
Storage Layout and I/O Performance
in Data Warehouses

Matthias Nicola1, Haider Rizvi2

 1IBM Silicon Valley Lab 2IBM Toronto Lab
� mnicola@us.ibm.com� � haider@ca.ibm.com�

Abstract. Defining data placement and allocation in the disk subsystem can
have a significant impact on data warehouse performance. However, our ex-
periences with data warehouse implementations show that the database storage
layout is often subject to vague or even invalid assumptions about I/O perform-
ance trade-offs. Clear guidelines for the assignment of database objects to disks
are a very common request from data warehouse DBAs and consultants. We
review best practices suggested by storage and database vendors, and present
two sets of performance measurements that compare storage layout alternatives
and their implications. The first set used a TPC-H benchmark workload with
DB2 UDB, the other a star schema/star join scenario with IBM Red Brick Data
Warehouse.

1 Introduction

Designing performance into a data warehouse begins with proper logical schema
design and a reasonable selection of indexes and possibly materialized views. The
best storage layout and I/O tuning cannot compensate for poor performance due to
inadequate schema or indexes. However, eventually tables and indexes are mapped to
a set of database files which have to be allocated in the disk subsystem. This asks for
proper data placement to assign database files to disks or striped volumes with the
goal to maximize I/O throughput, minimize I/O waits, support parallel query process-
ing, and to ensure acceptable fault tolerance and recoverability from disk failures.
Designing a database allocation that meets these goals is not trivial and raises ques-
tions like: Which tables or indexes should or should not share the same disks? How
many disks should be dedicated to a given table or index?

For example, should the fact table and its indexes be separated on disjoint (non-
overlapping) sets of disks to avoid I/O contention between them? Or should we dis-
tribute fact table and indexes together over all available disks to maximize I/O paral-
lelism for both? In discussions with data warehouse experts we found advocates for
either of these two (simplified) approaches, and yet hardly anybody felt comfortable
predicting which combination of storage parameters would provide best performance.
We also find that often practices from OLTP systems are adopted, e.g. separating
different tables from each other or separating tables from indexes and placing them
on separate sets of disks is commonly believed to improve I/O performance in data
warehouses. However, the optimal data placement scheme is workload dependent.

7-2 Matthias Nicola and Haider Rizvi

Yet it is often difficult to predict the query workload or too time consuming to moni-
tor and analyze it. Also, workloads can change over time. Even if the query workload
was known, translating it into sequences of physical I/Os to table and indexes is very
difficult and dependent on dynamic factors such as caching. Thus, data allocation
based on workload analysis is theoretically interesting but in reality almost always
infeasible. The goal of this article is to evaluate simple and pragmatic solutions to the
data allocation problem in data warehouses.

In section 2 we briefly discuss related work and vendor recommendations for the
data placement problem. Then we present measurements that compare storage layout
alternatives for data warehouses. In section 3 we report experiments on a 1 terabyte
TPC-H benchmark with DB2 UDB and in section 4 a star schema in IBM Red Brick
Data Warehouse [8].

2 Related Work and Vendor Recommendations

There has been research on data placement in traditional OLTP databases and shared-
nothing parallel database systems in particular [6]. A data allocation methodology for
star schemas is proposed in [10], based on partitioning the fact table by foreign key
values and a matching fragmentation of each bitmap in every foreign key bitmap
index. While this approach is not immediately applicable in current data warehouse
installations, disk striping is often deployed for distribution of database files over
disks [1].

Storage and database vendors usually either promote distributing all database ob-
jects over all disks [4] or separating database objects using disjoint sets of disks.
(Database objects are tables, indexes, temp space, logs, database catalog, materialized
views, etc.).

Storage layout options for DB2 UDB on the IBM Enterprise Storage System
(Shark) are compared in [7]. The recommendation is to spread and intermix all tables,
indexes, and temp space evenly across all disk arrays of the ESS to avoid an unbal-
anced I/O load. “SAME” (Stripe And Mirror Everything) suggests that independently
from the workload all database objects should be striped over all available disks (“ex-
treme striping”) with mirroring for reliability [5]. In practice, striping over too few
disks is a bigger problem than any I/O interference between index and table access or
between log writes and table I/O [5].

