
Properties of maximal cliques of a pair-wise
compatibility graph for three nonmonotonic reasoning

systems

R. E. Mercer
�

and V. Risch
�

�
Cognitive Engineering Laboratory, Department of Computer Science,

The University of Western Ontario, London, Ontario, Canada N6A 5B7�
InCA Team, LSIS - UMR CNRS 6168, Domaine Universitaire de Saint-Jérôme, avenue

Escadrille Normandie Niemen, 13397 Marseille cédex 20, France

Abstract. In this paper we define the notion of a compatibility relation so as
to have a common framework for three nonmonotonic reasoning systems: nor-
mal logic programming, extended logic programming, and a restricted form of
default logic. We show some properties of the maximal cliques of the pair-wise
compatibility graph givn by the relation between the rules of the various rea-
soning systems. Properties that these maximal cliques possess are presented. A
procedure to compute stable models (resp. answer sets, extensions) by enumerat-
ing maximal cliques with intelligent pruning is sketched.

Keywords: Logic Programming, Default Logic, pair-wise compatibility relation,
compatibility graph, maximal cliques

1 Introduction

Common features of three nonmonotonic reasoning systems, normal logic programs,
extended logic programs, and Reiter’s default reasoning, have been well-studied [10].
We present a new common framework for these three nonmonotonic reasoning systems.
In the sequel we call this common framework the computational pipeline.

Fundamental to the computational pipeline is the compatibility graph. The graph
structure represents pair-wise rule compatibility, that is, a binary relation indicating
the two rules do not conflict, given only the information contained in the two rules.
Maximal cliques of a compatibility graph represent the only subsets of rules that need
to be considered as potentially contributing to the computation of stable models (resp.
answer sets, Reiter-extensions).

The purpose of the common framework is to provide a means to investigate common
properties of the computational pipeline in each of the three systems in terms of proper-
ties of the compatibility graph maximal cliques. A number of properties of the maximal
cliques of the compatibility graph are presented: the cliques represent subsets of the
original rules; each clique represents a single Horn theory, so it contains at most, and
in many cases exactly one stable model (resp. answer set, extension); the compatibil-
ity graph can be computed in

����� �
	
(with small coefficients) time and requires

����� �
	

space; and because polynomial-delay algorithms exist to compute maximal cliques, the

58 R. E. Mercer and V. Risch

stable models (resp. answer sets, extension), including the first, for certain classes of
logic programs (resp. default theories) can be computed with polynomial delay.

Anticipating the negative computational properties of the simple view of the com-
putational pipeline (

������� 	
maximal cliques, and the potential multiple generation of

stable models (resp. answer sets, extensions)), we sketch a method that views the com-
putational pipeline as enumeration of maximal cliques using a tree structure with prun-
ing done at any node in the tree, rather than only at leaf nodes which the pipeline
structure possibly suggests. This method incorporates the relaxed stratification view of
rule interaction [2].

2 Preliminaries

A graph is a pair
�����	� 	

where
�

is a set and
�

is a subset of
��
��

. If
�����

the graph is non-empty. Elements in
�

are called nodes and members of
�

are called
edges. Given a graph � � ������� 	

, a subgraph � =(V’,E’), where
�������

,
�������

, is
a maximal clique of � iff (i)

��� ��!"�$#&%'��� 	 � �"�(!	�)�$# 	 %'��� 	
and (ii)

�*�+�(!,%-��� 	 ��./�$#&%
��� 	 � �0�(!��)�$# 	 %1� 	

Throughout this paper, we refer to maximal cliques as cliques.
In the sequel, we consider graphs made of rules (either default theories or rules

of normal logic programs and extended logic programs). We consider these concepts
familiar and refer the reader to the basic sources on the subject [16] [10]. Note that
throughout this paper, we consider only a restricted form of propositional default theo-
ries1 where (1) the language has no disjunction except in the special case of horn clauses
in 2 , (2) 2 contains no conjunctions, (3) the consequence and each justification is an
atom, and (4) 2 is emptied by the following transformation: facts are transformed into
prerequisite-free, justification-free rules (or in the sense of logic programs, bodiless
rules) and horn clauses are transformed into justification-free rules (or rules without
‘not’s in the logic program sense). This leads us to use the language of atoms for nor-
mal logic programs and the language of atoms with classical negation in the case of
default theories and extended logic programs. Hence, we abuse the use of the generic
term “atom” to include atoms with classical negation, considering that the context will
make clear what is meant. We use the following notions (most of them developed in
[13] and [15]): Atoms and not-atoms (formulas of the form not

�03 	
) are called literals.

