
Implementing OCLP as a front-end for Answer Set
Solvers: From Theory to Practice

Martin Brain and Marina De Vos
�

Department of Computer Science
University of Bath

Bath, United Kingdom�
mjb,mdv � @cs.bath.ac.uk

Abstract. Ordered Choice Logic Programming (OCLP) allows for preference-
based decision-making with multiple alternatives and without the burden of any
form of negation. This complete absence of negation does not weaken the lan-
guage as both forms (classical and as-failure) can be intuitively simulated in the
language. The semantics of the language is based on the preference between al-
ternatives, yielding both a skeptical and a credulous approach. In this paper we
discuss the theoretical basis for the implementation of an OCLP front-end for an-
swer set solvers that can compute both semantics in an efficient manner. Both the
basic algorithm and the proposed optimizations can be used in general and are
not tailored towards any particular answer set solver.

1 Introduction

Examining human reasoning, we find that people often use preference, order or defaults
for making decisions: “I prefer this dish”, “This color goes better with the interior”,
“This item costs more”, “In general, the human heart is positioned at the left”. When
faced with conflicting information, one tends to make decisions that prefer an alter-
native corresponding to more reliable, more complete, more preferred or more specific
information. When modeling knowledge or non-monotonic reasoning via computer pro-
grams, it is only natural to incorporate such mechanisms.

In recent years several proposals for the explicit representation of preference in logic
programming formalisms have been put forward. [11, 10] are just two examples.

Systems that support preferences find applications in various domains such as law,
object orientation, scheduling, model based diagnosis and configuration tasks. However,
most approaches use preferences only when the models have already been computed,
i.e. decisions have already been made; or only support preferences between rules with
opposite (contradictory) consequences, thus statically limiting the number of alterna-
tives of a decision.

In [8], we proposed a formalism, called Ordered Choice Logic Programming, that
enables one to dynamically reason about situation-dependent decisions involving multi-
ple alternatives. The dynamics of this system is demonstrated by the following example.

�
This work was partially funded by the Information Society Technologies programme of the
European Commission, Future and Emerging technologies under the IST-2001-37004 WASP
project.

Implementing OCLP as a front-end for Answer Set Solvers 225

Example 1. Buying a laptop computer involves a compromise between what is desir-
able and what is affordable. Take, for example, the choice between a CD, CDRW or
DVD drive. The CD is the cheaper option. On the other hand, for a laptop, a DVD drive
may be more useful than a CD writer. If the budget is large enough, one could even buy
two of the devices. The above information leads one to consider two possible situations.

– With a smaller budget, a DVD-player is indicated, while
– with a larger budget, one can order both a DVD-player and a CD-writer.

To allow this kind of reasoning, a program consists of a (strict) partially ordered set
of components containing choice rules (rules with exclusive disjunction in the head).
Information flows from less to more specific or preferred components until a conflict
among alternatives arises, in which case the most specific one will be favored. The
situation becomes less clear when two alternatives are equally valued or are unrelated.
The decision in this case is very situation dependent: a doctor having a choice between
two equally effective cures has to make a decision, while it is better to remain indecisive
when two of your friends have an argument! To allow both types of intuitive reasoning,
a credulous and skeptical semantics are introduced.

OCLP provides an elegant and intuitive way of representing and dealing with de-
cisions. People with little or no experience with non-monotonic reasoning can easily
relate to it, due to the absence of negation. This absence of negation does not restrict
the language in any way, as both types of negation (classic and as-failure) can easily be
simulated.

In this paper, we propose a basic algorithm and optimizations for building an OCLP
front-end for answer set solvers. Smodels ([12]), developed at Helsinki University of
Technology, and DLV ([17]), created at the Technical University of Vienna and the
University of Calabria are currently the most popular ones. An implementation build
on top of Smodels can be obtained from http://www.cs.bath.ac.uk/ � mdv/oct/.

The remainder of this paper is organized as follows: we continue in Section 2 with
short overview of the basic information concerning choice logic programming, the lan-
guage behind OCLP. Section 3 focuses on the introduction of OCLP with its skepti-
cal and credulous answer set semantics. Section 4 deals with a mapping of OCLP to
semi-negative logic programs allowing answer set solvers to work with OCLP. These
mappings, one for each semantics, can then serve as the foundations on which we build
the OCLP front-end. Apart from this theoretical/naive mapping, we propose various
improvements/optimizations which allow answer set solvers to handle the transformed
program more efficiently. We end this paper with a discussion on the relations to other
approaches (Section 5) and directions for future research (Section 6).

2 Choice Logic Programming

Choice logic programs [7] represent decisions by interpreting the head of a rule as an
exclusive choice between alternatives.

Formally, a Choice Logic Program [7], CLP for short, is a countable set of rules
of the form

�����
where

�
and
�

are finite sets of ground atoms. Intuitively, atoms
in
�

are assumed to be xor’ed together while
�

is read as a conjunction (note that
�

226 Martin Brain and Marina De Vos

may be empty, i.e. constraints are allowed). The set
�

is called the head of the rule� , denoted
���

, while
�

is its body, denoted
� �

. In examples, we use “ � ” to denote
exclusive disjunction, while “ � ” is used to denote conjunction.

The Herbrand base of a CLP � , denoted �	� , is the set of all atoms that appear in
� . An interpretation1 is a subset of �
� .

A rule � in a CLP is said to be applicable w.r.t. an interpretation � if
� �� � .

