
Racer: A Core Inference Engine for the
Semantic Web

Volker Haarslev† and Ralf Möller‡

†Concordia University, Montreal, Canada (haarslev@cs.concordia.ca)
‡Technical University Hamburg-Harburg, Germany (ra.moeller@tu-harburg.de)

Abstract. In this paper we describe Racer, which can be considered
as a core inference engine for the semantic web. The Racer inference
server offers two APIs that are already used by at least three different
network clients, i.e., the ontology editor OilEd, the visualization tool
RICE, and the ontology development environment Protege 2. The Racer
server supports the standard DIG protocol via HTTP and a TCP based
protocol with extensive query facilities. Racer currently supports the web
ontology languages DAML+OIL, RDF, and OWL.

1 Motivation

The Semantic Web initiative defines important challenges for knowledge repre-
sentation and inference systems. Recently, several standards for representation
languages have been proposed (RDF, DAML+OIL, OWL). One of the standards
for the Semantic Web is the Resource Description Framework (RDF [12]). Since
RDF is based on XML it shares its document-oriented view of grouping sets of
declarations or statements. With RDF’s triple-oriented style of data modeling,
it provides means for expressing graph-structured data over multiple documents
(whereas XML can only express graph structures within a specific document).
As a design decision, RDF can talk about everything. Hence, in principle, state-
ments in documents can also be referred to as resources. In particular, conceptual
domain models can be represented as RDF resources. Conceptual domain mod-
els are referred to as “vocabularies” in RDF. Specific languages are provided for
defining vocabularies (or ontologies). An extension of RDF for defining ontologies
is RDF Schema (RDFS [6]) which only can express conceptual modeling notions
such as generalization between concepts (aka classes) and roles (aka properties).
For properties, domain and range restrictions can be specified. Thus, the expres-
siveness of RDFS is very limited. Much more expressive representation languages
are DAML+OIL [15] and OWL [14]. Although still in a very weak way, based
on XML-Schema, OWL and DAML+OIL also provide for means of dealing with
data types known from programming languages.

The representation languages mentioned above are defined with a model-
theoretic semantics. In particular, for the language OWL, a semantics was de-
fined such that very large fragments of the language can be directly expressed
using so-called description logics (see [1]). The fragment is called OWL DL.

With some restrictions that are discussed below one can state that the logical
basis of OWL (or DAML+OIL) can be characterized with the description logic
SHIQ(Dn)− [3] (DAML+OIL documents are to be interpreted in the spirit of
OWL DL). This means, with some restrictions, OWL documents can be automat-
ically translated to SHIQ(Dn)− T-boxes. The RDF-Part of OWL documents
can be translated to SHIQ(Dn)− A-boxes.

In the remainder of this paper Racer, its APIs, and its inference services
are briefly described. The use of Racer as network server is illustrated by RICE
offering an interactive visualization and query interface. The paper is concluded
by reporting on Racer’s constraint-based data types support whose functionally
exceeds the current OWL standard.

2 Racer: A Description Logic Inference Engine

The logic SHIQ(Dn)− is interesting for practical applications because highly op-
timized inference systems are available (e.g., Racer [8]). Racer is freely available
for research purposes and can be accessed by standard HTTP or TCP protocols
(the Racer program is subsequently also called Racer server). Racer can read
DAML+OIL and OWL knowledge bases either from local files or from remote
Web servers (i.e., a Racer server is also a HTTP client). In turn, other client
programs that need inference services can communicate with a Racer server via
TCP-based protocols. OilEd [4] can be seen as a specific client that uses the
DIG protocol [5] for communicating with a Racer server, whereas RICE [13]
is another client that uses a more low-level TCP protocol providing extensive
query facilities (see below).

The DIG protocol is a an XML- and HTTP-based standard for connecting
client programs to description logic inference engines. DIG allows for the allo-
cation of knowledge bases and enables clients to pose standard description logic
queries. The main ideas behind DIG are described in detail in [5]. As a stan-
dard and a least common denominator it cannot encompass all possible forms
of system-specific statements and queries. Let alone long term query processing
instructions (e.g., exploitation of query subsumption, computation of indexes
for certain kinds of queries etc., see [9]). Therefore, Racer provides an additional
TCP-based interface in order to send instructions (statements) and queries. For
interactive use, the language supported by Racer is not XML- or RDF-based
but is largely based on the KRSS standard with some additions and restrictions.
The advantage is that users can spontaneously type queries which can be directly
sent to a Racer server. We will see below that RICE can be used as a shell for
Racer. However, the Racer TCP interface can be very easily accessed from Java
or C++ application programs as well. For both languages corresponding APIs
are available.