Others claim that low I/O contention between database objects is more important
than maximizing I/O parallelism. Thus, typical separation guidelines include placing
the recovery log on disks separate from data and indexes, separating tables from their
indexes, separating tables from each other if they are joined frequently, and separa-
tion of sequential from random access data [2], [12].

When disk striping is deployed, recommendations for the stripe unit size range
from 64k [11] through 1MB [5] and 5MB for large systems [3]. A large stripe unit
size is argued to provide a good ratio of transfer time to seek time. Research indicates
that a smaller stripe unit size provides good response times for a light I/O load, but
that larger stripe unit sizes provide better throughput and higher overall performance

Storage Layout and I/O Performance in Data Warehouses 7-3

under medium to heavy workloads [9]. For a more related work and fault tolerance
considerations see [8], [6], [9].

3 TPC-H with IBM DB2 Universal Database

The different recommendations for storage layouts motivate dedicated measurements
to verify and compare them. We evaluated three alternative storage configurations for
a 1 TB TPC-H benchmark with DB2 UDB 7.1. The measurements were made on the
RS/6000 SP, using 32 Power3-II wide nodes. Each node had 4 CPUs of 375 MHz,
4GB memory, 32 disks per node. The disk subsystem was IBM’s Serial Storage Ar-
chitecture (SSA) and totaled 9.32TB in 1,024 drives. The ratio of eight disks per CPU
is usually a minimum for optimal performance in a balanced system.

Three tablespace container layouts were compared to determine the optimum data
placement strategy. The horizontal partitioning and uniform distribution of the data
across the 32 nodes was identical each time. The allocation of data across the 32 disks
at a node was varied and investigated. For each of the three alternatives the storage
layout is identical at every node. During updates I/O-traffic to the log was very little,
so we ignore log placement here.

Layout #1
Six disks comprised a RAID-5 array to store flat files of the raw data to reload the
database tables. Of the remaining 26 disks per node, two were reserved as hot spares
and 24 were used for tablespace containers. The tablespaces for data, indexes and
temp space were physically represented by 24 containers each, one per disk ().
DB2 stripes data across the containers of a tablespace in a RAID-0 fashion, using the
extent size as the stripe unit size (we used 256k extents for tables, 512k extents for
indexes).

Figure 1

During peak I/O periods each disk produced ~4.3 MB/s, for a maximum aggregate
throughput of ~103 MB/s per node. This compares to a hardware limit of ~7 MB/s
per disk and ~90 MB/s per SSA adapter (180 MB/s per node using 2 adapters).
Analysis showed that I/O was constrained by intense head movement because con-
tainers for all tables and indexes shared all disks. The query execution plans indicated
that head movement could be reduced by separating the two largest tables, Lineitem
and Orders, from each other and from their indexes. This led to Layout #2.

Layout #2
The 24 disks used for data, index and temporary space were divided into 2 groups. 14
disks were used for Lineitem data and Orders indexes, 10 for Orders data and
Lineitem indexes. Data and indexes from the smaller tables and temporary space were
still spread across all 24 disks. This reduced head movement and increased per-disk
throughput from 4.3 MB/s/disk to 6.4 MB/s/disk, but the lower number of disks per
tablespace resulted in a loss of aggregate throughput from 103 MB/s/node to about
90 MB/s/node, and a corresponding loss in overall TPC-H performance. This is an
important finding: separating the main tables and indexes reduces I/O contention and
seek time per disk, but results in lower I/O throughput and lower overall performance.