Since we are modeling choice, we have that � is applied when � is applicable and2� � ��� � �����
. A rule is satisfied if it is applied or not applicable. A model is defined in

the usual way as a total interpretation that satisfies every rule. A model � is said to be
minimal if there does not exist a model � such that ��������� .

3 Ordered Choice Logic Programming

An ordered choice logic program (OCLP) is a collection of choice logic programs,
called components, which are organized in a strict partial order3 that represents some
preference criterion (e.g. specificity, reliability, . . .).

Definition 1. An Ordered Choice Logic Program, or OCLP, is a pair ��� �"!$# where �
is a finite set of choice logic programs, called components, and “ ! ” is a strict pointed
partial order on � .

For two components %$&'�(%*)�+�� , %$&,!-%*) implies that %.& is preferred over %*) .
Throughout the examples, we will often represent an OCLP � by means of a directed
acyclic graph (dag) in which the nodes represent the components and the arcs the ! -
relation, where arcs point from smaller (more preferred) to larger (less preferred) com-
ponents.

Example 2. The decision problem from the introduction (Example 1) can easily be
written as an OCLP, as shown in Figure 1. The rules in components ��& , �/) and �/0
express the preferences in case of a small budget. The rules in � 1 express the inten-
tion to buy/configure a laptop and, because of this, a decision about its various devices
should be made. In component � 2 , the first rule states the possibility of a larger budget.
If so, the two remaining rules allow the purchase of both a DVD-player and a CD-writer.

Definition 2. Let � be an OCLP. We use � �
to denote the CLP that contains all the

rules appearing in (a component of) � . We assume that rules in � �
are labeled by the

component from which they originate and we use 3'4 �'5 to denote the component4 of � .
The Herbrand base � � of � is defined by � � � � �76 .
An interpretation for � is any interpretation of � �

. We say that a rule � in � is appli-
cable w.r.t. an interpretation � iff

� �8� � ; � is applied w.r.t. � iff � is applicable and� � �
� � ���9�
.

1 In this paper we only work with total interpretations: each atom from the Herbrand base is
either true or false. Bearing this in mind, it suffices to mention only those atoms which can be
considered true.

2 For a a set : , we use ; :<; do denote its cardinality.
3 A relation = on a set > is a strict partial order iff = is anti-reflexive, anti-symmetric and

transitive. = is pointed if an element ?A@�> exists such that ?B=*C for all C*@�> with ?EDF C .
4 Without losing generality, we can assume that a rule appears in only one component.

Implementing OCLP as a front-end for Answer Set Solvers 227

���

���

���
���

���

	
���������
���
�	�	���	
���� �!�"�

#�$ �%� � �
#�$ & ��'(��)�*�
$�+,$ ��	
�-.�)�/�

#0$ �1� � � #0$ & ��'(��!�2� $�+3$ ��	
.-.�!�*�4	
�������
$�+3$ �5	
�-.�)�/�4	
���� �!�#0$ & ��'���!�*�4	
���� �!�

Fig. 1. The Configuration OCLP of Example 2

Example 3. For the OCLP in Example 2, the sets � �7698;:;8 <>=�?;@5A B ��C3D ?;=�=�E
, F �

6G=�?3<�H�I,< �KJ 8 LMB�N�H�A.B ��C�D ?�=�=�E
, O �P6G=�?,<�H�I,< � 8;:�8 <�=�?�@5A.B ��C�D ?�=�=�E

and Q �R698�:�8 <>=�?;@5A B �=�?;B%STA B �KJ 8 LMB�N�H�A.B �5J 8 <>=�?;@5A B � =�?,<�H�I,<ME
are all interpretations. The interpretation � makes

the rule C�D ?�=�= � =�?�B%SGA B �
applied while the applicable rule J 8 LMB�N�H�A B �

is not
applied.

Facing a decision means making an exclusive choice between the various alterna-
tives which are available. If we want OCLP to model/solve decision problems we need a
mechanism for representing them. In a CLP, decisions are generated by so-called choice
rules i.e. rules with multiple head atoms. For OCLP, we can do a something similar as
long as we also take the preference order into account. We want to make sure that we
leave the option open to overrule the exclusiveness of a choice when in more preferred
components multiple alternatives are suggested (e.g. Example 1). Hence we say that an
atom U is an alternative for an atom V in a component % if an applicable rule exists in a
component at least as preferred as % containing both U and V in its head.

Definition 3. Let � be an interpretation of an OCLP � � ��� � !.# with % + � . The
set of alternatives in % for an atom U�+ � � w.r.t. � , denoted WYXZ 41U 5 , is defined as5:
W[XZ 41U 5 �\6 V �5] � +<� �_^ 3'4 �'5.` %ba � � � �cadU �,V-+ � � with Ufe� V Ehg

Example 4. Reconsider Example 3. The alternatives for J 8 B)I D in �) w.r.t. F are
WYi�Gj 4,J 8 B)I D 5 �k698�:�8 <>=�?;@5A B ��J 8 LMB�N�H�A BTE

. W.r.t. � , we obtain WlX�5j 4)J 8 B)I D 5 �nm
,

since the choice rule in � 1 is not applicable. When we take � 2 instead of �) , we obtain
w.r.t. F : Wli�5o 4)J 8 B)I D 5 �pm

.

Given the alternatives in a certain context (a component and an interpretation), one
naturally selects that alternative that is motivated by a more preferred rule, thus defeat-
ing the rule(s) suggesting less preferred alternatives. However, if alternatives appear
in the same or unrelated components, two approaches are possible: using a skeptical
strategy, one would refrain from making a decision, i.e. not selecting any of the various
alternatives, while a credulous setting suggests an arbitrary choice of one of the alter-
natives. For both types of reasoning one can think of situations where one approach

5 q is the reflexive closure of r .

