
Reducing OWL Entailment
to Description Logic Satisfiability

Ian Horrocks
Department of Computer Science

University of Manchester, Manchester, UK

Peter F. Patel-Schneider
Bell Labs Research, Lucent Technologies

Murray Hill, NJ, USA

Abstract

We show how to reduce ontology entailment for the OWL DL and OWL Lite ontol-
ogy languages to knowledge base satisfiability in (respectively) the SHOIN (D) and
SHIF(D) description logics.

1 Introduction

The aim of the Semantic Web is to make web resources (not just HTML pages, but a wide
range of web accessible data and services) more readily accessible to automated processes.
According to widely known proposals for a Semantic Web architecture, ontologies will play
a key role as they will be used as a source of shared and precisely defined terms that can be
used in such metadata [8]. The importance of ontologies in semantic markup has prompted the
development of several ontology languages specifically designed for this purpose, leading up
to OWL [2], currently being developed by the W3C Web Ontology working group. Reasoning
with ontology languages will be important in the Semantic Web if applications are to exploit
the semantics of ontology based metadata annotations. It is thus useful to make connections
between OWL and logics that have effective reasoners.

In this paper we will show that the main reasoning problem (ontology entailment) in OWL
DL and OWL Lite (two subsets of OWL) can be reduced to knowledge base (KB) satisfiability
in the SHOIN (D) and SHIF(D) description logics respectively. This is a significant result
from both a theoretical and a practical perspective: it demonstrates that computing ontology
entailment in OWL DL (resp. OWL Lite) has the same complexity as computing knowledge
base satisfiability in SHOIN (D) (SHIF(D)), and that description logic algorithms and
implementations (such as RACER [4]) can be used to provide reasoning services for OWL
Lite. (The design of “practical” algorithms for SHOIN (D) is still an open problem.)

2 The OWL Web Ontology Language

OWL is defined as an extension to RDF in the form of a vocabulary entailment [5], i.e., the
syntax of OWL is the syntax of RDF and the semantics of OWL are an extension of the



Classes (C)
A (class name)
intersectionOf(C1 . . . Cn)
unionOf(C1 . . . Cn)
complementOf(C)
oneOf(o1 . . . on)
restriction(R {allValuesFrom(C)} {someValuesFrom(C)}
{value(o)} [minCardinality(n)] [maxCardinality(m)] [cardinality(`)])

restriction(T {allValuesFrom(D)} {someValuesFrom(D)}
{value(v)} [minCardinality(n)] [maxCardinality(m)] [cardinality(`)])

Data Ranges (D)
B (datatype name)
oneOf(v1 . . . vn)

Figure 1: OWL DL Constructors

semantics of RDF. OWL has many features in common with description logics, but also has
two significant differences. The first difference between OWL and description logics is that
OWL information is encoded in RDF/XML documents [1] and parsed into RDF Graphs [7]
composed of triples. Because RDF Graphs are such an impoverished syntax, many description
logic constructs in OWL are encoded into several triples. Because RDF Graphs are graphs,
however, it is possible to create circular syntactic structures in OWL, which are not possible in
description logics. The second difference between OWL and description logics is that OWL
contains features that do not fit within the description logic framework. For example, OWL
classes are objects in the domain of discourse and can be made instances of other concepts,
including themselves. These two features, also present in RDF, make a semantic treatment of
OWL quite different from the semantic treatment of description logics.

Fortunately for our purpose, there are officially-defined subsets of OWL that are much
closer to description logics. The larger of these subsets, called OWL DL, restricts OWL to the
point that it is possible to develop an abstract syntax for OWL DL [9] that is not very different
from description logic syntaxes. The abstract syntax for OWL DL has classes and data ranges,
which are analogues of concepts and concrete datatypes in description logics, and axioms and
facts, which are analogues of axioms in description logics. Axioms and facts are grouped into
ontologies, the analogue of description logic KBs, which are the highest level of OWL DL
syntax. This syntax for OWL DL is summarised in Figure 1.

