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Abstract. The quality of class diagrams is critical because it has a great influence on the quality of the object 
oriented information system (OOIS) which are finally delivered. This fact motivated us to define a set of measures 
for evaluating the structural complexity (an internal quality attribute) of class diagrams made using the Unified 
Modeling Language (UML), which nowadays is the standard language for object oriented modelling. These 
measures could be used to predict class diagram external quality characteristics, such as maintainability, early in the 
OOIS life-cycle. In order to corroborate the practical utility of those metrics, we have put them under empirical 
validation by means of a controlled experiment. The description of each of the steps carried out to perform the 
experiment and the construction of the prediction model for class diagram maintainability are the main goals of this 
paper. 
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1. Introduction 
 
A great effort has been made in the field of software measurement for improving the quality of the OOIS (Henderson-
Sellers, 1996; Melton, 1996, Zuse, 1998; Fenton and Pflegger, 1997), but most of them pursue the goal of evaluating -by 
means of quantitative measures- the quality of the final product, i.e. the code or the advanced design. But, in Software 
Engineering it is widely accepted that the quality of OOIS is highly dependent on the decision taken early in the 
development. So that, we believe that in order to get better quality OOIS we should focus on measuring  internal quality 
characteristics of early artifacts, such as class diagrams, and based on those measurements thereby obtain early in the life-
cycle a prediction model for external quality characteristics, such as for example maintainability, which is one of the major 
concerns of software developers and industries. 
In response to the great demand for measures for measuring quality characteristics of class diagrams, such as  
maintainability (ISO, 9126) and after a thorough review of some of the existing OO measures that can be applied at a high 
level design stage (Chidamber and Kemerer, 1994; Lorenz and Kidd, 1994, Brito e Abreu and Carapaçua, 1994; Marchesi, 
1998) we have proposed a set of measures for UML class diagram structural complexity in Genero et al. (2000). As 
maintainability is an external quality characteristic that can be evaluated once a product is finished or nearly finished, we 
centre our work on measuring an internal quality characteristic, the structural complexity of class diagrams. Our idea is to 
use those measures to predict class diagram maintainability early in the OOIS development.  
We have defined those measures in a methodological way (Calero et al., 2001) including three main tasks: metric definition, 
theoretical validation and empirical validation.  Although the three steps are equally relevant in order to define correct and 
reliable metrics, we focus  this paper on the empirical validation of the proposed metrics. Empirical validation is critical for 
the success of any measurement activity (Kitchenham et al., 1995; Fenton and Pflegeer, 1997; Schneidewind, 1992; Basili et 
al., 1999).Through empirical validation we can demonstrate with real evidence that the measures we proposed serve the 
purpose they were defined for and that they are fruitful in practice.  

 
This paper is organised in the following way: In section 2 we will present a set of metrics for UML class diagram structural 
complexity. In section 3 we explain how we carried out a controlled experiment in order to evaluate if there is empirical 
evidence that UML class diagram structural complexity metrics are correlated with maintainability sub-characteristics: such 
as understandability, analysability and modifiability (ISO, 1999). In section 4 we will use the empirical data for building 
prototypes, that characterise UML class diagram maintainability, and based on those prototypes, in section 5, we will build 
a prediction model for UML class diagram maintainability.  The last section summarises the paper, presents some 
conclusions and identifies further work. 

 

 



2. Metrics for UML class diagram structural complexity  
We only present here those metrics presented in Genero et al. (2000) which can be applied at class diagram level as a whole 
(see table 1). These  metrics measure the structural complexity of UML class diagrams due to the use of relationships, such 
as associations, generalisations, aggregations and dependencies. We also consider traditional metrics such as, the number of 
classes, the number of attributes, etc.   

 
Metric name Metric definition 

NUMBER OF CLASSES (NC)  The total number of classes.  
NUMBER OF ATTRIBUTES (NA) The total number of attributes. 
NUMBER OF METHODS (NM)  The total number of methods  
NUMBER OF ASSOCIATIONS (NAssoc)  The total number of associations  
NUMBER OF AGGREGATION (NAgg)  The total number of aggregation relationships within a class 

diagram (each whole-part pair in an aggregation relationship) 
NUMBER OF DEPENDENCIES (NDep)  The total number of dependency relationships 
NUMBER OF GENERALISATIONS (NGen)  The total number of generalisation relationships within a class 

diagram (each parent-child pair in a generalisation 
relationship) 

NUMBER OF AGGREGATIONS HIERARCHIES 
(NAGGH) 

The total number of aggregation hierarchies in a class 
diagram. 