228 Martin Brain and Marina De Vos

works while the other gives an incorrect, unintuitive outcome. Skeptical reasoning is
practiced in American law when a jury cannot come to a unanimous decision and thus
no decision is made by that trial. An example of credulous reasoning is the decision a
goal-keeper faces in football when trying to stop a penalty. To accommodate this prob-
lem, we introduce a semantics for both types of reasoning. From a skeptical viewpoint,
we say that rule is defeated if one can find a better, more preferred alternative for each
of its head atoms.

Definition 4. Let � be an interpretation for an OCLP � . A rule � + � �
is defeated

w.r.t. � iff �2U + � � ^] ��� + � � ^ 3'4 ����5 !.3'4 �'5 a � ���/� �ca � ��� � WYX��� ��	 41U 5 g
Example 5. Reconsider Example 3. The rule J 8 B)I D � is defeated w.r.t. F by the
rule J 8 LMB�N�H�A.B �

. The rule J 8 B)I D��pJ 8 LMB�N�H�A.B � 8�:�8 <�=�?�@5A.B �
is defeated w.r.t.

Q by the combination of the rules
8;:;8 <�=�?;@5A B � =�?;B%STA B

and J 8 LMB�N�H�A B � =�?;B%STA.B
.

Example 6. Consider the OCLP � 6 �
& � 6 U ��
 V � E �(�/) � 6 U � V � EGE � �)'!$� & # .
Given the interpretation

6 V E , the rule U � is not defeated as the only alternative of U ,
i.e. V , is not brought forward in a more preferred component.

Just as for the skeptical semantics we need to define an appropriate defeating strat-
egy. An obvious way of doing so consists of simply dropping the condition that an
alternative should be found in a more preferred component. Unfortunately, this leads to
unintuitive results. To avoid this, we need to make sure that credulous defeaters are not
only applicable, but also applied.

Definition 5. Let � be an interpretation for an OCLP � . A rule � + � �
is c-defeated

w.r.t. � iff �>UE+ � � ^] ��� +<� � ^ 3'4 � 5 e!3B4 ����5 a ��� is applied w.r.t. ��a ����� � WYX��� ��	 41U 5 g
Example 7. While the skeptical approach makes it impossible to have the rule U � in
Example 6 defeated w.r.t.

6 V E , the credulous semantics can.

For our model semantics, both skeptical as credulous, rules that are not satisfied (as
for choice logic programs) must be (c-)defeated.

Definition 6. Let � be an OCLP. A total interpretation � is a skeptical/credulous mo-
del iff every rule in � �

is either not applicable, applied or (c-)defeated w.r.t. � . A skep-
tical/credulous model � is minimal iff � is minimal according to set inclusion, i.e. no
skeptical/credulous model � of � exists such that � � � ��� .

Example 8. Reconsider the interpretations � , F , O and Q from Example 3. Only O and
Q are skeptical/credulous models. Model Q is not minimal due to the skeptical/credulous
model � � 6�8;:;8 <�=�?�@5A.B �KJ 8 LMB�N�H�A.B � =�?,<>H�I3< � =�?�B%STA.B9E . The minimal skeptical/credulous
models O and � correspond to the intuitive outcomes of the problem.

Example 9. The program of Example 6 has no skeptical models but two credulous ones:6 U E and
6 V E .

The next example illustrates that the skeptical/credulous model semantics does not
always provide the appropriate solutions to the decision problem at hand.

Implementing OCLP as a front-end for Answer Set Solvers 229

Example 10. Consider the ordered choice logic program � � � 6 �	& � 6 U � E �(�/) �6 V � E � � 0 �R6 U7� V � 3 E �(�/0B!.�/)B!.� & # , where � has two minimal skeptical/credulous
models: � � 6 V,�(3 E � and � � 6 U �,V E . Clearly, 3 is an unsupported assumption in � ,
causing � 0 to trigger an unwarranted choice between U and V .

We introduce an adaptation of the Gelfond-Lifschitz [14] and reduct ([16]) trans-
formations to filter unintended (minimal) models containing unsupported atoms. This
results in the skeptical/credulous answer set semantics.

Definition 7. Let � be a total interpretation for an OCLP � . The Gelfond-Lifschitz
transformation (resp. reduct) for � w.r.t. � , denoted ��� (resp. ����), is the CLP
obtained from � �

by removing all (c-)defeated rules. � is called a skeptical (resp.
credulous) answer set for � iff � is a minimal model6 for � � (resp. � ��).

Although both answer set semantics produce models (skeptical or credulous ones)
for the program, they differ in whether they produce minimal ones or not. Just as for
answer sets of semi-negative logic programs, we find that skeptical answer sets are mi-
nimal skeptical models. For extended disjunctive logic programs, the answer set seman-
tics is not minimal[16]. The same applies for credulous answer sets of ordered choice
logic programs, as demonstrated by the following example.

Example 11. Consider the program � � � 6 �
& �R6 � &���� � E � �) �P6 �)��	�.��
 �
 � 0��
�A�� �
 � 1���� ��
 � EGE �(�/) !.� & # . Consider � & � 6

�
E

and �) � 6
� ��
 E . Clearly,

� �& � � �) , while both interpretations are credulous answer sets for � . For � & , we
have that � ���� � 6

�
�

� ��
 �
 � ��� � E

for which it can easily be verified that
� & is a minimal model. The program � � j� � 6

� ��
 �

� ��� � E

has two minimal
models:

6
�
E

and
6
� ��
 E . Note that �) is a credulous model because the c-defeater w.r.t.