For a set of literals 4 , by 4�5 (resp. 476) we denote the set of atoms (resp. not-atoms) in
4 . Moreover, we consider 8 498 �;: 3 8 not

�03 	 % 4=< and >?4 �;: > 3 8 3@% 4�5=< . Hence,
logic programs consist of rules of the form

head A body 5 � body 6
corresponding modularly to default rules of the form

B
body 5'C >@8 body 6 8

head

where head is an atom and body is a set of literals (cf. [7]). NAnt
��D 	

, called the neg-
ative antecedents in

D
, is the set of atoms

3
such that not

�03 	
appears in

D
, where

1 More general properties of the pair-wise compatibility graph have been proven for general
default reasoning in [12]

Properties of maximal cliques of a pair-wise compatibility graphs 59

D
is a logic program, i.e. NAnt

�0D 	 ��������� 8 body 6 8 . The deductive closure of a set
of ground rules

D
of a logic program (resp. of a set of defaults) and a set of literals�

, denoted Dcl
�0D7� � 	

, is the smallest set of atoms which contains
� 5 and is closed

under the inference rules 	 ��D7� � 	 where 	 �0D7� � 	 � : head A body 5 8 head A
body 5 � body 6 % D7�

body 6 � � 6?< . As stressed in [15],
 is a stable model of a
set of ground rules

D
iff
 � Dcl

�0D7�
NAnt

�0D 	��
 	 . There is the immediate counter-
part in terms of extensions of a default theory. A set of not-atoms is called P-full iff�*�+3 	 �03 %

NAnt
�0D 	 	 �

not
�03 	 % iff

31%
Dcl

�0D7� 	 	 . Finally, note the following result:

Theorem 1. (Theorem 2.2 of [15]) (i) If is P-full, then Dcl
��D7� 	 is a stable model of

a set of ground rules
D

. (ii) If there is a stable model of
 of
D

, then � not
�
NAnt

��D 	��

 	 is a

D
-full set such that
 � Dcl

��D7� 	 .
In each of the three reasoning systems (normal and extended logic programming,

and default logic) the underlying concept is the choice of maximal sets of rules which
have two properties: they are compatible and grounded. These sets have names specific
to the reasoning system: stable models, answer sets, and extensions. The property that
is of interest in this work is the notion of compatibility which we make precise, below.
In the sequel the notion of groundedness will be taken in its classical sense of horn
clause rules. These ideas in a graph context have been discussed [3] [4] [5] [11]. We
have distinguished ourselves from these other investigations in two ways: by describing
the notion of compatibility in a semantic sense. and concentrating only on the compat-
ibility aspect in the compatibility graph [12]. In the more limited language of literals,
the semantic-syntactic difference is less important, and as we will see later, the differ-
ence (only that there is a logical symbol, classication negation, which has a semantic
meaning) is totally eliminated in the clique, the final computational structure.

Our purpose in this paper is to show that the basic properties of the graph and cliques
are maintained in the three systems. We begin this investigation by first defining the
compatibility graph. The nodes in the graph represent rules and the edges in the graph
capture a relationship between rules that indicates that they are pair-wise compatible.

Given extended logic programs and default theories we define a pair-wise compati-
bility relation between rules.

Definition 1. Any two rules, � ! and � # , such that

� ! C head
! A body 5! � body 6! �

� # C head
A body 5# � body 6# �

are 8-way pair-wise compatible iff

head
!7� > head

#��
> head

%
body 5! �

> head
!=%

body 5# ��*��� ! 	 �*��� # 	 ��� ! %
body 5! 	 � ��� # % body 5# 	�� � ! � > � # � and�*��� 	 �

not
��� 	 % �

body 6!�� body 6# 	�� � % � : head
! < � : head

# < � body 5!�� body 5# 	
The equivalent definition for the 8-way pair-wise compatibility relation between de-
fault rules in a default theory has been given previously in [12]. There the relation is

60 R. E. Mercer and V. Risch

given using classical logical consistency, so the relationship in that form holds for the
restricted form of default logic described here, and the general case, as well.

In the settings in which the 8-way pair-wise compatibility relation will be used, the
rules of classical logic are available, so, >?>�� � � . It should also be noted that the tests
between the elements in body 6 and the positive parts of the rules capture the “hidden”
classical negation that exists in the meaning of the rule’s negative body elements.