7-4 Matthias Nicola and Haider Rizvi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1
sp

ar
e

Layout #1

Layout #2

Layout #3

all data, indexes, temp space and flat files striped across 31 disks

Lineitem data, Orders indexes (14 disks) Orders data, Lineitem indexes
(10 disks)

2
ho

t
sp

ar
es

Raid5, flat files
Other table data & indexes, temp space

all data, indexes, and temp space striped across 24 disks 2
ho

t
sp

ar
es

Raid5, flat files

Figure 1: Alternative storage layouts using 32 disks per node

Layout #3
Understanding the importance of I/O throughput, layout #3 uses the maximum num-
ber of disks. Of the 32 disks per node, one was a hot spare and the RAID5 array was
removed. The remaining 31 disks were used to stripe all tablespaces and the flat files.
To reduce seek times, data objects frequently accessed concurrently (e.g. Orders data
and Orders indexes) were placed in adjacent physical disk partitions in the center of
the disk (as opposed to the inner and outer edge of the disk platters). As a result, the
disk heads remained within the central 38% of the disk during normal query opera-
tion. This reduced seek times and increased the per-disk throughput to 5.6 MB/sec, an
increase of ~30% over layout #1. At the same time, the larger number of disks in-
creased the aggregate throughput to ~175 MB/s/node (~1.75 times that of layout #1).
This led to an overall improvement in TPC-H performance of ~32%.

In summary, separating specific tables and indexes was found to hurt TPC-H per-

formance because achieving high I/O throughput is more critical then minimizing I/O
contention and seek time per disk. This can be different in OLTP systems where the
required I/O throughput is often much lower. However, data allocation practices for
OLTP systems are not necessarily good for data warehouses.

4 Star Schema Scenario with IBM Red Brick Data Warehouse

Here we used a simple star schema with one fact table and 5 dimensions as shown in
Figure 2. The total database size is ~50GB which is small but big enough to analyze
the performance impact of different storage layouts. Each entry in the period table
corresponds to one calendar day (637 days, 91 weeks). The fact table and both star
indexes are range partitioned by value of the period foreign key. One partition (“seg-

Storage Layout and I/O Performance in Data Warehouses 7-5

(“segment”) holds one week
worth of data, spanning 7
period keys. Thus, the fact
table and both star indexes are
comprised of 91 segments
each. All fact table and star
index segments are stored in
22 data files (containers)
each. Unlike DB2, Red Brick
does not stripe data across
containers. We ran the meas-
urements on a Sun E6500
server with Solaris 5.8 (64bit)
and IBM Red Brick 6.11. The disk subsystem was a Sun A5200 with 22 disks man-
aged by Veritas Volume Manager which allows striping if desired.

 Fact Table:

DailySales
(~295 M)

Period
(637)

Store
(63)

Product
(19,450)

Customer
(1,000,000)

Promotion
(35)

Table Name
(# rows)

Legend:

Fact table has
2 multi-column
star indexes

Figure 2: Star Schema

4.1 Storage Layout Alternatives

We designed 5 different storage layouts focusing on 4 main parts of the database: the
fact table, the fact table indexes, the dimension table and indexes, and the temp space.

Layout #1: “Manual-22”
This layout does not use striping but assigns the 22 containers of each fact table and
star index segment “manually” to the 22 disks, i.e. each segment is distributed over
all disks (). Even queries which access only one segment enjoy maximum I/O
parallelism. We also create temp space directories on all 22 disks. Since the dimen-
sion tables and indexes are too small to partition, we place each of them on a different
disk. Only the customer table and index are stored in 10 containers on 10 different
disks each.

Figure 3

Layout #2: “Manual-14/8”
This is similar to layout #1 except that we separate fact table and star indexes on
disjoint sets of disks. We assign the containers of the fact table segments round-robin
to disks 1 through 14 and star index containers over the remaining 8 disks. The deci-
sion to use 14 disks for the fact table and only 8 for the indexes is merely an intuitive
one since the star indexes are smaller than the table.

Layout #3: “Stripe22”
In layouts #1 and #2 queries which scan only part of a segment may bottleneck on a
small number of disks because Red Brick does not stripe data across the containers of
a segment. Therefore, layouts #3 to #5 use Veritas RAID-0 volumes. Layout #3 de-
ploys “extreme striping” [5] with one large striped volume over all 22 disks to store
all database containers. We compare stripe unit sizes of 8k, 64k, and 1MB.