� & has become c-defeated w.r.t. �) , i.e. the justification in � & for c-defeating ����
 �
has disappeared in �) .

Non-minimal credulous answer sets appear when the program contains inconsisten-
cies on a decision level: in the above example the following choices have to be made:6
�7��
 E ,

6
� ��� E and

6
� ��
 E . Because of the program’s construction, one can choose either

one or two alternatives and c-defeating will make the choice justifiable.

4 Implementation

For the last five years, answer set programming has gained popularity. One of the main
forces behind this is the growing efficiency of answer solvers like Smodels ([12]) and
DLV ([17]).

In this section, we propose a mapping, for both semantics, to semi-negative logic
programs. Since both answer set solvers support this type of programs, this transforma-
tion can be used for constructing an OCLP front-end. After introducing a naive map-
ping, we propose a number of general, not answer solver dependent, optimizations to
improve efficiency of this algorithm.

6 The definition in [8] states a stable model, but since both are identical for CLP, we have opted
in this paper to use the notion of minimal model instead.

230 Martin Brain and Marina De Vos

4.1 Skeptical Mapping

The skeptical answer set semantics is based on the notion of defeat. If we want to map
our formalism to a language which does not support this, we need a way to encode it.
This implies anticipating which combinations of rules could be capable of defeating a
rule and which ones are not.

The definition of defeating relies strongly on the notion of alternatives: rules can
only be defeated by rules containing alternatives of the head atoms. Therefore, antici-
pating defeaters also implies predicting alternatives. According to Definition 3, V is an
alternative of U in a component % if one can find an applicable choice rule as preferred
as % containing both U and V in the head. This implies that even without an interpreta-
tion we can find out which atoms might be or could become alternatives; it only remains
to be checked if the rule is applicable or not. These condition-based alternatives are re-
ferred to as possible future alternatives and are defined more formally below.

Definition 8. Let � be an OCLP, % + � be component of � and UE+ �	� . The set of pos-
sible future alternatives of U in % , denoted as � �Z 4%U 5 , is defined as
� �Z 41U 5 �R6 40V,� � � 5 ��] � + � ^ 3'4 �'5.` % �)U �,V + � � �)Ufe� V E .

Example 12. Consider the OCLP � � � 6 �
& � 6 � &��MU �
 �) ��� � E �(�/) � 6 � 0 �
U �PV �93 �

 � 1 �[U �
 � �
 � 2 ��
 �93 � E �(�/)B!$� & E # . The possible future
alternatives of U in � & equal � �� � 41U 5

�R6 40V,� 6
 E 5 �"4 3 � 6
 E 5 � 4�
 � 6 � E 5 E .

The next theorem demonstrates that alternatives can be expressed in terms of possi-
ble future alternatives.

Theorem 1. Let � be an OCLP, % + � be component of � , U + � � and � an interpre-
tation for � . Then, WYXZ 41U 5 �R6 V � 4%V ��� 5 +�� �Z 4%U 5 a�� � � E .

Having these possible future alternatives allows us to detect possible future de-
featers in much the same way as we detect standard defeaters (Definition 4). The only
extra bit we need is to collect all the conditions on the alternatives. This collection then
acts as the condition for the defeating rule.

Definition 9. Let � be an OCLP, % + � be component of � and UE+ � � . The set of pos-
sible future defeaters of U in % , denoted as � �Z 41U 5 , is defined as
� �Z 41U 5 �P6 4 � ��� 5 ��] � + � ^ 3'4 �'5 ! % � � V.+ ��� ^ 4%V � �	� 5 +
� �Z 4%U 5 ��� ��� ������ ��� E

.
The set of possible future defeaters of a rule � +�� , denoted as � � 4 � 5 , is defined as
� � 4 �'5 �P6 4�� ��� 5 � � � ��� �� � � � such that 4 � � ��� � 5 +�� ���� ��	 4%U 5 � � � +
� EGg

Having the possible future defeaters of an atom in a certain component, we can
easily find that combination that can act as a possible future defeater of a rule in a
certain component. We simply compute the set of possible future defeaters of each of
the head atoms of this rule in this rule’s component. The set of all possible permutations
of choosing an element from each of these sets give us the possible future defeaters of
our rule. In other words, we obtain a number of possible future defeaters of a rule equal
to the product of the sizes of the sets of possible future defeaters for each of its head
elements.

Implementing OCLP as a front-end for Answer Set Solvers 231

Example 13. When we look back to the program � of Example 12, we have that U has
a one possible future defeater in �
& as: � �� � 4%U 5

�b6 4 � 2B� 6
 ��� E 5 E . In the same com-
ponent, we have that 3 has a future defeater � �� � 4 3 5

� 6 4 � 1 � 6
 ��� E 5 E . All the other
atoms in the program do not have any possible future defeaters in any of the rele-
vant components. The rule � & is the only rule with possible future defeaters, namely
� � 4 � & 5 �P6 4 6 � 2 E � 6
 ��� E 5 E .

Clearly, possible future defeaters can be used for expressing interpretation-dependent
defeaters.

Theorem 2. Let � be an OCLP and let � be an interpretation for it. A rule � + � �
is

defeated w.r.t. � iff
] 4 � ��� 5 + � � 4 � 5 ^ � � � � � � � � � � � � � +
� .