NUMBER OF GENERALISATIONS HIERARCHIES 
(NgenH) 

The total number of generalisation hierarchies in a class 
diagram 

MAXIMUM DIT  It is the maximum between the DIT value obtained for each 
class of the class diagram. The DIT value for a class within a 
generalisation hierarchy is the longest path from the class to 
the root of the hierarchy. 

MAXIMUM HAGG It is the maximum between the HAgg value obtained for each 
class of the class diagram. The HAgg value for a class within 
an aggregation hierarchy is the longest path from the class to 
the leaves. 

Table 1.  Metrics for UML class diagram structural complexity 
 
 

 



3. EMPIRICAL VALIDATION OF THE PROPOSED METRICS 
 
 

In this section we describe an experiment we have carried out for empirically validating the proposed metrics (see section 
2). We will only be able to draw conclusions about the relationship between the cause and the effect for which we stated a 
hypothesis (which we want to corroborate by means of experiments), if the experiment is properly set up. Therefore, we 
have followed some suggestions provided by Wholin et al. (2000),  Perry et al. ( 2000) and Briand et al. (1999) about how 
to perform controlled experiments. 

To perform an experiment, several steps have to be taken and they have to be in a certain order. The experiment process 
can be divided into the following main activities: 

1. Definition, where we define the experiment in terms of problem, objective and goals. 
2. Planning, where the design of the experiment is determined, the instrumentation is considered and the threats to the 

experiment are evaluated 
3. Operation, in this phase measurements are collected. 
4. Analysis and Interpretation, where collected data are analysed and evaluated. 
5. Presentation and Package, where results are presented and packaged. 

 
In the remainder of this section we explain how we have performed each of the activities described above. 
 
3.1 Definition 
As Wholin et al. (2000) suggested, we follow the GQM template (Basili and Weiss, 1984; Basili and Rombach , 1988; Van 
Solingen and Berghout, 1999) for goal definition. This results in the following goal: 
 
Analyse    UML class diagrams complexity metrics 
For the purpose of   Evaluating 
With respect to   the correlation with maintainability sub-characteristics 
From the point of view of  researchers  
In the context of  M.Sc. students and professors of the Engineering Software Area in the Department of 

Computer Science in the University of Castilla-La Mancha. 
 
 
3.2 Planning 
After the definition of the experiment, the planning took place. The definition determines the foundation of the experiment -
why the experiment is conducted- while the planning prepares for how the experiment is conducted. 
 
3.2.1 Context selection  
The context of the experiment is a group related to the area of Software Engineering. at the university, and hence the 
experiment is run-off line (not industrial software development), it is conducted  by 7 professors and 10 students enrolled in 
the final-year of Computer Science in  the Department of Computer Science at the University of Castilla-La Mancha in 
Spain. All of the professors belong to the Software Engineering area.  
The experiment is specific since it is focused on UML class diagram structural complexity metrics. The ability to generalise 
from this specific context is further elaborated below when discussing threats to the experiment. The experiment addresses a 
real problem the correlation between metrics and maintainability sub-characteristics. 
 
3.2.2 Hypothesis formulation 
An important aspect of experiments is to know and to state in a clear sand formal fashion what we intend to evaluate in the 
experiment. This lead us to the formulation of a hypothesis (or several hypothesis). We wish  to test the hypothesis that 
there is a significant correlation between the current metric data set (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, 
NGenH, MaxHAgg, MaxDIT) and the subject´s rating of three maintainability sub-characteristics, such as 
understandability, analysability and modifiability. 
 
3.2.3 Variables selection  
The independent variable is the UML class diagram structural complexity 
The dependent variables are three maintainability sub-characteristics: understandability, analysability and modifiability. 
  
3.2.4 Selection of subjects 
The subjects are chosen for convenience, i.e. the subjects are students and professors that have experience in the design and 
development of OOIS.  
 

 



3.2.5 Experiment design 
We selected a within-subject design experiment, i.e. all the tests were solved by the same group of subjects. The tests were 
put in a different order for each subject. 
 
