
Metamodels and Information System Engineering:
a UML-based Approach

Marie-Noëlle Terrasse, George Becker, Marinette Savonnet, and Eric Leclercq

Laboratoire LE2I, Universit´e de Bourgogne
B.P. 47870, 21078 Dijon Cedex, France

E-mail:{terrasse,becker,savonnet,leclercq}@khali.u-bourgogne.fr

Abstract. Metamodels play a major role in most modeling environments. Mo-
tivated by a survey of modelers’ practice, we show that metamodels are not a
suitable description media for modelers. We propose to build a UML-based meta-
modeling architecture which encompasses modeling paradigms (multilingual and
informal descriptions) and metamodels (monolingual and formal descriptions).

1 Introduction

Metamodels are intensively used in information system engineering. In particular, in-
formation system modeling uses metamodels for implementation of two abstraction
mechanisms (abstraction by projection and abstraction by conceptualization) with an
emphasis on abstraction by projection. The Model Driven Architecture approach em-
phasizes abstraction by conceptualization by using metamodels as classical modeling
uses models.

Abstraction by projection relies upon the principles of separation and combination
of concerns [1]. Separation of concerns is implemented through a multi-view model
which encompasses orthogonal views of the system. A “classical” example of separa-
tion of concerns is given by UML’s diagrams which offer four views of an information
system (user, structural, behavioral, and physical views). A representative description
of separation of concerns can be found in Koch & al.’s UML extension for hyperme-
dia [7] in which additional diagrams are defined for modeling of navigation within a
web site. Combination of concerns must guarantee that views are consistent which each
other and that each piece of information appears in at least one of the views.

Abstraction by conceptualization strives to structure a given description in four lay-
ers (instance, model, metamodel, and meta-metamodel layers) which we discuss below.
These layers form a metamodeling architecture. The instance and model layers have
been used in database modeling for a long time. The metamodel layer defines which
language (e.g., which modeling constructs) will be used for modeling of a specific ap-
plication domain. Representative examples of modeling construct definitions can be
found in UML extensions for synchronization [6] and Architecture Description Lan-
guages [9]. The meta-metamodel layer describes the “universe of the discourse”: how
the real world is seen (e.g., time models or spatial models), which languages are used
for description of the real world (e.g., boolean or modal logics), etc. Let us mention
two areas (namely Model Driven Architecture and interoperability of information sys-
tems) in which abstraction by conceptualization has been applied. The Model Driven



Architecture approach moves from aone model-multiple code componentsstrategy to a
one metamodel-multiple model componentsstrategy. Such a transition towards multiple
models (which lie at different levels of abstraction) facilitates evolution of informa-
tion systems. Interoperability of information systems has proposed metamodel-level
approaches. These approaches for interoperability determine main concepts of each
modeling language (e.g., O.O. classes and associations, relational tables and keys, etc)
and they organize these concepts into a common structure (e.g., an inheritance hier-
archy, a graph, a lattice). See [8] for a survey of the state of the art. Such a common
structure of modeling concepts lies at the metamodel level and forms the basis on which
model translation is achieved. Falkenberg & al. [3] have proposed to organize metamod-
els into an inheritance hierarchy. Such a hierarchy is difficult to build unless we accept
certain restrictions on metamodels: in the following, we restrict ourself to metamodels
within the scope of the UML metamodel expressiveness.

Many metamodeling architectures use the UML metamodel as a core of both ab-
straction mechanisms. First, the UML metamodel is used for defining a modeling lan-
guage which can satisfy the specific needs of a given application domain. Second, the
UML metamodel is used for defining the diagrams necessary for description of an ap-
plication belonging to a given domain.

2 The role of metamodels in information system engineering

The role of metamodels has been discussed for a long time. Finally, a consensus ap-
peared (e.g., with UML and OMG) in which: 1) metamodels form the core of meta-
modeling architectures, 2) metamodels define languages (or dialects) for model de-
scriptions, 3) metamodels describe the semantics of application domains (metamodels
serve as domain ontologies). Metamodels have been also used for model validation [5,
2] and model mapping [10]. We wish to proceed further and thus study the difference
between metamodel integration and metamodel translation. In the context of interoper-
ability, it is necessary to provide a semantical basis –in terms of a metamodel– for any
kind of cooperation of information systems. Let us employ the context of geographic
information systems. Figure 1 presents chunks of cross-domain descriptions which are
related to time and space: metamodel-components, model-components, and instance-
components.

First, let us assume that all the metamodels under consideration refer to the same
time description. Thus, a common semantics for time exists and can be described by
an integrated metamodel. In this case, a cross-domain description is based upon the
integrated metamodel: transformation tools can be limited to model and instance levels.
Thus, semantical integrity of answers to user-queries is guaranteed by the integrated
metamodel.

Second, let us assume that metamodels under consideration refer to different space
descriptions (Earth space and Galactic space, respectively), and that there is no inte-
grated metamodel for space. In this case, cross-domain description needs to provide
transformation tools for space description at the metamodel, model and instance levels.
In this case, some of answers to user-queries depend on transformation tool accuracy:
the global system has no own semantics for space.