Descriptions and data ranges can be used in OWL DL axioms and facts to provide in-
formation about classes, properties, and individuals. Figure 2 provides a summary of these
axioms and facts. The details of these constructors can also be found in the OWL documen-
tation [2]. In particular, Figure 2 ignores annotations and deprecation, which allow uninter-
preted information to be associated with classes and properties, but which are not interesting
from a logical point of view.

Because of the semantic restrictions in OWL DL, metaclasses and other notions that do
not fit into the description logic semantic framework can be ignored. In fact, OWL DL has
a semantics that is very much in the description logic style, and that has been shown to be
equivalent to the RDF-style semantics for all of OWL [9].

There is a subset of OWL DL, called OWL Lite, that has fewer constructors than OWL



Class Axioms
Class(A partial C1 . . . Cn)
Class(A complete C1 . . . Cn)
EnumeratedClass(A o1 . . . on)
DisjointClasses(C1 . . . Cn)
EquivalentClasses(C1 . . . Cn)
SubClassOf(C1 C2)

Property Axioms
DatatypeProperty(U super(U1) . . . super(Un) [Functional]

domain(C1) . . . domain(Cm) range(D1) . . . domain(Dl))
ObjectProperty(P super(P1) . . . super(Pn) [inverseOf(P0)]

[Functional] [InverseFunctional] [Symmetric] [Transitive]
domain(C1) . . . domain(Cm) range(e1) . . . domain(el))

EquivalentProperties(U1 . . . Un)
SubPropertyOf(U1 U2)
EquivalentProperties(P1 . . . Pn)
SubPropertyOf(P1 P2)

Facts
Individual([o] type(C1) . . . type(Cn) value(p1 v1) . . . value(p1 v1))
SameIndividual(o1 . . . on)
DifferentIndividuals(o1 . . . on)

Figure 2: OWL DL Axioms and Facts (simplified)

DL and limits the use of some of these constructors. In particular, OWL Lite does not support
the oneOf constuctor (equivalent to description logic nominals).

The semantics for OWL DL is fairly standard by description logic standards, with inter-
pretations modelling axioms and ontologies. The main semantic relationship in OWL DL is
entailment—a relationship between pairs of OWL ontologies.1 An ontology O1 entails an
ontology O2, written O1 |= O2, exactly when all interpretations that satisfy O1 also satisfy
O2. This semantic relationship is different from the standard description logic relationships,
such as KB and concept satisfiability. The main goal of this paper is to show how OWL DL
entailment can be transformed into DL KB (un)satisfiability.

3 From OWL DL Entailment to SHOIN (D) Unsatisfiability

We will now show how to translate OWL DL entailment into SHOIN (D) unsatisfiability.
The first step of our process is to translate an entailment between OWL DL ontologies into
an entailment between knowledge bases in SHOIN+(D) (SHOIN (D) augmented with a
concept non-emptiness construct, ∃C). Then SHOIN+(D) entailment is transformed into

1The emphasis on entailment is mainly a consequence of OWL’s relationship with RDF. On the one hand, RDF
entailment cannot be reduced to consistency as the language does not include negation, and consistency itself is
not very interesting as the language is too weak to express an inconsistency. On the other hand, the use of RDF
properties to express subclass and type relationships means that subsumption and instantiation equate to entailment
of the relevant RDF triple, i.e., C v D w.r.t. an ontology O iff O entails the RDF triple (C subClassOfD),
and i ∈ C w.r.t. O iff O entails the RDF triple (itypeC).