Because there is no classical negation symbol in normal logic programs, a reduced
form of the 8-way pair-wise compatibility relation is used. The reduction is the obvious
projection of the 8 conditions to the language of normal logic programs.

Definition 2. Any two rules, � ! and � # , such that

� ! C head
! A body 5! � body 6! �

� # C head
A body 5# � body 6# �

are 4-way pair-wise compatible iff

�*��� 	 �
not

��� 	 % �
body 6! � body 6# 	�� � % � : head

! < � : head
# < � body 5! � body 5# 	 	

The rules have an obvious ‘positive’ part (in default logic, this corresponds to the logical
elements, that is, the prerequisite and the consequence), and a ‘negative’ part (or non-
logical part or justification in default logic), so it is useful to have terminology that
combines these parts and the pair-wise compatibility relations.

Definition 3. A rule is positive consistent if the positive parts of the rule are consis-
tent. A pair of rules is pair-wise positive consistent if the positive parts of one rule are
consistent with the positive parts of the other rule. A set of rules is positive consistent if
every pair of rules is pair-wise positive consistent.

The 4-way pair-wise compatibility relation can also be used to describe the relationship
between the negative and positive parts of rules.

Definition 4. A rule is positive-negative consistent if it is 4-way pair-wise compatible
with itself. A pair of rules is pair-wise positive-negative consistent if the two rules are
4-way pair-wise compatible. A set of rules is positive-negative consistent if every pair
of rules is positive-negative pair-wise compatible.

Definition 5. Two rules are pair-wise compatible if they are pair-wise positive consis-
tent and pair-wise positive-negative consistent. A set of rules is compatible if every pair
of rules in the set is pair-wise compatible.

Proposition 1. A set of compatible rules is positive consistent and positive-negative
consistent.

Proof. For sets of extended logic program rules and default rules that are 8-way-compatibility-
related, the result is a simple consequence of the definition of 8-way compatibility and
the fact that every pair of rules has this property. For normal program rules, any set is
positive consistent [10] and positive-negative consistency results from the definition of
4-way compatibility and the fact that every pair of rules has this property.

Properties of maximal cliques of a pair-wise compatibility graphs 61

Definition 6. A compatibility graph is a graph with nodes representing rules of a logic
program (resp. default theory) and edges representing a pair-wise compatibility rela-
tion.

The foundational element for the common framework proposed here is the compati-
bility graph. Since we will be using this structure to find sets of compatible rules, it
should now be obvious that the graph for extended logic programs and default theories
has edges representing the 8-way compatibility relation, whereas the graph for normal
logic programs has edges representing the 4-way compatibility relation. In the remain-
der of the paper the term ‘compatibility graph’ will be used to mean appropriately the
4-way or 8-way compatibility graph.

Proposition 2. Cliques of a compatibility graph represent maximal sets of compatible
rules.

Proof. Cliques are maximal completely connected subgraphs. Therefore each rule is
pair-wise consistent with every other rule in the clique.

Definition 7. A logic program (resp. default theory) has the 0-1 property if it has at
most one answer set (resp. extension).

We can now state our fundamental proposition about cliques.

Theorem 2. A logic program (resp. default theory) composed of compatible rules has
the 0-1 property.

Proof. Let
D � : � ! 8 � ! ��� ! A � 5! � � 6! < be a set of compatible rules. Let � �;:�� ! 8

� ! A � ! < . By Thm 2.2(ii) in [14]: if
 is a stable model of
D

, then � not
�
NAnt

�0D 	 �

 	 is

D
-full and
 � Dcl

�0D7� 	 . Since
 is a stable model,
 � � ([7]). Because
D

is a set of compatible rules, NAnt
�0D 	�� � � � , therefore NAnt

�0D 	��
 � � , for any

 � � . Therefore � not

�
NAnt

�0D 	 	
. Since not

�
NAnt

�0D 	 	
is unique, is unique.

Since contains only not-atoms, 75 is empty. So, Dcl
��D7� 	 is the smallest set

containing 5 (i.e. the empty set) and is closed under rules 	 ��D7� 	 . Since each rule
has at least one not-atom in , 	 �0D7� 	 is the unique set consisting of all of the rules ofD

appropriately stripped of all of the not-atoms.
The proof is analogous for extensions of default theories (Theorem 2.3 in [13]) and

hence for answer sets of extended logic programs.