3.2.6 Instrumentation 
The objects were class diagrams done using UML. 
The independent variable was measured through the metrics,  presented in section 2. 
The dependent variables were measured according to subject’s rating.  
 
3.2.7 Validity evaluation  
We will discuss the empirical study’s various threats to validity and the way we attempted to alleviate them: 
− THREATS TO CONSTRUCT VALIDITY. We propose subjective metrics for measuring each of the dependent variables 

(maintainability sub-characteristics) based on the judgement of the subjects (see section 3.2). As the subjects involved 
in this experiment have medium experience in UML class diagram design we think their ratings can be considered 
significant. The independent variables (each of the metrics proposed in section 2) that measure the structural 
complexity of class diagrams can also be considered constructively valid, because from a system theory point of view, a 
system is called complex if it is composed of many (different types of elements), with many (different types of) 
(dynamically changing) relationships between them (Poels and Dedene, 2000a).  

− THREATS TO INTERNAL VALIDITY. Seeing the results of the experiment we can conclude that empirical evidence of the 
existing  relationship between the independent and the dependent variables exists. We have tackled different aspects 
that could threaten the internal validity of the study, such as: differences among subjects, knowledge of the universe of 
discourse among class diagrams, accuracy of subject responses, learning effects, fatigue effects, persistence effects and 
subject motivation. 

− THREATS TO EXTERNAL VALIDITY. Two threats to external validity have been identified which limit the ability to apply 
any such generalisation, and we have tried to alleviate them:  materials and tasks, and subject selection. In general in 
order to extract a final conclusion that can be generalised, we need to replicate this experiment with a greater number of 
subjects, including practitioners. After doing replication we will have a cumulative body of knowledge; which will lead 
us to confirm if the presented metrics could really be used as early quality indicators, and could be used to predict class 
diagram maintainability. 

 
3.3 Operation 
 
3.3.1 Preparation 
 
By the time the experiment was done all of the students had had two courses on Software Engineering, in which they learnt 
in depth how to build OO software using UML. All the selected professors had enough experience in the design and 
development of OOIS. Moreover, subjects were given an intensive training session before the experiment took place.The 
subjects were not aware of what aspects we intended to study. Neither they were aware of the actual hypothesis stated. 
We prepared the material we had to give to the subjects, consisting of 28 class diagrams of the same universe of discourse, 
related to Bank Information Systems.  Each diagram has a test enclosed which includes the description of maintainability 
sub-characteristics, such as: understandability, analysability, modifiability. Each subject has to rate each sub-characteristic 
using a scale consisting of seven linguistic labels. For example for understandability we proposed the following linguistic 
labels: 

 
Extremely 
difficult to 
understand 

Very 
difficult to 
understand 

 

A bit 
difficult to 
understand 

Neither 
difficult nor 

easy to 
understand 

Quite easy 
to 

understand 

Very easy 
to 

understand 

Extremely 
easy to 

understand 

 
We also prepared  a debriefing questionnaire. This questionnaire included (i) personal details and experience, (ii) opinions 
on the influence of different components of UML class diagrams, such as: classes, attributes, associations, generalisations, 
etc... on their maintainability. 
 
 

 
 
 
 

 



3.3.5 Execution 
The subjects were given all the material described in the prveous section. We explained tothem how to carry out the 
experiment. We allowed one week to do the experiment, i.e., each subject had carry out the test alone, and could use 
unlimited time to solve it. 
We collected all the data, including subjects´rating obtained from the responses of the experiment and  the metrics values 
automatically calculated by means of  a metric tool we had designed.  
 
3.3.6 Data Validation 
All tests were considered valid because all of the subjects have at least medium experience in building UML class diagrams 
and developing OOIS. 
 
3.4 Analysis and Interpretation 
As we have said before, our goal is to ascertain if any correlation exists between each of the proposed metrics (see section 
2) and three of the maintainability sub-characteristics: understandability, analisabilisty and modifiability. 
Spearman´s correlation was used to determine the correlation of the data collected in the experiment, shown in  Appendix 
A. The correlation coefficient is a measure of the ability of one variable to predict the value of another variable. Using 
Spearman´s correlation coefficient, each of the metrics was correlated separately to the different subject´s rates of 
understandability, analysability and modifiability (see table 2). 