These possible future defeaters are the key to mapping OCLPs to semi-negative
logic programs. We are only required to turn the information which makes possible
future defeaters into defeaters, i.e. they have to be applicable, into a condition. To make
this possible, we introduce for each non-constraint rule � in the program two new atoms:

 � and U � . The former indicates that the rule � is defeated or not, while the truth value
of the latter is an indicator of the applicability of the rule.

Definition 10. Let � be an OCLP. Then, the logic program � � is defined as follows:
1.

� ��� �B���
: � + � �

2.
� ��� ��� �

:
(a) � � � � ���
 � �	� 4 � ��
 6 � E 5 + � � : ���8+ ���
(b) U � � � � +8� �
(c)
 � � % +8� � with % � �� � � � �� U ��� such that 4 � ��� 5 +�� � 4 �'5 .
(d)
� �7� � � � � �	�
 � +<� � : ���7� �E+ � � ^ �/e� �

Since constraints are not involved in the defeating process, we can simply copy them
to the corresponding logic program. For the answer set semantics of ordered choice
logic program, we need, among other things, that each applicable, undefeated rule ad-
mits exactly one head atom. Rules of type a) and d) make sure that the corresponding
rules in the logic program do not violate this property. The rules of type b) indicate
which original rules are applicable. The c)-rules are probably the most difficult ones.
They express when a rule should or could be considered defeated. If we look at Theo-
rem 2, we have a mechanism for relating possible future defeaters to actual defeaters.
Given a possible future defeater 4�� ��� 5 for a rule � , we simply have to make sure that
all rules in � are applicable and that all atoms in � are true with respect to the current
interpretation. With rules of type b), we can express the former using U � . Combining all
of this, we can signal in the transformed program that a rule is defeated or not using a
rule
 � � U � � �

g g g �)U ��� ��� with ��� + � and � � � � � �
. Whenever an answer set of the

transformed program makes
 � true, we know that the original rule � is defeated. The
construction with rules of type b) makes sure that the reverse also holds.

232 Martin Brain and Marina De Vos

Example 14. The corresponding logic program � � of the OCLP of Example 12 looks
like:

U � �
 � � U � � �	�
 �	�
 ��� U � j � �

 �	�
 � � �)U �,V

� � �
 � j

� � �	� U ���
 ��� U � � �

�

 �	�
 � � �)U � 3

U �
 �	�MV,��� 3 �	�
 � �

� � 3 ���
 � o U ��� � � �

 �	�
 � � �,V,�(3
V �
 ��� U ��� 3 �	�
 � � 3 � �
 ���
 � o U � o � � � ���
 ��� �)U ��

3 �
 ��� U ���MV,�	�
 � � U � �

�

 � �
� U � o ��
 ��� � �
 � o'��
 �(3

The original OCLP of Example 12 has two skeptical answer sets,
6 � ��
 �3V E and

6 � � 3'�)U E ,
which correspond exactly with the two answer sets,

6 U � � �)U
� j �,U � � � U � � �)U � o ��
 � � ��� ��
 �3V

E
and

6 U � � �,U
� j'�)U � � �)U � o ��� � 3 �,U E , of � � .

Theorem 3. Let � be an OCLP and � � be its corresponding logic program. Then, a
one-to-one mapping exists between the skeptical answer sets � of � and the answer
sets � of � � in such a way that � � � 6 U � �5] � +<� ^ � ��� ��� � � � � � � E 6

 � �] � + � ^ � is defeated w.r.t. � EGg

4.2 Credulous Mapping

To obtain the credulous answer set semantics for OCLPs, we propose a similar mapping
to semi-negative logic programs. The only difference between the skeptical and the
credulous semantics is the way they both handle defeat. For the credulous version, we
need to make sure that we look for c-defeaters in all components which are not less
preferred as the rule we wish to defeat. Furthermore, we have to make sure that c-
defeaters are applied and not just applicable as is the case for defeaters. The former will
be encoded by means of possible future c-defeaters while the latter will be translated in
a different style of U � rules in the mapping.

The definition of possible future c-defeater is identical to the one of its skeptical
counter-part except that it looks for rules in all components which are not less preferred.

Definition 11. Let � be an OCLP, % +�� be component of � and U + �*� . The set of
possible future c-defeaters of U in % , denoted as

� �Z 41U 5 , is defined as� �Z 4%U 5 � 6 4 � ��� 5 �] � + � ^ % e! 3'4 �'5 � �2V + ��� ^ 4%V,� ��� 5 +�� �Z 41U 5 � � � � �	� E
. The

set of possible future c-defeaters of a rule � +�� , denoted as
� � 4 �'5 , is defined as� � 4 � 5 �\6 4 � ��� 5 � � ��� � ���� � � such that 4 � � ��� � 5 + � ���� ��	 41U 5 � � � +�� ETg

Just as before, c-defeaters can be expressed in terms of possible future c-defeaters.

Theorem 4. Let � be an OCLP and let � be an interpretation for it. A rule � + � �
is

c-defeated w.r.t. � iff
] 4�� ��� 5 + � ���� ��	 4%U 5 ^ � � � � ��� applied w.r.t. � � � � � +�� .

Definition 12. Let � be an OCLP. Then, the logic program � �� is defined as follows:
1.

� � � �B���
: � + � ��

2.
� ��� ��� �

:
(a) � � � � ���
 � �	� 4 � ��
 6 � E 5 + � �� : ���8+ ���
(b) U � � � � �	�7�	� 4 ���
 6 � E 5 +<� �� : �>U + ���
(c)
 � � % +8� �� with % � �� � ��� �� U ��� with 4�� ��� 5 + � � 4 �'5 .