OWL fragment F Translation F(F )

Individual(x1. . . xn) ∃(F(x1) u . . . u F(xn))
type(C) V(C)
value(R x) ∃R.F(x)
value(U v) ∃U.{v}
o {o}

Figure 3: Translation from OWL facts to SHOIN+(D)

Axiom A Transformation G(A)

c v d x : c u ¬d

∃c > v ¬c

Trans(r) x : ∃r.∃r.{y} u ¬∃r.{y}
r v s x : ∃r.{y} u ¬∃s.{y}

f v g

x :
⊔

z∈V
∃f.{z} u ¬∃g.{z}

for V = the set of data values in K,
plus one fresh data value for each datatype in K

a = b a 6= b

a 6= b a = b

Figure 4: Translation from Entailment to Unsatisfiability

unsatisfiability of SHOIN (D) KBs. (Note that concept non-emptiness axioms are elimi-
nated in this last step, leaving a SHOIN (D) knowledge base.)

Translating OWL DL axioms into SHOIN+(D) is very natural, and is almost identical
to the translation of OIL described by [3]. For example, the OWL DL axiom Class(A complete
C1. . . Cn) is translated into the pair of SHOIN+(D) axioms A v V(C1)u . . .uV(Cn) and
V(C1)u. . .uV(Cn) v A, where V is the obvious translation from OWL classes to description
logic concepts, again very similar to the transformation described by [3]. Similarly, an OWL
DL axiom DisjointClasses(C1...Cn) is translated into the SHOIN+(D) axioms
V(Ci) v ¬V(Cj) for 1 ≤ i < j ≤ n.

The translation of OWL DL facts to SHOIN+(D) axioms is more complex, because
facts can be stated with respect to anonymous individuals, such as the fact Individual(type(C)
value(R Individual(type(D)))). The SHOIN+(D) non-emptiness axiom can be employed,
allowing the above fact to be translated into the axiom ∃(C u ∃R.D). Figure 3 describes a
translation F that transforms OWL facts into a SHOIN+(D) non-emptiness axioms.

Theorem 1 The translation from OWL DL to SHOIN+(D) preserves equivalence. That is,
an OWL DL axiom or fact is satisfied by an interpretation I if and only if the translation is
satisfied by I.

The above translation increases the size of an ontology to at most the square of its size. It
can easily be performed in time linear in the size of the resultant KB.

The next step of our process is to transform SHOIN+(D) knowledge base entailment to
SHOIN (D) KB unsatisfiability. We define (in Figure 4) a translation, G, such that K |= A

iff K ∪ {G(A)} is unsatisfiable, for K a SHOIN (D) KB and A a SHOIN (D) axiom.
Throughout the translation, x and y are fresh individual names.



Most of the translations in G are quite standard and simple. The only unusual translation
is for datatype role inclusions f v g. Because data values have a known “identity” (rather
like individuals under the unique name assumption), a fresh value cannot be used to simulate
an existentially quantified variable that could be interpreted as any element in the datatype
domain (in the way the fresh nominal is used in the case of an object role inclusion axiom).
Instead, it is necessary to show that the relevant inclusion holds for every data value that
occurs in the KB, plus one fresh data value (i.e., one that does not occur in the KB) for each
datatype in K. Because there are no operations on data values, it suffices to consider only
these fresh data values in addition to those that occur in the KB.

The translation G increases the size of an axiom to at most the larger of its size and the
size of the KB. It can easily be performed in time linear in the larger of the size of the axiom
and the size of the KB.

The translation G eliminates concept non-emptiness axioms from the KB K′ on the right-
hand side of the entailment. Our last step is to eliminate concept existance axioms from
the knowledge base K on the left-hand side of the entailment. We do this by applying a
translation E(K) that replaces each axiom of the form ∃C ∈ K with an axiom a : C, for a a
fresh individual name. It is obvious that this translation preserves satisfiability, can be easily
performed, and only increases the size of a KB by a linear amount.

Theorem 2 Let K and K′ be SHOIN+(D) knowledge bases. Then K |= K′ iff the
SHOIN (D) KB E(K) ∪ {G(A)} is unsatisfiable for every axiom A in K′.