The following code fragment demonstrates how to interact with a Racer
server from a Java application using Racer’s TCP-based API. The aim of the
example is to demonstrate the relative ease of use that such an API provides.

public class KillerApplication {

public static void main(String[] argv) {

RacerClient client=new RacerClient("racer.cs.concordia.ca", 8088);

try {

client.openConnection();

try {

String kbName=

client.send("(owl-read-document

\"http://www.cs.concordia.ca/~faculty/haarslev/family.owl\")");

String queryResult=

client.send("(individual-direct-types |#CHARLES|)");

System.out.println(racerResult);

}

catch (RacerException e) {

...

}

}

client.closeConnection();

} catch (IOException e) {

...

}

}

}

The connection to the Racer server is represented with a client object (of class
RacerClient). The client sends messages to a Racer server running on the ma-
chine with name "racer.cs.concordia.ca" on port 8088. The Java program
can be run on another computer, of course. The program instructs the Racer
server to load an OWL document from a remote server. In addition, the Java
client program executes a query and prints the result set.

3 A Selection of Supported Inference Services

In description logic terminology, a tuple consisting of a T-box and an A-box
is referred to as a knowledge base. An individual is a specific named object.
OWL also allows for individuals in concepts (and T-box axioms). For example,
expressing the fact that all humans stem from a single human called ADAM
requires to refer to an individual in a concept (and a T-box). Only part of the
expressivity of individuals mentioned in concepts can be captured with A-boxes.
However, a straightforward approximation exists (see [10]) such that in practice
suitable SHIQ(Dn)− ontologies can be generated from an OWL document.
Racer can directly read OWL documents and represent them as description
logic knowledge bases (aka ontologies). In the following a selection of supported
queries is briefly introduced.

– Concept consistency w.r.t. a T-box: Is the set of objects described by a
concept empty?

– Concept subsumption w.r.t. a T-box: Is there a subset relationship between
the set of objects described by two concepts?

– Find all inconsistent concepts mentioned in a T-box. Inconsistent concepts
might be the result of modeling errors.

– Determine the parents and children of a concept w.r.t. a T-box: The parents
of a concept are the most specific concept names mentioned in a T-box which
subsume the concept. The children of a concept are the most general concept
names mentioned in a T-box that the concept subsumes. Considering all
concept names in a T-box the parent (or children) relation defines a graph
structure which is often referred to as taxonomy. Note that some authors
use the name taxonomy as a synonym for ontology.

Whenever a concept is needed as an argument for a query, not only predefined
names are possible. If also an A-box is given, among others, the following types
of queries are possible:

– Check the consistency of an A-box w.r.t. a T-box: Are the restrictions given
in an A-box w.r.t. a T-box too strong, i.e., do they contradict each other?
Other queries are only possible w.r.t. consistent A-boxes.

– Instance testing w.r.t. an A-box and a T-box: Is the object for which an
individual stands a member of the set of objects described by a certain query
concept? The individual is then called an instance of the query concept.

– Instance retrieval w.r.t. an A-box and a T-box: Find all individuals from an
A-box such that the objects they stand for can be proven to be a member
of a set of objects described by a certain query concept.

– Computation of the direct types of an individual w.r.t. an A-box and a T-
box: Find the most specific concept names from a T-box of which a given
individual is an instance.

– Computation of the fillers of a role with reference to an individual.

Given the background of description logics, many application papers demon-
strate how these inference services can be used to solve actual problems with
DAML+OIL or OWL knowledge bases. The query interface is extensively used
by RICE, which is briefly described in the next section.

4 RICE: Racer Interactive Client Environment

RICE [13] is a tool for Racer that visualizes taxonomies and A-box structures
and enables users to interactively define queries using these visualizations. RICE
is started as an application program and can be configured to connect to a Racer
server by giving a host name and a port. When RICE connects to a Racer server
it retrieves all T-boxes and displays them in an unfoldable tree view (in a similar
way as OilEd [4] does).

In Figure 1 the taxonomy induced by the T-box specified above is presented
(left window, unfoldable tree display). The taxonomy is accompanied by the
pane for displaying A-box individuals (to the right of the tree display). Selecting
a concept name in the taxonomy corresponds to posing an instance retrieval
query with that concept name as a query concept. The result set is displayed in

Fig. 1. Snapshot of RICE displaying an example knowledge base (T-box and A-box).

the instances pane. In the example in Figure 1 all humans are displayed. The
structure of the whole A-box can be displayed by pressing the button “Show
Graph”. The graph window to the right appears. Clicking on individuals is in-
terpreted as posing queries for the direct types of the individuals. In Figure 2
the individual CHARLES is selected. The taxonomy is automatically unfolded
such that all concept names which are direct types can be seen as highlighted
nodes. Figure 2 also demonstrates that graphical attributes (e.g., color, shape)
for displaying A-boxes can be (interactively) specified as appropriate.