Implementing OCLP as a front-end for Answer Set Solvers 233

The credulous mapping is very similar to the skeptical one but there are a couple of
subtle differences: an obvious difference is the use of possible future c-defeater instead
of their skeptical counterparts (c-rules). The second change are the rules implying U �
(b-rules). Previously they were used to indicate applicability, the necessary condition
for the defeat. Since c-defeat works with applied defeaters, we need to make sure that
U � is considered only true when � is applied. The less obvious change is the absence of
the rules of type d). Since a rule can only be applied when one and only one head atom
is considered true and because U � should only be considered true in this particular case,
they no longer necessary.

Example 15. Reconsider the OCLP from Example 11. If we use the mapping from
Definition 12, we obtain the following program:

�
� �
 & U & � �
 & � U)

�
� �
 �	�
) U) � �/�	�

) � U 0 �,U 1

� � �/�	�
) U) �
 �	� �
 0 � U) �,U 1

�
� � �/�	�
 0 U 0 � � �	� �
 1 � U) �,U 0

�
� � � �	�
 0 U 0 � �/�	� �

�
� �
 �	�
�1 U 1 � � �	�

� � � �	�
�1 U 1 �
 �	� �

The answer sets of this program correspond perfectly to the credulous answer sets
of the original program. The newly introduced atoms make sure that the answer set
semantics remains minimal while the credulous OCLP version is clearly not.

Theorem 5. Let � be an OCLP and � � be its corresponding logic program. Then, a
one-to-one mapping exists between the credulous answer sets � of � and the answer
sets � of � � in such a way that � � � 6 U � ��] � + � ^ � ��� � � � � � � � � � � ��� �
� �B���5E 6

 � ��] � +<� ^ � is c-defeated w.r.t. � E g

4.3 Implementing an OCLP Front End to Smodels

To demonstrate the theoretical mapping and to serve as a basis for future experimenta-
tion and research a simple language was developed to allow OCLP to be processed by
computer. A compiler7 was created to parse the input language and interface into the
Smodels([12]) API which was then used to compute the answer set. The compiler OCT
is available under the GPL (“open source”) from http://www.cs.bath.ac.uk/ � mdv/oct/.

4.4 Optimizations

Definitions 10 and 12 give us a theoretical basis for a program to convert OCLPs in
semi-negative logic programs but a few changes and optimizations are necessary before
we have an effective algorithm for converting and solving OCLPs.

7 Here compiler is used in the broader sense of an automated computer language translation
system rather than traditional procedural to machine code system.

234 Martin Brain and Marina De Vos

Optimizations is used here in the context of compiler optimizations. The output will
not be ’optimal’ - it will be improved. Given that all of the information required to create
answer sets exists at the OCLP level it would be possible to produce an ’optimal’ output
- it would be answer sets of the OCLP. However an answer set solver is being used to
deliberately reduce the amount of logic needed when processing OCLPs and to take
advantage of the optimizations and heuristics already incorporated answer set solvers.
Therefore, we shall only look for simple optimizations, based on information obtained
when creating the semi-negative logic program, to reduce the numbers of rules and
atoms in the output, allowing answer set solvers to produce solutions more effectively.
To this extent, the wording of optimization refers to the whole process and not just the
compiler.

There are two key categories of optimization. The first are changes in how an in-
dividual OCLP rule is translated. These intra-transform optimizations don’t effect the
translations of any other rules and can thus be done as the rules are being translated.
The other category are inter-transform optimizations and these are slightly more com-
plicated. They can remove some of the simple interactions between rules and simplify
the problem. However they effect the translation of other rules and thus can’t be applied
immediately (removing an atom from the system completely is not much use if you’ve
already used it) but require a separate pass.

The first intra-transform improvement that can be made is to reduce the number of
times that the body of any rule is included in the output. This is done by adding an
extra atom V � � � � for each rule and then using V � instead of

� �
for the other rules.

Essentially ’factoring out’ the condition that the body must apply. This is of-course only
a significant saving if the rule has more than one element in the body. In the case of the
skeptical mapping this can be combined with U � .

The next improvements can be made while creating the c)-rules for every rule in
the OCLP. If there are no possible future (c-)defeaters for at least one of the elements
in the head of a rule then there will be no rules of the form
 � � % generated and the
�
 � can be dropped from any other rules created. Conversely if there are any rules of
the form
 � � that would be generated then any rule that would contain �
 � can be
ignored as the rule is considered to be automatically defeated. At the intra-transform
level rules of this sort can only be located while performing a skeptical mapping as the
applicability of an arbitrary rule can be determined easily but whether it is applied or
not is non trivial. This improvement implies that before any other rule for � is created,
the c)-rules should be constructed.

There are several inter-transform optimizations. To add to the additional problems
of using these operations, applying these can result in more rules to which they can be
applied, essentially requiring looping until there are no more possible improvements
that can be made. To optimize the entire system, it suffices that the compiler only uses
the info it directly obtains from completing transformation. The rest can be left for the
other components.

In order of application and increasing complexity:

– Propagation - Semi-negative logic programming rules of the form U � state a fact
about the system so this can be used to simplify the system. All references to U can
be removed from the bodies of all of the other rules in the system as it will appear

Implementing OCLP as a front-end for Answer Set Solvers 235

in any answer set8. Any rule with a reference to � U in it can be removed for similar
reasons. If the atom U is a constructed atom used in the transformation (i.e. U � or

 � for some � + �) then the definition U � can be removed as well as it doesn’t
add anything to the final answer set (in OCLP terms).