The overall translation from OWL DL entailment to SHOIN (D) can be performed in
polynomial time and results in a polynomial number of KB satisfiability problems each of
which is polynomial in the size of the initial OWL DL entailment. Therefore we have shown
that OWL DL entailment is in the same complexity class as knowledge base satisfiability in
SHOIN (D).

Unfortunately, SHOIN (D) is a difficult description logic. Most problems in
SHOIN (D), including KB satisfiability, are in NEXPTIME [10]. Futher, there are as yet no
known optimized inference algorithms or implemented systems for SHOIN (D). The situa-
tion is not, however, completely bleak. There is an inexact translation from SHOIN (D) to
SHIN (D) that turns nominals into atomic concept names. This translation could be used to
produce a partial, but still useful, reasoner for OWL DL. Moreover, as is shown in the next
section, the situation for OWL Lite is significantly different.

4 Transforming OWL Lite

As OWL Lite does not have the analogue of nominals it is possible that inference is easier in
OWL Lite than in OWL DL. However, the transformation above from OWL DL entailment
into SHOIN (D) unsatisfiability uses nominals even for OWL Lite constructs. It is thus
worthwhile to devise an alternative translation that avoids nominals. There are three places
that nominals show up in our transformation: 1/ translations into SHOIN +(D) of OWL
DL constructs that are not in OWL Lite, in particular the oneOf constructor; 2/ translations
into SHOIN+(D) axioms of OWL DL Individual facts; and 3/ the transformation to
SHOIN (D) unsatisfiability of SHOIN+(D) entailments whose consequents are role in-
clusion axioms or role transitivity axioms. The first of these, of course, is not a concern when
considering OWL Lite.



OWL fragment F Translation F ′(F )

Individual(x1. . . xn) F ′(a : x1), . . . ,F
′(a : xn)

for a a fresh individual name
a : type(C) a : V(C)
a : value(R x) 〈a, b〉 : R, F ′(b : x)

for b a fresh individual name
a : value(U v) 〈a, v〉 : U

a : o a = o

Figure 5: Translation from OWL Lite facts to SHIF+(D)

Axiom A Transformation G(A)

a : C a : ¬C

〈a, b〉 : R b : B, a : ∀R.¬B

for B a fresh concept name
〈a, v〉 : U a : ∀U.v

Figure 6: Extended Transformation from Entailment to Unsatisfiability

The second place where nominals show up is in the translation of OWL Individual
facts into SHOIN (D) axioms (Figure 3). In order to avoid introducing nominals, we can
use the alternative transformation F ′ given in Figure 5. Note that, in this case, the translation
V(C) does not introduce any nominals as we are translating OWL Lite classes.

The new transformation does, however, introduce axioms of the form a : C, 〈a, b〉 : R and
〈a, v〉 : U that we will need to deal with when transforming from entailment to satisfiability.
We can do this by extending the transformation G given in Figure 4 as shown in Figure 6. The
extension deals with axioms of the form 〈a, b〉 : R using a simple transformation, described
in more detail by [6], and with axioms of the form 〈a, v〉 : U using a datatype derived from
the negation of a data value (written v).

The third place where nominals show up is in the transformation of entailments whose
consequents are object role inclusion axioms or role transitivity axioms.

Object role inclusion axioms can be dealt with using a transformation similar to those
given in Figure 6 (and described in more detail in [6]), which does not introduce any nominals.
This is shown in the following lemma:

Lemma 1 Let K be an OWL Lite ontology and let A be an OWL Lite role inclusion axiom
stating that r is a subrole of s. Then K |= A iff E(K)∪{x : Bu∃r(∀s−.¬B)} is unsatisfiable
for x a fresh individual name, and B a fresh concept name.