3 The computational pipeline

We are interested in the following common framework for computing answer sets (ex-
tensions) for logic programs (default theories).

Given a logic program (resp. default theory)
D

, we separate the program into two
parts: the integrity constraints (those rules which have empty heads), IC, and

D�� �D �
IC. We do this because the rules in IC do not play a logical role in the program,

rather we treat them as a post-filter to filter out answer sets (resp. extensions) that are
generated by the logical part,

D��
.

62 R. E. Mercer and V. Risch

The filter, although it is shown as a single element in the pipeline, is composed of
two pieces. The first component depends on the clique: for each clique, � , the members
of the first component are those rules in

D � � � . The elements of the second component
are the rules in IC.

So that we can represent one pipeline for default logic and extended logic pro-
gramming, it is important to establish that filter ��� , the filter for default logic, and
filter ������� � , the filter for extended logic programming are isomorphic.

Theorem 3. filterD � is isomorphic to filterE �	��� �
Proof. The notion of the filter for default logic is given as Proposition 2.1 in [17].
The discussion prior to Proposition 4 in [8] shows the modular transformation between
extended logic programs and default theories that have the same answer sets and exten-
sions.

We are now in a position to discuss the computational pipeline. We first show the
pipeline for extended logic programs and default theories, and the pipeline for normal
logic programs.

D � ��� � � ��

8-way

relation

c ������ � !���!�� ! ���
g � 3�� �
 cliques�

potential GDs
	 � � � ��

ground

g
� ��� �������
G �! � ��

filter

ans. sets
extensions

D � ��� � � �"

4-way

relation

c ������ � !���!�� ! ���
g � 3�� �
 cliques�

potential HCs
	 ��� � ��

ground

g
� ��� �������
H �# � �$

filter

stable
models

We now want to state and prove the main contribution of this paper: that the applica-
tion of the computational pipelines in their respectively appropriate contexts gives the
same desired outcome: the computation of stable models, answer sets, and extensions.
The proof of this result does not directly compare each stage of the pipeline, rather only
the outcomes are compared.

Definition 8. Given a logic program (resp. default theory), a set of necessary cliques
is any minimal subset of cliques from the compatibility graph that generates the set of
answer sets (resp. the set of extensions).

Lemma 1. For each set of necessary cliques there is a bijection from it to the set of
answer sets (resp. the set of extensions).

Proof. Theorem 1 states that cliques have the 0-1 property. Since the minimality con-
dition in the definition of necessary cliques eliminates the cliques producing no answer
sets and those producing answer sets that some other clique produces, the bijection is
obvious.

Theorem 4. The cliques produced from the compatibility graph of a logic program
(resp. a default theory) contains the set of necessary cliques of the logic program (resp.
default theory).

Properties of maximal cliques of a pair-wise compatibility graphs 63

Proof. See [12] for the proof for default logic. The results of [8] show the implication
for extended logic programs. The result for normal logic programs results directly from
the lemma and from the fact that if the language of extended logic programs is restricted
to the language of normal logic programs, the 8-way and 4-way pair-wise compatibility
relations are equivalent.

4 Properties of cliques and the computational pipeline

Now that we have shown that the computational pipeline has the same effect in all three
nonmonotonic reasoning systems, the computation of the stable models, answer sets,
and extensions, we are in a position to state some properties of cliques in general which
can now be applied to all three nonmonotonic reasoning systems. Some properties of
these cliques, particular to their role in this framework, are also presented.

Property 1. There exist polynomial delay time algorithms for computing cliques of a
graph. In addition, there exist polynomial delay time algorithms which compute cliques
of a graph in lexicographic order if potentially exponential space is allowed. [9]

Although the time to output all cliques of a graph is bounded by polynomial total time,
(
��� ��� � 	 	 , where

�
is the size of the graph and � is the number of cliques, polynomial

time delay guarantees that the time to produce the first and the time between producing
cliques is bounded by a polynomial in

�
.

Property 2. Grounding each clique can be done in linear time [6].

Property 3. Filtering each potential set of ground sets of rules can be done in linear
time.

