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Abstract

Support for ontology evolution becomes extremely
important in distributed development and use of on-
tologies. Information about change can be repre-
sented in many different ways. We describe these
different representations and propose a framework
that integrates them. We show how different repre-
sentations in the framework are related by describ-
ing some techniques and heuristics that supplement
information in one representation with information
from other representations. We present an ontol-
ogy of change operations, which is the kernel of
our framework.

1 Support for Ontology Evolution

Ontologies are increasing in popularity, and researchers and
developers use them in more and more application areas. On-
tologies are used as shared vocabularies, to improve infor-
mation retrieval, or to help data integration. Neither the on-

tology development itself nor its product—the ontology—

is a single-person enterprise. Large standardized ontologies
are often developed by several researchers in parallel (e.
SUC [9]); a number of ontologies grow in the context of

peer-to-peer applications (e.g. Edutelf); other ontolo-
gies are constructed dynamicalB]. Successful applications
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Data Access: Even if data is not being transformed, if there
exists data conforming tb,;4, we often want to access
this data and interpret it correctly vig,.,. That is, we
should be able to retrieve all data that was accessible via
queries in terms o¥/,;; with queries in terms o¥/,,,.
Furthermore, instances of conceptdjy; should be in-
stances of equivalent conceptsif.,,. This task is a
very common one in the context of the Semantic Web,
where ontologies describe pieces of data on the web.

Ontology Update: When we adapt a remote ontology to
specific local needs, and the remote ontology changes,
we must propagate the changes in the remote ontology
to the adapted local ontolog$l.

Consistent Reasoning:Ontologies, being formal descrip-
tions, are often used as logical theories. When ontol-
ogy changes occur, we must analyze the changes to de-
termine whether specific axioms that were valid/ipy

are still valid inV,,.,. For example, it might be useful

to know that a change does not affect the subsumption
relationship between two concepts: Af C B is valid

in V4 itis also valid inV,,.,,. While a change in the
logical theory will always affects reasonimg genera)
answers to specific queries may remain unchanged.

g/'erification and Approval: Sometimes developers need to
verify and approve ontology changes. This situation of-
ten happens when several people are developing a cen-

of ontologies in such uncontrolled, de-centralized and dis-  tralized ontology, or when developers want to apply
tributed environments require substantial support for change ~ changes selectively. There must be a user interface that

management in ontologies and ontology evolufidh
Given an ontologyO and its two versionsy,;; andV,,¢.,,

simplifies such verification and allows developers to ac-
cept or reject specific changes, enabling execution of

a complete support for change management in an ontology ~ Some changes and rolling back of others.

environment includes support for the following tagks.

Data Transformation: When an ontology versiofV,;,; is
changed td/,,..,, data described by,;; might need to
translated to bring it in line with,,.,,. For example, if
we merge two conceptd and B from V,;; into C' in
Vihew, WE must combine instances dfand B as well.

http://suo.ieee.org/
2Note thatV,,c., is not necessarily a unique replacementifgy.

This list of tasks is not exhaustive. The tools that exist to-
day support these tasks in isolation. For example, the KAON
framework[10] supportsvolution strategigsallowing devel-
opers to specify strategies for updating data when changes in
an ontology occur. The SHOE versioning system specifies
which versions of the ontology the current versiorback-
ward compatiblewith [3]. Many ontology-editing environ-
ments (e.g., Prétg [1]) provide logs of changes between
versions. While these tools support some of the ontology-

There might be several new versions based on the old version, arR¥olution tasks, there is no interaction or sharing of informa-
all of them could exist in parallel. The labels are just used to refer tdion among the tools. However, many of these tasks require

two versions of an ontology whefé,.., has evolved from/,; 4.

the same elements in the representation of change. Imple-
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Figure 1:Two versions of a wine ontology (a and b).

mentation of support for one task can, and should, use th&,; to V,,..,. For instance, the two versions of the ontology

change information acquired for another, rather than try tanay be all the information that we have. On the other end of

determine it from scratch. Having a general framework forthe spectrum, we may have a complete and detailed represen-

ontology evolution that allows tools supporting different evo-tation of changes froriv,;; to V,,..,: both versions, a detailed

lution tasks to share change information and leverage chandeg of changes, conceptual description of changes, metadata

information obtained by other tools, will make ontology evo- about them, and so on.