Transitivity axioms can be dealt with by exploiting the more limited expressive power of
OWL Lite, in particular its inability to describe classes, datatypes or properties whose inter-
pretations must be non-empty but finite (e.g., classes described using the oneOf constructor).
As a result of this more limited expressive power, the only way to deduce the transitivity of a
property r is to show that the interpretation of r cannot form any chains (i.e., consists only of
isolated tuples, or is empty). This observation leads to the following lemma:

Lemma 2 Let K be an OWL Lite ontology and let A be an OWL Lite role transitivity axiom



stating that r is transitive. Then K |= A iff E(K) ∪ {x : ∃r(∃r>)} is unsatisfiable for x a
fresh individual name (i.e., r forms no chains).

The above lemmas, taken together, show that OWL Lite entailment can be transformed
into KB unsatisfiability in SHIF(D), plus some simple tests on the syntactic form of a
knowledge base. A simple examination shows that the transformations can be computed in
polynomial time and result in only a linear increase in size.

As KB satisfiability in SHIF(D) is in EXPTIME [10] this means that entailment in OWL
Lite can be computed in exponential time. Further, OWL Lite entailment can be computed
by the RACER description logic system [4], a heavily-optimised description logic reasoner,
resulting in an effective reasoner for OWL Lite entailment.

5 Conclusion

Reasoning with ontology languages will be important in the Semantic Web if applications
are to exploit the semantics of ontology based metadata annotations. We have shown that
ontology entailment in the OWL DL and OWL Lite ontology languages can be reduced to
KB satisfiability in, respectively, the SHOIN (D) and SHIF(D) description logics. This
is so even though some constructs in these languages go beyond the standard description logic
constructs.

From these mappings, we have determined that the complexity of ontology entailment
in OWL DL and OWL Lite is in NEXPTIME and EXPTIME respectively (the same as for
KB satisfiability in SHOIN (D) and SHIF(D) respectively). The mapping of OWL Lite
to SHIF(D) also means that already-known practical reasoning algorithms for SHIF(D)
can be used to determine ontology entailment in OWL Lite; in particular, the highly optimised
RACER system [4], which can determine KB satisfaction in SHIF(D), can be used to pro-
vide efficient reasoning services for OWL Lite. The mapping from OWL DL to SHOIN (D)
can also be used to provide complete reasoning services for a large part of OWL DL, or partial
reasoning services for all of OWL DL.

References

[1] Dave Beckett. RDF/XML syntax specification (revised). W3C Working Draft, 2003.
Available at http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-
20030123.

[2] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. Web ontol-
ogy language (OWL) reference version 1.0. W3C Working Draft, 2003. Available at
http://www.w3.org/TR/2003/WD-owl-ref-20030331.

[3] S. Decker, D. Fensel, F. van Harmelen, I. Horrocks, S. Melnik, M. Klein, and J. Broek-
stra. Knowledge representation on the web. In Proc. of the 2000 Description Logic
Workshop (DL 2000), pages 89–98, 2000.

[4] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in
Artificial Intelligence, pages 701–705. Springer, 2001.



[5] Patrick Hayes. RDF semantics. W3C Working Draft, 2003. Available at http://
www.w3.org/TR/2003/WD-rdf-mt-20030123.

[6] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query containment
under constraints using a description logic. In Proceedings of the 7th International
Conference on Logic for Programming and Automated Reasoning (LPAR’2000), Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2000.

[7] Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF): Concepts
and abstract syntax. W3C Working Draft, 2003. Available at http://www.w3.org/
TR/2003/WD-rdf-concepts-20030123.

[8] Ora Lassila and Ralph R. Swick. Resource description framework (RDF) model and
syntax specification. W3C Recommendation, 1999. Available at http://www.w3.
org/TR/1999/REC-rdf-syntax-19990222.

[9] Peter F. Patel-Schneider, Patrick Hayes, Ian Horrocks, and Frank van Harmelen. Web
ontology language (OWL) abstract syntax and semantics. W3C Working Draft, 2003.
Available at http://www.w3.org/TR/2003/WD-owl-ref-20030331.

[10] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Ger-
many, 2001.