No algorithm has been proposed for computing stable models (resp. answer sets,
extensions of default theories), that can guarantee that the first one is produced in time
bounded by a polynomial in the size of the number of rules. Of course, Property 1 con-
cerns cliques, not stable models (resp. answer sets, extensions). The property does not
consider that the logic program (resp. default theory) may have integrity constraints or
that the filter may contain rules that filter potential ground sets of rules. Also, because of
the 0-1 property, we could have the situation in which an exponential number of cliques
are generated before one is found that has a ground subset. The first problem is rather
difficult to overcome, but in some situations it is possible. But, we can recover from the
second problem in a much more general way: by considering logic programs (resp. de-
fault theories) with facts (see Property 5), which in most realistic settings will probably
be the case. We establish this property first, and then discuss the inital problem.

Property 4. If every set that can be composed of all of the facts, all of the horn clause
rules, and one other rule of a logic program (resp. default theory) is positive consistent
(this property is trivially the case for a normal logic program, since it is always positive
consistent), then all of the facts will be in all cliques that survive the filter step.

64 R. E. Mercer and V. Risch

Proof. If a clique is filtered for some other reason, or if the rules are positive-negative
compatible, the result is obvious. If not, then the fact that is not positive-negative con-
sistent with a rule will filter the cliques that do not have the fact, since facts are always
enabled (no body (resp. no prerequisite nor justification).

We are now in a position to return to the problem of giving conditions for the ex-
tension produced by a clique not to be filtered. This will then give some properties that
guarantee polynomial-delay for computing answer sets (resp. extensions).

Definition 9. A negative rule has the form head A body 6 . The analogue in default
logic is the prerequisite-free rule; however, the set of prerequisite-free rules is a superset
of the set of negative rules.

Proposition 3. A logic program (resp. default theory) composed of compatible rules
has a unique answer set (resp. extension) if at least one rule is a fact or at least one
rule is a negative rule (resp. prerequisite-free rule).

So, from Proposition 3 and Property 4 we have the following:

Property 5. If
D

is a normal logic program (resp. extended logic program, default the-
ory) that has at least one fact that is pair-wise consistent with all of the other rules, all
cliques generated from the compatibility graph of

D
contain a single stable model (resp.

answer set, extension).

Obviously, since cliques are logic programs composed of compatible rules, Proposi-
tion 3 applies directly to cliques. However, the 0-1 property of cliques and the filter in
the computational pipeline prevents a one-to-one correspondence between cliques and
stable models (resp. answer sets, extensions) in the general setting. So, results known
about cliques cannot be directly translated into properties about stable models (resp. an-
swer sets, extensions). Obviously, removing the grounding problems which creates the
weakness of the 0-1 property and by having a filter in the pipeline which has does not
cancel any cliques would give a one-to-one correspondence between cliques and sta-
ble models (resp. answer sets, extensions). Another problem still remains: cliques may
generate duplicate stable models (resp. answer sets, extensions). We have, however, a
natural class of default theories which do not have any of these problems.

Lemma 2. A prerequisite-free normal default theory without integrity constraints (resp.
an equivalent kind of extended logic program) has a filter step which does no filtering.

Proof. Each filtering rule must be pair-wise incompatible with some rule in the clique.
Therefore, the incompatibility is guaranteed to be with the justification. Thus, since
each rule in the clique represents a fact (see the proof of Proposition 4), no rule in the
filter is enabled by having its justification compatible with the unique extension (resp.
answer set) generated by the clique.

Proposition 4. For the compatibility graph of a consistent prerequisite-free normal de-
fault theory (with no duplicate rules), (resp. an equivalent extended logic program) each
clique has a unique extension.

Properties of maximal cliques of a pair-wise compatibility graphs 65

Proof. Each clique represents the Horn theory in which each Horn rule corresponds
to the default rules with the justifications of each rule removed. Since the rules are
prerequisite-free, the Horn rules are facts. Each clique is unique, so each set of facts is
unique.

Corollary 1. Extensions of a prerequisite-free normal default theory with no integrity
constraints (resp. answer sets of the equivalent kind of extended logic program) can be
produced with polynomial-delay.

We can also eliminate the filter step by considering other kinds of extensions.

Corollary 2. The extension possessed by any clique from the compatibility graph of
a default theory

D
which contains at least one fact and no integrity constraints is a

Lukasiewicz-extension.

Corollary 3. The first Lukasiewicz-extension of a default theory which contains at least
one fact that is pair-wise consistent with all of the other rules and no integrity con-
straints can be produced in time bounded by a polynomial.

With the current version of the clique enumeration tree, an extension can occur in mul-
tiple cliques. Once we have results regarding the pruning of the clique enumeration
tree (see Section 5), we should be able to give a stronger result for all Lukaseiwicz-
extensions (perhaps polynomial-delay).