TIME SPACE

a unique time description two universes of the discourse
Earth space Galactic space

Metamodel Integrated metamodel translation �
metamodelEarth space Galactic space

Model level model translation � model translation �
date interval Clark, UTM, equatorial

Lambert, etc. coordinates

Instance level unit translation � unit translation �
hour year km light-year

reference translation � reference translation �
Hijra era Christian era Lambert I,IV B1950.0, J2000.0

Fig. 1. Metamodels: integration versus translation

Beyond metamodels’ role in information system interoperability, metamodel layer
appears to be the most promising level for combination of knowledge of modelers’
behaviors, abstract approaches to information system engineering, and formal methods.
Nevertheless, modelers do not work directly with metamodel descriptions: information
is provided to them in the form of “semi-formal” descriptions (which can be ambiguous
but tend to be more readable). We call such a description amodeling paradigm. As a
consequence, metamodels and models do not provide comprehensive information about
the actual modeling process: all the initial work (in defining modeling paradigms) has
been lost.

We have developped [11, 12] a metamodeling architecture that encompasses mod-
eling paradigms, as well as metamodels and models. Modeling paradigms describe –in
terms of concepts that are interrelated by constraints– the semantics that modelers as-
sign to the real world. Modeling paradigms are described informally: their descriptions
possibly mix several different languages: the English language, logics, the set theory,
the Z notation, etc. Modeling paradigms may use a various number of concepts, each
of them being described with more or less precision. We define a partial order between
modeling paradigms by using a subsumption relation: modeling paradigms are orga-
nized in a partially ordered set (i.e., a poset). In order to make such a two-fold de-
scription (i.e., modeling paradigms and metamodels) meaningful, the two parts of a
description must be closely related: the metamodel layer of our architecture is built as
a mirror of the poset of modeling paradigms. In this way, metamodels (and modeling
paradigms) form the core of application domain descriptions.



3 Conclusion

We believe that the extensive use of metamodels for application domain descriptions
[13] would open a “political” issue, namely the need for a new organization of domain
modeling. Modelers would be responsible for “local semantics” (i.e., for describing
their own application domain as a variation of an existing domain description). Domain
experts would be responsible for the global semantics (i.e., for validating semantical
dependencies between domain descriptions). In such a case, defining a global structure
of metamodels would become soon a major issue in information system engineering.

References

1. Jean Bezivin. On Different Interoperability Modes in Software Engineering: the Case of
Modeling Activities at OMG. InProc. of Software Engineering’98, Paris, France, 1998.

2. Aspassia Daskalopulu. Model Checking Contractual Protocols. InProc. of the 13th Annual
Conference JURIX’2000, pages 35–47, 2000.

3. E. D. Falkenberg and J.L. Han Oei. Meta Model Hierarchies from an Object-Role Modeling
Perspective. InProc. of the 1st International Conference on Object-Role Modeling, ORM-1,
Magnetic Island, Australia, 1994.

4. Constance Heitmeyer, James Kirby, Bruce Labaw, and Ramesh Bharadwaj. SCR: A Toolset
for Specifying and Analyzing Software Requirements. InProc. of the 10th Annual Confer-
ence on Computer-Aided Verification, CAV’98, pages 526–531, Vancouver, Canada, 1998.
Available at URL chacs.nrl.navy.mil/SCR.

5. José Luis Herrero, Fernando Sanchez, Fabiola Lucio, and Miguel Toro Bonilla. Changing
UML Metamodel in Order to Represent Concern Separation. ECOOP’00 Workshop 14 on
Defining a Precise Semantics for UML, Sophia Antipolis, France, 2000.

6. Nora Koch, Hubert Baumeister, Rolf Hennicker, and Luis Mandel. Extending UML for Mod-
eling Navigation and Presentation in Web Applications. InProc. of the Workshop Modeling
Web Applications in the UML, UML’00, 2000.

7. Jun Lou. Data Model Description and Translation Using the Meta-model SOME. Phd thesis,
EPFL, Lausanne, Switzerland, 1997.

8. Jason E. Robbins, Nemad Medvidovic, David F. Redmiles, and David S. Rosenblum. Inte-
grating Architecture Description Languages with a Standard Design Method. InProc. of the
1998 International Conference on Software Engineering, pages 209–218. IEEE, 1998.

9. J. Sprinkle and G. Karsai. Defining a Basis for Metamodel Driven Model Migration. InProc.
of the 9th International Conference and Workshop on the Engineering of Computer-Based
Systems. IEEE, 2002. Lund, Sweden.

10. Marie-Noëlle Terrasse. A Metamodeling Approach to Evolution. In H. Balsters, B. de Bruck,
and S. Conrad, editors,Database Schema Evolution and Meta-Modeling. Springer-Verlag,
LNCS 2065, ISBN 3-540-42272-2, 2001. 9th International Workshop on Foundations of
Models and Languages for Data and Objects, Schloss Dagstuhl, Germany, September 2000.

11. Marie-Noëlle Terrasse, Marinette Savonnet, and George Becker. An UML-metamodeling
Architecture for Interoperability of Information Systems. InProc. of the Interna-
tional Conference on Information Systems Modelling, ISM’01, 2001. Available at URL
http://www.fee.vutbr.cz/UIVT/ism/ISMprogramElEdition.htm.

12. Dániel Varró and András Pataricza. Metamodeling Mathematics: A Precise and Visual
Framework for Describing Semantics Domains of UML Models. InProc. of the 5th In-
ternational Conference on the Unified Modeling Language. Springer, LNCS 2460, 2002.
Dresden, Germany.


	Str: 
	:2321: 233
	:2331: 234
	:2341: 235
	:2351: 236