– Removal - Atoms of the form U � , V � and
 � can be removed if they are only found
in the heads of rules. This is because all atoms of this form are removed from the
stable model solution when it is mapped back to an OCLP solution. Thus if they
do not form part of a condition on another rule they don’t need to be calculated.
The list of which of these atoms are used can be generated while the translation of
rules is being made, thus saving having to do another pass. However this is not as
much of a improvement as it may first seem. In the skeptical case rules using the
generated atom U � are used as an alias for V � or will be removed by propagation in
all cases except a body size of 1 (which could also be recognized and removed via
aliasing optimizations). The credulous case may however benefit from removal of
some U � atoms. While the nature of V � and the optimizations applied to see if a rule
can be defeated before generating atoms of the type
 � means these are only likely
to be removed like this after other optimizations have been applied (which in turn
will require and extra pass to work out which generated atoms are used).

– Aliasing - Each rule of the form U � V essentially makes U an alias for V . Thus
any rule who’s body contains both U and V can safely remove U . The other forms of
aliasing and their consequences depend on what type of atom U is.

� U � V (U is an atom from the original OCLP) if U appears in the head of only
one rule then all occurrences of U in the bodies of other rules can be replaced
with V .

� U � � V If there is only one rule with U � in the head (as will happen with a
skeptical and some credulous mappings) all occurrences of U � can be replaced
and the rule then removed completely as it adds nothing to the final answer set.

�
 � � V There may well be more than one rule giving conditions for
 � to be
true, but if this is not the case then all occurrences of
 � can be replaced with V
and this rule removed.

� V � � V Although these shouldn’t be generated directly it is possible they will
arise through propagation. Again there will only be one rule with V � in the head
so it can be replaced in all bodies and then removed.

When replacing the atoms of a union with the body of the rule is needed as it is
possible that the rule already contained V (of-course this can then create rules of the
form U � V which can then be optimized again, however it will not create rules
that can be reduced via propagation). This stage can also be used to eliminate any
duplicate rules which might arise as the result of the mapping. This is also the ideal
place to remove useless rules like V � V,� � and U � V,���MV,� � which have nothing
to add to the semantics of our program.

8 Care must be taken to note the case of removing the last atom from the body of a constraint in
this fashion as rather than reducing the complexity of the problem it signifies that the program
has no answers. E.g. A semi-negative logic program containing the rules C and � C will have
no solutions.

236 Martin Brain and Marina De Vos

– Factoring - For every pair of rules U � � and 3 ��� if
� � � � � ���

the common
elements can be ’factored out’. For example:
U � V"&,�,V)'�,V 0'�,V
3 � V & �3V) �3V 0 �3V
Gives
U ��� �3V
3 ��� �,V
� � V & �,V) �,V 0
This transformation should produce more compact (in terms of the total number
of atoms) rules when dealing with OCLPs that have more complex possible fu-
ture (c-)defeaters. However the ordering which pairs of rules should be considered
and the implications of common expressions shared between more than two blocks
make the application order very difficult to calculate quickly. It is possible to apply
this to a smaller degree to c)-rules during the transformation process if the possi-
ble future (c-)defeaters of each atom are handled. Constructing the possible future
(c-)defeaters on a rule by rule basis doesn’t give fine enough ’granularity’ to apply
this kind of optimization.

5 Relationship to Other Approaches

Our formalism shows similarities with ordered logic programming [13, 15, 5], where
the latter supports disjunction (in the head), which also provides a skeptical and a cred-
ulous approach. However, defeat is restricted to rules with contradictory heads, making
it difficult to represent more complex decisions. In [4], preference in extended disjunc-
tive logic programming is considered. As far as overriding is concerned, the technique
corresponds rather well with our skeptical defeating, but, again, alternatives are limited
to an atom and its (classical) negation.

To reason about updates of generalized logic programs, extended logic programs
without classical negation, [1] introduces dynamic logic programs. A stable model of
such a dynamic logic program is a stable model of the generalized program obtained
by removing the rejected rules. The definition of a rejected rule corresponds to our
definition of a defeated rule when U and � U are considered alternatives. A similar system
is proposed in [11], where sequences are based on extended logic programs, and defeat
is restricted to rules with opposing heads. The semantics is obtained by mapping to
a single extended logic program containing expanded rules such that defeated rules
become blocked in the interpretation of the “flattened” program.

In [8], a mapping from extended logic programs to OCLP was presented. A very
similar mapping allows us to map both dynamic logic programs as sequences of ex-
tended logic program to OCLP.

[2] added a system of preference to the dynamic logic programs of [1]. This pref-
erence is used to select the most preferred stable models. A similar mechanism is also
used by [3] to obtain preferred answer sets: preferences are used to filter out unwanted
candidate models, they are not used during model creation as is the case for OCLP.

Implementing OCLP as a front-end for Answer Set Solvers 237

[18] also proposes a formalism that uses the order among rules to induce an order
on answer sets for inconsistent programs, making it unclear on how to represent deci-
sions. Along the same line, [10] proposes logic programs with compiled preferences,
where preferences may appear in any part of the rules. For the semantics, [10] maps the
program to an extended logic program.