RICE users can interactively type instructions and queries into the interac-
tion pane in the middle. In Figure 2 we see an instance retrieval query. Query
results are printed into the lower pane. Since Racer supports multiple A-boxes,
users can interactively select the A-box subsequent queries should refer to (see
the main window in Figure 2, top-right selection box). The current T-box can
also be easily set by clicking on a T-box name.

If a user specifies a knowledge base with OilEd, Racer can be used to verify
and classify it with a single click. The knowledge base is then known to the Racer
server. If RICE connects to the Racer server, the knowledge base is visible. Note
that OilEd and RICE can access a Racer server in parallel without any problems

Fig. 2. Snapshot of RICE showing the results of a direct types query and an instance
retrieval query.

if the Racer Proxy is installed appropriately (see [10]). If the RICE user selects
the knowledge base stemming from OilEd (in Figure 3 we used one of the OilEd
example files) and presses “Show Graph”, the A-box part is shown in a graph
display (see Figure 3).

As a summary, we compare OilEd and RICE. OilEd supports DIG, which
makes it useful for more reasoners, but is limited to what DIG supports. Further-
more, OilEd provides a graphical means for displaying definitions of concepts and
instances. This makes it easy to see what properties are defined and which ones
are inherited. OilEd presents unsatisfiable concepts in the taxonomy, whereas
they are not shown in RICE. RICE can connect to a Racer server that has al-
ready loaded a model, and retrieve its taxonomy (this is not supported by DIG).
RICE can add individual DL statements to Racer (although this currently re-
quires full classification of the model involved). RICE can be used to pose queries
on Racer (either interactively or with a textual specification), and shows a graph-
ical representation of relations in an A-box. RICE can also deal with multiple
T-boxes and associated A-boxes. In particular, it can show instances of a concept
and concepts (direct types) of instances.

Fig. 3. Using RICE to visualize a RDF document interactively defined with OilEd.

5 Reasoning Beyond OWL: Constraints on Data Types

For various practical reasons OWL also includes so-called data types based on
XML-Schema. Data types in XML-Schema are inspired by a storage-oriented
characterization of values and are taken from programming languages. For in-
stance, data types encompass integer, short, long, boolean, string as well
as various kinds of specializations for strings.

For an ontology representation language, a semantic characterization for data
types might have been more appropriate in our opinion. Thus natural numbers,
integers, reals, or complex numbers might have been selected as data types rather
than long or short etc. because for knowledge representation languages the
storage format should not be of top-most concern.

Based on XML-Schema in DAML+OIL or OWL it is possible to specify
subtypes of, for instance, integer by defining a minimum or maximum value
[15]. However, OWL does not support so-called constraints between data values.
In many practical applications, for instance, linear polynomial inequations with
order relations are appropriate. In description logics and databases, these kinds
of constraints have a long tradition (see [1, 11]). In the following we will adopt
the description logic perspective: concrete domains [2].

Racer supports concrete domain reasoning over natural numbers (N), integers
(Z), reals (R), complex numbers (C), and strings. For different sets, different
kinds of predicates are supported:

– N: linear inequations with order constraints and integer coefficients
– Z: interval constraints
– R: linear inequations with order constraints and rational coefficients
– C: nonlinear multivariate inequations with integer coefficients
– Strings: equality and inequality

For convenience, rational coefficients can be specified in floating point notation.
They are automatically transformed into their rational equivalents (e.g., 0.75 is
transformed into 3

4). In the following we will use the names on the left-hand side
of the table to refer to the corresponding concrete domains.

The following example uses the concrete domains Z and R. For sake of brevity,
we use Racer’s Lisp syntax [10].

(in-tbox family)

(signature

:atomic-concepts (... teenager)

:roles (...)

:attributes ((integer age)))

...

(equivalent teenager (and human (min age 16)))

(equivalent old-teenager (and human (min age 18)))

Asking for the children of teenager reveals that old-teenager is a teenager. A
further extensions demonstrates the usage of reals as concrete domain.

(signature

:atomic-concepts (... teenager)

:roles (...)

:attributes ((integer age)

(real temperature-celsius)

(real temperature-fahrenheit)))

...

(equivalent teenager (and human (min age 16)))

(equivalent old-teenager (and human (min age 18)))

(equivalent human-with-feaver (and human (>= temperature-celsius 38.5))

(equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))

Obviously, Racer determines that the concept seriously-ill-human is sub-
sumed by human-with-fever. For the Reals, Racer supports linear equations
and inequations. Thus, we could add the following statement to the knowl-
edge base in order to ensure the proper relationship between the two attributes
temperature-fahrenheit and temperature-celsius.