5 Future directions

Although the framework based on cliques, presented in the manner above, has proven
useful to study analogous properties of the three nonmonotonic reasoning systems, it is
enticing to ask whether the framework can be used computationally. The obvious gain
is that the same computational framework can be used for all three reasoning systems.

Of course, a direct implementation of the framework, as presented, is inappropri-
ate for computation. Algorithms to enumerate cliques (without duplicates) generate the
cliques as leaves in a tree. As shown, grounding and filtering is only done on the leaves
of this tree, after the complete clique enumeration tree is produced. This naı̈ve approach
generates

������� 	
cliques, requiring exponential space in worst case to store the leaves

of the clique enumeration tree. Obviously, the grounding and filtering should be inter-
leaved with the clique generation. But even with this change, computational problems
still remain. Grounding can produce the same result from different cliques. To delete
duplicates, exponential space may be required. Filtering can reduce different potential
sets based on a common pattern, but by only looking at the leaves of the tree, the search
may thrash needlessly.

The future work that we sketch in the following paragraphs is one method to move
the filtering and grounding decisions to internal nodes of the clique enumeration tree
with the guarantee of keeping all stable models (resp. answer sets, extensions). The
details of this work will be reported elsewhere.

Each path in the clique enumeration tree represents compatible rules. The only de-
cisions that still remain concern rule grounding alone. This is obviously true for the

66 R. E. Mercer and V. Risch

grounding element in the pipeline. It is also the case for the integrity constraint filtering
decisions, since if an integrity constraint is grounded by the grounded clique rules, it
filters the clique. The non-integrity constraint filter rules require full information about
their filtering status. These rules are dealt with differently.

What is done with this grounding information differs: In the first case having knowl-
edge that a rule cannot be grounded may allow rules that appear later in the clique enu-
meration to be temporarily removed from the compatibility graph. To have knowledge
that an integrity constraint is grounded allows this filtering rule to prune the clique enu-
meration. As soon as an integrity constraint is grounded, the subtree rooted by the node
that grounds the integrity constraint can be pruned and a backtrack in the clique enu-
meration tree can occur. Non-integrity constraint filter rules that cannot be grounded
can be removed from the filter.

This discussion can be made a bit more precise by showing a method to select the
nodes in the clique enumeration tree at which these grounding decisions can be made
using a modified form of relaxed stratification [2], a computationally inexpensive binary
relationship between rules. Rules are related if an atom in the consequence of one rule
is contained in the other rule. A stratification of the rules of the program can be created
and the strata ordered such that the rules in a strata are not related to rules in prior strata.

The modifications to relaxed stratification are quite simple: it is defined initially
for the program as a whole, but it is dynamic, so as the enumeration progresses, the
relaxed stratification can be modified (as rules are pruned, the strata and ordering can
be refined); since the compatibility relation has already removed any computational
effects of the body 6 , the relationship between two rules needs to take into account only
the head of one rule and the body 5 (resp. prerequisites) of the other rule; and the strata
are ordered by the criterion: rules are not related to rules in following strata.

The strata given by relaxed stratification can be used as points for deciding whether
it is impossible to ground a rule. Any rules that are still to be considered on the current
path by the clique enumeration algorithm that are determined to be ungroundable can be
temporarily removed from the compatibility graph. They are returned to the graph upon
a backtrack in the clique enumeration tree. Filter rules can be temporarily removed from
the filter and returned to the filter upon a backtrack, if they are deemed ungroundable
in the current clique enumeration path. The other procedure that is undertaken at the
stratum boundary is to remove duplicate partial solutions. (The space requirements are������� 	

, where is the number of rules in the stratum.)
When leaves in the clique enumeration tree are reached, any remaining integrity

constraints in the filter are removed. The remaining filter rules are checked to see if any
are enabled by (are both grounded and consistent) with the stable model (resp. answer
set, extension) candidate. If so, the candidate is filtered. Any remaining stable models
(resp. answer sets, extensions) are guaranteed to be unique.

In worst case the computational problems are not removed by these heuristics. So,
a study of the computational behaviour over the standard benchmarks is obviously nec-
essary.