6 Conclusions and Directions for Future Research

In this paper we proposed a mechanism for transforming ordered choice logic programs
to semi-negative logic program while preserving, depending on the transformation, the
skeptical or credulous answer set semantics. Having such a transformation allows an
implementation of OCLP on top of answer set solvers like Smodels ([12]), and DLV
([17]). The mapping and the optimizations we proposed are very general and not di-
rected towards any particular answer set solver. For the future we plan to experiment
with the special construct provided by the different implementations. It would be in-
teresting to find out whether incorporating them into the output of our compiler would
improve the efficiency of the entire system. For this we think for example at the dis-
junctive rules provided by DLV. They would reduce rules of type a), while the special
choice construct of Smodels would reduce both rules of type a) and d). Although this
construct would reduce the number of rules in the output of our compiler, this does not
automatically make the code more efficient, this depends on what these systems do with
them. In case they have a special mechanism for handling them this would indeed mean
a gain in effectiveness. If, however they translate everything back to standard rules, us-
ing them would only have a negative effect. It also introduces additional complications
into the mapping and inter-transform optimizations and may limit their effectiveness.

Previously, OCLP was used to describe and to reason about game theory ([8, 9]).
To this extend, we used a special class of OCLPs. Each atom appears exactly once in
a choice rule and none of the choice rules can be defeated. Combining this knowledge
with the mapping of OCLP to logic programs, we can create a game theory tailored
front-end to answer set solvers.

In [9], we proposed a multi-agent system were the knowledge and beliefs of the
agents is modeled by an OCLP. The agents communicate by sending answer sets, skep-
tical or credulous, to each other. The notion of evolutionary fixpoint shows how the
various agents reasoned in order to come to their final conclusions. Having an imple-
mentation for OCLP would allow us to implement multi-agent systems and run exper-
iments in various domains. One possibility would be incorporate this knowledge into
Carrel ([19]), a multi-agent system for organ and tissue exchange.

References

1. José Júlio Alferes, Leite J. A., Luı́s Moniz Pereira, Halina Przymusinska, and Teodor C.
Przymusinski. Dynamic logic programming. In Cohn et al. [6], pages 98–111.

2. José Júlio Alferes and Luı́s Moniz Pereira. Updates plus preferences. In European Workshop,
JELIA 2000, volume 1919 of Lecture Notes in Artificial Intelligence, pages 345–360, Malaga,
Spain, September–October 2000. Springer Verslag.

238 Martin Brain and Marina De Vos

3. Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic programs.
Artificial Intelligence, 109(1-2):297–356, April 1999.

4. Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive Logic Programs with
Inheritance. In Danny De Schreye, editor, International Conference on Logic Programming
(ICLP), pages 79–93, Las Cruces, New Mexico, USA, 1999. The MIT Press.

5. Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Disjunctive ordered logic: Seman-
tics and expressiveness. In Cohn et al. [6], pages 418–431.

6. Anthony G. Cohn, Lenhard K. Schubert, and Stuart C. Shapiro, editors. Proceedings of the
Sixth International Conference on Principles of Knowledge Representation and Reasoning,
Trento, June 1998. Morgan Kaufmann.

7. Marina De Vos and Dirk Vermeir. On the Role of Negation in Choice Logic Programs. In
Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, Logic Programming and Non-
Monotonic Reasoning Conference (LPNMR’99), volume 1730 of Lecture Notes in Artificial
Intelligence, pages 236–246, El Paso, Texas, USA, 1999. Springer Verslag.

8. Marina De Vos and Dirk Vermeir. Dynamic Decision Making in Logic Programming and
Game Theory. In AI2002: Advances in Artificial Intelligence, Lecture Notes in Artificial
Intelligence, pages 36–47. Springer, December 2002.

9. Marina De Vos and Dirk Vermeir. Logic Programming Agents Playing Games. In Research
and Development in Intelligent Systems XIX (ES2002), BCS Conference Series, pages 323–
336. Springer, December 2002.

10. J. Delgrande, T. Schaub, and H. Tompits. Logic programs with compiled preferences. In
W. Horn, editor, European Conference on Artficial Intelligence, pages 392–398, 2000.

11. Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. On Properties of update
Sequences Based on Causal Rejection. Theory and Practice of Logic Programming, 2(6),
November 2002.

12. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
KR system dlv: Progress report, comparisons and benchmarks. In Anthony G. Cohn,
Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Repre-
sentation and Reasoning, pages 406–417. Morgan Kaufmann, San Francisco, California,
1998.

13. D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical Semantics for Ordered
Logic Programs. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd
International Conference on Principles of Knowledge Representation and Reasoning, pages
208–217, Cambridge, Mass, 1991. Morgan Kaufmann.

14. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of fifth logic programming symposium, pages 1070–1080. MIT PRESS, 1988.

15. Els Laenens and Dirk Vermeir. A Universal Fixpoint Semantics for Ordered Logic. Com-
puters and Artificial Intelligence, 19(3), 2000.

16. Vladimir Lifschitz. Answer set programming and plan generation. Journal of Artificial
Intelligence, 138(1-2):39–54, 2002.

17. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proceed-
ings of the 4th International Conference on Logic Programing and Nonmonotonic Reason-
ing, volume 1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

18. Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered logic pro-
grams. In European Workshop, JELIA 2002, volume 1919 of Lecture Notes in Artificial
Intelligence, pages 432–443, Cosenza, Italy, September 2002. Springer Verlag.

19. Javier Vázquez-Salceda, Julian Padget, Ulises Cortés, Antonio López-Navidad, and Fran-
cisco Caballero. Formalizing an electronic institution for the distribution of human tissues.
Artificial Intelligence in Medicine, 27(3):233–258, 2003. published by Elsevier.