(implies top (= temperature-fahrenheit

(+ (* 1.8 temperature-celsius) 32)))

If a concept seriously-ill-human-1 is defined as

(equivalent seriously-ill-human-1

(and human (>= temperature-fahrenheit 107.6)))

Racer recognizes the subsumption relationship with human-with-fever and the
synonym relationship with seriously-ill-human.

In an A-box, it is possible to set up constraints between single individuals.
This is illustrated with the following examples.

(signature

:atomic-concepts (... teenager)

:roles (...)

:attributes (...)

:individuals (eve doris)

:objects (temp-eve temp-doris))

...

(constrained eve temp-eve temperature-fahrenheit)

(constrained doris temp-doris temperature-celsius)

(constraints

(= temp-eve 102.56)

(= temp-doris 39.5))

For instance, this states that the individual eve is related via the attribute
temperature-fahrenheit to the object temp-eve. The constraint (= temp-eve
102.56) specifies that the object temp-eve is equal to 102.56.

Now, asking for the direct types of eve and doris reveals that both indi-
viduals are instances of human-with-fever. In the following A-box there is an
inconsistency since the temperature of 102.56 Fahrenheit is identical with 39.5
Celsius.

(constrained eve temp-eve temperature-fahrenheit)

(constrained doris temp-doris temperature-celsius)

(constraints

(= temp-eve 102.56)

(= temp-doris 39.5)

(> temp-eve temp-doris))

An additional kind of query is possible for concrete domains: Check if certain
concrete domain constraints are entailed by an A-box and a T-box. For instance,
in the above-mentioned example, the following query returns true.

(constraint-entailed? (= temp-eve temp-doris))

6 Conclusion

This paper briefly described Racer and demonstrated that Racer can cooper-
ate with various kinds of ontology editors and visualization tools. Racer can be
considered as one of the fastest OWL DL reasoners based on sound and com-
plete algorithms that is currently freely available. It is still unique in its highly
optimized reasoning support for A-boxes and constraint-based data types (as
demonstrated in the previous sections). Racer also includes optimization tech-
niques supporting the classification of very large knowledge bases (KBs). For

instance, a set of KBs could be classified in a few hours [7] that were derived
from the Unified Medical Language System (UMLS) and contain up to 200,000
concept introduction axioms (OWL classes) and up to 50,000 hierarchical roles
(OWL object properties).

Acknowledgements

We gratefully acknowledge the work of Ronald Cornet, who developed RICE.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2002. In print.

2. F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Twelfth International Joint Conference on Artificial In-
telligence, Darling Harbour, Sydney, Australia, Aug. 24-30, 1991, pages 452–457,
August 1991.

3. F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages
for the semantic web. In D. Hutter and W. Stephan, editors, Festschrift in honor
of Jörg Siekmann. LNAI. Springer-Verlag, 2003.

4. S. Bechhofer, I. Horrocks, and C. Goble. OilEd: a reason-able ontology editor for
the semantic web. In Proceedings of KI2001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. LNAI Vol. 2174, Springer-Verlag,
2001.

5. S. Bechhofer, R. Möller, and P. Crowther. The DIG description interface. In Proc.
International Workshop on Description Logics – DL’03, 2003.

6. D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
Schema, http://www.w3.org/tr/2002/wd-rdf-schema-20020430/, 2002.

7. V. Haarslev and R. Möller. High performance reasoning with very large knowledge
bases: A practical case study. In B. Nebel, editor, Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI-01, August 4-10,
2001, Seattle, Washington, USA, pages 161–166, August 2001.

8. V. Haarslev and R. Möller. Racer system description. In International Joint
Conference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy.,
2001.

9. V. Haarslev and R. Möller. Optimization stategies for instance retrieval. In Proc.
International Workshop on Description Logics – DL’02, 2002.

10. V. Haarslev and R. Möller. The Racer user’s guide and reference manual, 2003.
11. G. Kuper, L. Libkin, and J. Paredaens (Eds.). Constraint Databases. Springer-

Verlag, 1998.
12. O. Lassila and R.R. Swick. Resource description framework (RDF)

model and syntax specification. recommendation, W3C, february 1999.
http://www.w3.org/tr/1999/rec-rdf-syntax-19990222, 1999.

13. R. Möller, R. Cornet, and V. Haarslev. Graphical interfaces for Racer: querying
DAML+OIL and RDF documents. In Proc. International Workshop on Descrip-
tion Logics – DL’03, 2003.

14. F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. OWL web ontology language reference, 2003.

15. F. van Harmelen, P.F. Patel-Schneider, and I. Horrocks (Editors). Reference de-
scription of the DAML+OIL (march 2001) ontology markup language, 2001.