 
 NC NA NM NAss

oc 
NAgg NDep NGen NAgg

H 
NGen

H 
MaxHag

g 
MaxDI

T 

Understandab
ility 

0.961 0.94
1 

0.929 0.753 0.813 0.518 0.876 0.714 0.902 0.728 0.749

Analysability 0.966 0.94
0 

0.916 0.733 0.822 0.534 0.868 0.720 0.921 0.722 0.738

Modifiability 0.950 0.92
4 

0.908 0.733 0.818 0.522 0.865 0.719 0.888 0.725 0.751

Table 2. Spearman´s correlation between UML class diagrams structural complexity metrics and understandability, 
analysability and modifiability 

 
Analysing the Spearman´s correlation coefficients shown in table 4, we can conclude that there exists a high correlation 
between most of the UML class diagram structural complexity metrics and the subject´s rating of understandability, 
analysability and modifiability. We can deduce this due to the fact that almost all the metrics have a correlation greater than 
0.7.  NDep is the only one that has a lesser correlation. This fact should be studied in detail by carrying out further 
experimentation. 
 
3.5 Presentation and package 
The last activity is concerned with presenting and packaging of the findings. The diffusion of the experimental results and 
the way they are presented are relevant so that they are really put into use. Therefore we published our findings in this 
paper, and we are also planning to publish a lab package on the web for replication purposes. 

 
4. A prediction model for UML class diagram maintainability 
In this section we explain the steps involved in the Fuzzy Prototypical Knowledge Discovery (FPKD) process (Olivas and 
Romero, 2000; Olivas, 2000), which lead us to the construction of fuzzy prototypes (Zadeh, 1982) that characterise the 
maintainability of UML class diagrams. The FPKD is a fuzzy extension of the traditional Knowledge Discovery in 
Databases (KDD) (Fayyad, 1996). 
The prototypes obtained from the FPKD form  the foundation of the prediction model that allows us to predict class diagram 
maintainability. This approach is more representative than standard approaches, because the use of an isolated algorithm or 
method  over- simplifies the complexity of the problem. Statistical methods or decision trees (ID3, C4.5, CART) are only 
classification processes, and it is very important to include a clustering model for finding some kinds of patterns in the 
initial chaos of data. The use of fuzzy schemas allows us to achieve  better and more understandable results, concerning 
patterns and prediction results. 
 
4.1 The FPKD process  
 
The FPKD process consist of different steps: 

 



− SELECTION OF THE TARGET DATA.  We have taken as a start set a relational database that contains 476 records (with 14 
fields, 11 represent metric values, 3 represent maintainability sub-characteristics, understandability, analysability and 
modifiability respectively) obtained from the calculation of the metric values (for each class diagram) and the responses 
of the experiment given by the subjects. 

− PREPROCESSING. The Data-Cleaning was not necessary because we did not find any errors. 
− TRANSFORMATION. This step was performed doing different tasks: 
y SUMMARISING  SUBJECT RESPONSES. We built a table with 28 records (one record for each class diagram) and 14 

fields (see Appendix A). The metric values were calculated measuring each diagram, and the values for each 
maintainability sub-characteristics were obtained aggregating subjects´s ratings using their mean. 

y CLUSTERING BY REPERTORY GRIDS. In order to detect the relationships between the class diagrams, to  obtaining 
those which are easy, medium or difficult to maintain (based on subject rates of each maintainability sub-
characteristics), we have carried out a hierarchical clustering process by Repertory Grids, based on subject´s rating 
for each diagram. The set of elements is composed of the 28 class diagrams, the constructions are the intervals of 
values of the subjects´rating. The application of Repertory Grids Analysis Algorithm returns a graphic which 
reflects each prototype (easy, medium and difficult to maintain), and the class diagrams which pertain to them (see 
figure1).  
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Figure 1. Clustering results (E: Easy to maintain, M: Medium to maintain, D: Difficult to maintain) 
 (*) We have grouped some class diagrams assigning them one letter because they have  100% similarity (see appendix A) 

 

- DATA MINING. The selected algorithm for the data mining process was summarise functions. Table 3 shows the 
parametric definition of the prototypes.  

