

Fig. 3. Average Distribution of SubClass, SuperClass and Restrictions for the Clusters
with the estimated distributions (y-axes is log scale)

4.3 Feature Distributions

Having clustered the ontologies into more consistent classes, we now have a
look at the distributions of certain features in the taxonomic cluster and the
database-like cluster. Again, due to lack of space, we will not look at all feature
combinations but rather examine two representative features, namely restrictions
per primitive class (database-like)12 and the distribution of subclasses per class
expression (cf. Figure 3 (taxonomic)).

Restrictions In particular we had a look at the distribution of restrictions across
classes in the different clusters. In average 1,513 (C1), 2614 (C2) and 3015 (C3),
17 restrictions are defined in each ontology. Hence, 0.004 (C1), 0.6 (C2) and
0.63 (C3) per class. We compared the observed distributions with the expected
values of parameterized distribution functions, in particular the exponential dis-
tribution and the power law distribution [9]. Intriguingly the distributions of
restrictions closely corresponds to power law distributions with α = 3, 5 (C1),

12 The absolute number of restrictions in the taxonomic case is to small to analyze the
data expecting significant results.

13 standard deviation of 4,8
14 standard deviation of 59
15 standard deviation of 48



α = 1, 9 (C2) and α = 1, 8 (C3). This argument is supported with a confidence
value of 99,9 % (using the χ2-Test). α was estimated to fit the average of the
observed distribution. In this case the estimated standard deviation differs at
most 16% (C1) from the actual standard deviation. In case of cluster C3 with
the most restrictions the difference is just 2% which underlines the argument for
a power law distribution.

Sub Classes per Class Considering the distribution of sub classes per class, we
found that in the taxonomic-like cluster (C1) each class had 0.30 subclasses with
a standard deviation of 0.86. At this point we want to recall, that we did not
apply any reasoning to the data set. This would probably alter the figures a bit.
We found that the distribution of sub classes per classes also follows a power
law distribution with α = 2, 2. As in the case of restrictions, the argument is
supported with a confidence value of 99%. However, the estimated standard
deviation differs 40% from the actual observation. The other two clusters (C2,
C3) seem to follow a lognormal distribution for the occurrence of sub classes
for the first two classes, but than the distribution seems more like a power law
distribution. However, a look at the distributions for Super Classes per Class
shows an inverted picture, with clusters C2, C3 following a power law distribution
and cluster C1 a lognormal one.

5 Conclusion

We provided a systematic approach for the creation of benchmarks for knowledge
representation systems and presented the results of the first step in benchmark
creation - the analysis of available data. Using our analysis of the DAML.org
library, we can use generating functions, e.g. an exponential distribution with
the calculated mean for the distribution of restrictions, to generate ontologies
for benchmarking, that correspond structurally to real-life ontologies.

Our analysis shows, that benchmarks have to consist of several types of on-
tologies, since the set of analyzed ontologies would otherwise be too inhomoge-
neous to derive parameters. As our analysis showed, 3 types of ontologies can
generally be identified. For each type of ontologies, high confidence values for
the generator functions could be shown.

Our future work is concerned with implementation, viz. an online web service
to generate synthetic ontologies, and with deriving realistic workloads for mod-
elling user requests. To this extend we plan to monitor existing ontology-based
applications, e.g. the OntoWeb portal and the portal of our institute.

References

1. P. Balsinger and A. Heuerding. Comparison of theorem provers for modal logics -
introduction and summary. In Proc. of Tableaux’98, pages 25–26, 1998.

2. Sean Bechhofer, Raphael Volz, and Philip Lord. Cooking the Semantic Web with
the OWL API. In ISWC 2003, Sanibel Island, Florida, USA, October 2003.

3. Jeremy Caroll and Jos De Roo. OWL Web Ontology Language Test Cases. Internet:
http://www.w3.org/TR/owl-test/, May 2003.



4. DAML.org Ontology Library. Internet: www.daml.org/ontologies, As of July, 25th
2003.

5. J. A. Hartigan and M. A. Wong. Algorithm AS136. A K-means clustering algorithm.
Applied Statistics, 28:100–108, 1979.

6. J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. An Empirical Analysis
of Terminological Representation Systems. Artificial Intelligence, 68(2):367–397,
August 1994. 1994.

7. A. Heuerding and S. Schwendimann. A benchmark method for the propositional
modal logics k, kt, s4. Technical Report IAM-96-015, University of Bern, Switzer-
land, October 1996.

8. I. Horrocks and P. F. Patel-Schneider. DL systems comparison. In E. Franconi,
G. De Giacomo, R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani, edi-
tors, Collected Papers from the International Description Logics Workshop (DL’98),
pages 55–57. CEUR, May 1998.

9. G. K. Zipf. Selective Studies and the Principle of Relative Frequency in Language.
Harvard University Press, 1932.