If the method sketched above proves to be reasonable, it is a method that can be
used for all three nonomonotonic reasoning systems. That cliques contain compatible
rules in all three reasoning systems indicates that classical negation plays no logical

Properties of maximal cliques of a pair-wise compatibility graphs 67

role in cliques (so at the level of clique, the inclusion of classical negation in the lan-
guage has no theoretical impact). The compatibility graph has removed the semantic
effect of classical negation and has given it a purely syntactic role. In other words, we
have a preprocessing step that allows the rewriting of extended logic programs (resp.
default theories) as normal logic programs but maintaining the overall semantic effect
of negation. With this in mind, eliminating the expressivity of classical negation in the
language seems to be a disadvantage that may be unnecessary. Reintroducing classical
negation would allow the recapturing of normal and semi-normal defaults, and would
deliver all of the natural expressivity of classical negation.

6 Related work

Other work has focused on the grounding and independence properties in graphs (ker-
nels of graphs, 0-1 graphs, block-support graphs) [3] [4] [5] [11]. This means that the
independence (anti-relation to compatibility) and dominance (grounding) in the graphs
representing the logic programs (resp. default theories) are kept together. We have sep-
arated these two aspects of the problem and shown some advantages for doing this.

Splitting default theories has been proposed by [2] and [18], and [1] has compared
the two methods. Cliques was originally proposed as a method for splitting default
theories in [12], and with the results herein, has been shown to be applicable to extended
logic programs and normal logic programs.

7 Acknowledgements

A number of people have helped push these ideas. This research has been partially
supported by the National Science and Engineering Research Council (Canada) through
Research Grant 0036853.

References

1. Grigoris Antoniou. A comparison of two approaches to splitting default theories. In
AAAI/IAAI, pages 424–429, 1997.

2. P. Cholewiński, V. W. Marek, M. Truszczyński, and A. Mikitiuk. Computing with default
logic. Artificial Intelligence, 112:105–146, 1999.

3. Y. Dimopoulos and V. Magirou. A graph-theoretic approach to default logic. Information
and Computation, 112:239–256, 1994.

4. Y. Dimopoulos, V. Magirou, and C. H. Papadimitriou. On kernels, defaults and even graphs.
Annals of Mathematics and Artificial Intelligence, 20:1–12, 1997.

5. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default
theories. Theoretical Computer Science, 170:209–244, 1996.

6. W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisability of propo-
sitional horn formulae. Journal of Logic Programming, 1:267–284, 1984.

7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Logic
Programming: Proceedings of the Fifth International Conference and Symposium, pages
1070–1080, 1988.

68 R. E. Mercer and V. Risch

8. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

9. P. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal indepen-
dent sets. Information Processing Letters, 27:119–123, 1988.

10. V. Lifschitz. Foundations of logic programming. In Gerhard Brewka, editor, Principles of
Knowledge Representation, pages 69–127. The University of Chicago Press, 1996.

11. T. Linke, C. Anger, and K. Konczak. More on nomore. In S. Flesca, S. Greco, N. Leone,
and G.Ianni, editors, Proceedings of the Eighth European Conference on Logics in Artificial
Intelligence (JELIA’02), Lecture Notes in Artificial Intelligence, volume 2424, pages 468–
480, 2002.

12. R. E. Mercer, L. Forget, and V. Risch. Comparing a pair-wise compatibility heuristic and
relaxed stratification: Some preliminary results. In S. Benferhat and Ph. Besnard, editors,
Proceedings of the 6th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, volume 2143, pages 580–591. Springer-Verlag, 2001.

13. Ilkka Niemelä. Towards efficient default reasoning. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence, pages 312–318, Montreal, Canada, August 1995.
Morgan Kaufmann Publishers.

14. Ilkka Niemelä and P. Simons. Efficient implementation of the well-founded and stable model
semantics. Fachbericht Informatik 7–96, Universität Koblenz-Landau, 1996. Available at
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/.

15. Ilkka Niemelä and P. Simons. Smodels – an implementation of the stable model and well-
founded semantics for normal logic programs. In Proceedings of the 4th International Con-
ference on Logic Programming and Non-Monotonic Reasoning, pages 420–429, Dagstuhl,
Germany, July 1997. Springer-Verlag. I have not seen a copy of this paper. It is not online at
www.springer.de.

16. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
17. V. Risch and C. Schwind. Tableau-based characterization and theorem proving for default

logic. Journal of Automated Reasoning, 13:223–242, 1994.
18. H. Turner. Splitting a default theory. In Proceedings of AAAI-96, pages 645–651, 1996.