 Understandability Analisability Modifiability 
Difficult       
Average 6 6 6 
Maximum 6 6 7 
Minimum 6 5 6 
Medium 
Average 5 5 5 
Maximum 5 6 5 
Minimum 4 4 4 
Easy 
Average 2 2 3 
Maximum 3 3 3 
Minimum 2 2 2 

 



Table 3. Prototypes “Easy, Medium and Difficult to maintain“ 
 

− FORMAL REPRESENTATION OF CONCEPTUAL PROTOTYPES. The prototypes have been represented as fuzzy numbers, 
which are going to allow us to obtain a degree of membership in the concept. In order to construct the prototypes 
(triangular fuzzy numbers) we only need to know their centerpoints (“center of the prototype”), which are obtained by 
normalising and aggregating the metric values corresponding to the class diagrams of each of the prototypes (see figure 
2). 

 

Figure 2. Representation of the prototypes 
 
5. Example of prediction of UML class diagram maintainability 
Using Fuzzy Deformable Prototypes (Olivas and Romero, 2000; Olivas, 2000), we can deform the most similar prototype to 
a new class diagram, and define the factors for a new situation, using a linear combination with the degrees of membership 
as coefficients. We will  give an example of how to deform the fuzzy prototypes found in section 4.1. Given the following 
metric values corresponding to a new class diagram: 

 
 

NC NA NM NAssoc NAgg NAggH NDep NGenR NGenH MaxDIT MaxHagg
21 30 70 10 6 2 3 20 5 2 3

 
And their normalised values: 
 

NC NA NM NAssoc NAgg NAggH NDep NgenR NGenH MaxDIT MaxHAgg
0.69 0.48 0.67 0.71 0.67 0.67 0.75 0.83 1 0.40 0.75

 
The final average is 0.69. The affinity with the prototypes is shown in figure 3. 
 

 



diagram 

Most 
similar 

prototype 
Degree 
of 

membership 
of the new 

Figure 3. Affinity of the real case with the prototypes 
 

 
The most similar prototype for this new class diagram  is “Difficult to maintain”, with a degree of membership of 0.89. 
Then, the prediction is: 

 
 Understandability Analysability Modifiability 
Average 5 5 6 
Maximum 5 5 6 
Minimum 5 5 6 

 
6. Conclusions and future work 
 
In this paper we have presented Genero et al.´s metrics (Genero et al., 2000), which are defined to assess the structural 
complexity of UML class diagrams obtained at high level design stage. These metrics allow OO designers:   
1. a quantitative comparison of design alternatives, and therefore an objective selection among  several class diagram 

alternatives with equivalent semantic content. 
2. a prediction of external quality characteristics, like maintainability in the initial phases of the OOIS life cycle and a 

better resource allocation based on these predictions. 
With the objective of  corroborating that there exists a great correlation between these metrics values and the maintainability 
of a class diagram, we have carried out a controlled experiment. Analysing the data collected using Spearman ´s correlation 
we have concluded that most of the proposed metrics are highly correlated with the maintainability characteristics such as: 
understandability, analysability and modifiability.  
Also we have used a fuzzy extension of the traditional KDD process, the FPKD (Olivas  and Romero, 2000; Olivas, 2000) 
for building the maintainability prototypes which serve as the basis of the prediction model for the sub-characteristics that 
affect class diagram maintainability. 
We want to highlight that this is a first approach to predicting UML class diagram maintainability, we need “real data” 
about UML class diagram maintainability efforts, such as time spent in maintenance tasks in order to predict data that can 
be highly useful to software designers and developers.  
The prediction model was built using the FPKD process, which is a fuzzy extension of the traditional KDD. The FPKD 
process was used not only in the software measurement area, but  was also used for different kinds of real problems, such as 
forest fire prediction, financial analysis or medical diagnosis, obtaining satisfactory results. 
Nevertheless, despite the promising nature of the obtained results, towards of seeking correct OO metrics applied at a high 
level design stage, we are aware that we need to do more metric validation, both empirical and theoretical in order to obtain 
conclusive evidence of the usefulness of the proposed metrics.  
Pending is the theoretical validation of the proposed metrics using the DISTANCE framework proposed by Poels and 
Dedene (1999; 2000b), which is in our knowledge the most appropriate for OO measurements. 