7-6 Matthias Nicola and Haider Rizvi

Layout #4: “Stripe12/4/4/2”
Using four disjoint RAID-0 volumes with a stripe unit size of 64k we separate and
minimize I/O contention between fact table, star indexes, temp space, and dimen-
sions. The fact table is striped over 12 disks, the star indexes and temp space over 4
disks each, and the dimensions over 2 disks.

Layout #5: “Stripe8/8/4/2”
One could argue that star index I/O is as crucial for star join performance as fact table
I/O. Thus, the 8/8/4/2 layout assigns an equal number of disks to star indexes and the
fact table (8 disks each).

Manual 22 Manual 14/8

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 E 8 E

9 C 9 C

10 A 10 A

11 P 11 P

12 S 12 S

13 13
14 P 14 P

15 M 15 M

16 E 16 E

17 T 17 T

18 18
19 19
20 20
21 21
22 22

Fa
ct

 T
ab

le

Fa
ct

 T
ab

le

Fa
ct

In

de
xe

sFa
ct

 In
de

xe
s

Stripe 22 Stripe 12/4/4/2 Stripe 8/8/4/2
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
17 17 17
18 18 18
19 19 19
20 20 20
21 21 21
22 22 22

Fa
ct

 T
ab

le

Fa
ct

 In
de

xe
s

D
im

en
si

on
s

Te
m

p
sp

ac
e

Fact table

Fact Indexes

Dimensions

Temp Space

Fact table

Fact Indexes

Dimensions

Temp Space

Figure 3: Five Storage Layout Alternatives

4.2 Measurement Results

We use 26 queries for performance comparison representing a typical workload for
star schema data warehouses. The queries include tightly vs. moderately constrained
star joins, a small number of table scan based queries, several queries with large sorts,
etc. Figure 4 shows the relative elapsed time of sequentially running all 26 queries
(single-user) as a percentage of the best performing layout. Figure 5 shows the multi-
user result where the mixed set of queries was executed in each of 20 concurrent
streams. For other workloads and results see [8].

Although the higher I/O intensity in the multi-user workload amplifies some of the
relative performance differences, the key conclusions are similar for both tests. Strip-
ing “everything over all disks” with a medium to large stripe unit size provides best
performance. Separating fact table from star index I/O in non-overlapping striped
volumes leads to unbalanced and sub-optimal disk utilization. In layouts 12/4/4/2 and
8/8/4/2 the fact table volume was “hotter” than the star index volume (in terms of I/O
wait time, queue length). Since the fact table I/O is heavier, performance improves as
more disks are devoted to it, in the order of 8/8, 12/4, 14/8, and 22 (Figure 5).

With increasing I/O intensity, a small stripe unit size is less suitable to provide
high I/O transfer rates. Using 8k stripes, the seek-time to transfer-time ratio is too

Storage Layout and I/O Performance in Data Warehouses 7-7

high which leads to excessive queueing and poor overall performance. Using a 64k or
1MB stripe unit size greatly relieves this problem. This is consistent with research
results which predict that under a heavy load a small stripe unit size limits throughput
so that response times deteriorate [9].

Table scans which benefit from sequential I/O of contiguously allocated data files
(Manual-22) perform similarly well on striped volumes. Note that sequential I/O is
not equal to reading an entire file without intermediate disk seeks. Sequential I/O is
when the seek time is a small percentage of the transfer time, e.g. 10 random reads of
10MB each are about as efficient as a single scan of 100MB. Thus, a large stripe unit
size provides an approximation of sequential I/O while balancing the I/O load evenly
across all disks.