 



Regarding empirical validation we are refining this experiment in order to replicate it. For example we have found out that it 
is not necessary to include 28 diagrams, but it would be possible to take only the most representative. We  are also 
designing a new experiment, in which we will give the subjects several class diagrams and some new requirements to be 
added. In this case the independent variable will be measured by the time spent in modification tasks, which is more 
objective than subjects´rating. 
We also need “real data” about UML class diagram maintainability efforts, such as time spent in maintenance tasks in order 
to predict data that can be highly fruitful to software designers and developers. However the scarcity of such data continues 
to be a great problem which we must tackle to validate metrics. Brito e Abreu et al. (1999) suggested the necessity of a 
public repository of measurement experiences, which we think could be a good step towards achieving success in all the 
work done related to software measurement.  
Once the proposed metrics are refined (i.e. validated or discarded) we have the plan to embed them into an OO CASE tool, 
for helping OO designers to take better decisions in their design tasks, which is the most important goal of any measurement 
proposal that aims to be useful (Fenton and Neil, 2000). 
In future work, we will also tackle the measurement of other quality factors like those proposed in the ISO 9126 (1999), 
which not only addresses class diagrams, but also evaluates other UML diagrams, such as use-case diagrams, state 
diagrams, etc. To our knowledge, little work has been done towards measuring dynamic and functional models (Poels and 
Dedene, 2000a). As is quoted in Brito e Abreu et al. (1999) this is an area which lacks in depth investigation.  
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Appendix A 
The following table shows a summary of the data collected in the experiment explained in section 3. The first column shows 
the class diagram number, the following eleven columns show the metrics values, and the last one shows the mean of the 
subject´s rating of understandability, analysability and modifiability. Attached to some class diagram numbers appears a 
letter. The diagrams which have the same letter mean that they have 100% similarity. 

 
 

Class 
diagram 
number 

NC NA NM NAssoc NAgg NDep NGen NAggH NGenH Max
Hagg

Max
DIT

Understanda
bility 

Analisa
bility 

Modifia
bility 

D0 2 4 8 1 0 0 0 0 0 0 0 1 1 1

D1 (A) 3 6 12 1 1 0 0 1 0 1 0 2 2 2

D2 (A) 4 9 15 1 2 0 0 1 0 2 0 2 2 2

D3 (A) 3 7 12 3 0 0 0 0 0 0 0 2 2 2

D4 (A) 5 14 21 1 3 0 0 2 0 2 0 2 2 2

D5  3 6 12 2 0 0 0 0 0 0 0 2 2 2

D6 4 8 12 3 0 1 0 0 0 0 0 2 3 3

D7 (B) 6 10 14 2 2 0 2 1 1 2 1 3 3 3

D8 (A) 3 9 12 1 0 1 0 0 0 0 0 2 2 2

D9 (B) 7 14 20 2 3 0 2 1 1 2 1 3 3 3

D10 (B) 9 18 26 2 3 0 4 1 2 3 1 3 3 3

D11 (B) 7 18 37 3 3 0 2 1 1 3 1 3 3 3

D12 (B) 8 22 35 3 2 1 2 1 1 2 1 3 3 3

D13 (A) 5 9 26 0 0 0 4 0 1 0 2 2 2 2

D14 8 12 30 0 0 0 10 0 1 0 3 2 3 3

D15 (C) 11 17 38 0 0 0 18 0 1 0 4 4 4 4

D16 20 42 76 10 6 2 10 2 3 2 2 6 6 6

D17 (D) 23 41 88 10 6 2 16 2 3 4 3 6 6 6

D18 (E) 21 45 94 6 6 1 20 2 2 4 4 6 5 6

 



D19 29 56 98 12 7 3 24 3 4 4 4 6 6 7

D20 (B) 9 28 47 1 5 0 2 2 1 4 1 3 3 3

D21 (F) 18 30 65 3 5 0 19 1 2 3 4 5 5 5

D22 (D) 26 44 79 11 6 0 21 2 5 4 3 6 6 6

D23 (F) 17 32 69 1 5 0 19 1 1 2 5 5 5 5

D24 23 50 73 9 7 2 11 3 4 4 1 5 6 5

D25 (E) 22 42 84 14 4 4 16 2 3 2 3 6 5 6

D26 14 34 77 4 9 0 7 2 2 3 4 4 5 5

D27(C) 17 34 47 6 6 0 11 3 2 2 2 4 4 4

 

 