Single user, mixed set of queries

116%

123%

104%

111%

127%

100%

125%

0% 20% 40% 60% 80% 100% 120% 140%

22 manual

14/8manual

Stripe22 (8k)

Stripe22 (1M)

Stripe22 (64k)

Stripe12/4/4/2 (64k)

Stripe8/8/4/2 (64k)

Elapsed Time as % of the Shortest Run

Figure 4: Single user performance

In the multi-user test, “Manual-22” performs reasonably well because it does not
separate different database objects, does not use a small stripe unit, and provides
some approximation to spreading the I/O load over all disks. However, the admini-
stration effort is large, and so is the danger of inadvertently introducing data skew
and unbalanced I/O load. Both ease of administration and performance recommend
striping rather than manual data file placement.

We confirmed that the results are not dominated by any single type of query, such
as table scans. Removing any specific class of queries from the workload did not
change the general conclusions from the test.

7-8 Matthias Nicola and Haider Rizvi

Multi user (20 concurrent users)

118%

126%

223%

100%

102%

130%

162%

0% 50% 100% 150% 200% 250%

22 manual

14/8manual

Stripe22 (8k)

Stripe22 (1M)

Stripe22 (64k)

Stripe12/4/4/2 (64k)

Stripe8/8/4/2 (64k)

Elapsed Time as % of the Shortest Run

Figure 5: Multi user performance

5 Summary and Conclusion

In this paper we examined the data placement problem in data warehouses and com-
pared alternative storage layouts. We presented measurements in two different sce-
narios and database systems: a TPC-H benchmark in DB2 and a star join scenario in
IBM Red Brick. The results show that for a data warehouse, the easiest and usually
the best-performing physical layout is to stripe all data evenly across all disks. Spe-
cifically, the separation of different tables or tables from their indexes can adversely
affect performance. A medium to large stripe unit size is beneficial to provide high
I/O throughput.

We believe that these guidelines are a good choice for most data warehouses.
However, an unusual workload, specific fault tolerance requirements, or a particular
storage system may require additional I/O considerations.

References

[1] P.M.Chen, E.K.Lee, G.A.Gibson, R.H.Katz, D.A.Patterson: RAID: High Performance,
Reliable Secondary Storage, ACM Computing Surveys, Vol.26(2), pp.145-185, June
1994.

[2] Compaq, Configuring Compaq RAID Technology for Database Servers, White Paper, May
1998.

[3] A.Holdsworth: Data Warehouse Performance Management Techniques, Oracle White
Paper, 1996.

Storage Layout and I/O Performance in Data Warehouses 7-9

[4] Bob Larson: Wide Thin Disk Striping, Sun Microsystems, White Paper, October 2000.
[5] Juan Loaiza: Optimal Storage Configuration Made Easy, Oracle White Paper.
[6] M.Mehta, D.DeWitt: Data Placement in shared-nothing parallel database systems, VLDB

Journal, Vol. 6, pp.53-72, 1997.
[7] B.Mellish, J.Aschoff, B.Cox, D.Seymour: IBM ESS and IBM DB2 UDB Working To-

gether, IBM Red Book, http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246262.pdf,
October 2001.

[8] Matthias Nicola: Storage Layout and I/O Performance Tuning for IBM Red Brick Data
Warehouse, IBM Developer Domain, , October 2002, http://www7b.software.ibm.com/
dmdd/zones/informix/library/techarticle/0210nicola/0210nicola.html.

[9] Peter Scheuermann, Gerhard Weikum, Peter Zabback: Data partitioning and load balanc-
ing in parallel disk systems, VLDB Journal, (7)48-66, 1998.

[10] T.Stöhr, H.Märtens, E.Rahm: Multi-Dimensional Database Allocation for Parallel Data
Warehouses, 26th VLDB Conference, September 2000.

[11] VERITAS Software, Configuring and Tuning Oracle Storage with VERITAS Database
Edition for Oracle, White Paper, 2001.

[12] Edward Whalen, Leah Schoeb: Using RAID Technology in Database Environments, Dell
Computer Magazine, Issue 3, 1999.

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246262.pdf

	4.1 Storage Layout Alternatives