lution much more efficient. The following are some of the ways to represent change in-
In this paper, we propose a framework that integrates seformation for an ontology versioW,.., (In a particular envi-

eral sources of information about ontology change. We exfonment we can have one or more of these elements in place):

plain how these different change representations are related 4 he old version of the ontology,.4 (providing thebasis
to one another and show how we can supplement information ¢, finding change information but no explicit change

in one representation with the information from other repre- information)
sentations. More specifically, this paper makes the following . .
contributions: e alog of changes applied 14,,, that result inV,,.,, (pro-

. ) viding a record of the ontology-transition process)
e We study formalisms for representing ontology change ) . . .
(Section 2). e a structural diff between versions that describes differ-

o ences between them (providing a declarative view of the
e We present a component-based framework for defining  gntology transition)

ontology change (Section 3). . .-
_ _ e a set of conceptual changes between versions (providing
 We present an ontology of basic change operations that  an explicit specification of conceptual relations between
provides the basis for inter-operations between various  concepts ir,;; and corresponding conceptsiifi..,)

components in the framework (Section 4). . . -
P ( ) e a transformation set that describes a sufficient set of

e We define complex ontology changes, which provide  change operations for the transition frdfyg to Ve
the basis for more efficient data transformation and ad-  (providing an operational view of the changes)

vanced user-interaction capabilities (Section 4). . . .
One of the easiest change representations to create, with
e We present rules and heuristics for identifying complexthe appropriate tool support, ischange logbetween ver-
changes between ontology versions (Section 5). sions. A change log records an exact sequence of changes
Throughout this paper, we use the following example tothat occurred when an ontology developer updafggto ar-
illustrate our concepts and ideas. Suppose that we are devéi¥e atView. Many ontology-editing tools, such as Rege
oping an ontology of wines. In the first version (Figure 1a),[1], OntoEdit[11] and others, record changes that develop-
there is a clas#/ine with two subclasse®ed wine andwhite €S make. There are several detailed proposals for the infor-
wine. The hierarchy also includes some specific types of rednation that logs should contain (e.g., versioning in KAON
and white wines. Figure 1b shows a later version of the sameL0l, Concordial8]). For example, the evolution framework
ontology fragment. Note the changes: we introduced a neWf KAON provides a number of “add”, “set” and “delete” op-
subclass ofvine, Rosé wine; the classes that were previously €rations. The log contains a list of specific operations, such

subclasses divhite wine—Cabernet blanc, White Zinfandel, @S ‘AddPropertyDomain” or “RemoveSubConcept” with ref-
andVin gris—are now subclasses of the new clessé wine; ~ €r€nces to the concepts or properties that they operate on.
we renamed thRiesling class toweisser Riesling. Most logs of ontology changes are quite similar to the

KAON format. They contain simple ontology changes, where
. . the level of granularity at which changes are specified is close
2 Formalisms for Representing Change to a single user-interface operation. A log is that it provides
There is a number of ways in which we can represent changa complete and unambiguous change specification at a very
information. On the one end of the spectrum of representafine level of detail. Figure 2 shows a possible log of changes
tion forms, we may have very few details about changes fronfbbetween versions from Figure 1.



Feb 25 13:36, user, changeName oldName=Riesling, newName=Weisser Riesling

changeName oldName=Riesling, newName=Rheinriesling addSuperclass child=Cabernet blanc, parent=Ros e wine
Feb 25 13:37, user, addSuperclass child=Vin gris, parent=Ros e wine
changeName oldName=Rheinriesling, newName=Weisser Riesling removeSuperclass child=Cabernet blanc, parent=White wine
Feb 25 13:37, user, removeSuperclass child=Vin gris, parent=White wine
addSuperclass child=Cabernet blanc, parent=Ros e wine
Feb 25 13:37, user, . . .
removeSuperclass child=Cabernet blanc, parent=White wine F|gure 4: A fragment of a transformation set for the example
in Figure 1.

Figure 2: A fragment of a log of changes that took place in

the example in Figure 1. ) o
a conceptual change could specify that the cl&bie wine

in V..., IS asubclassof the classwhite wine in V4. Sim-

Change logs may not always be available however. In alarly, it could specify thatRiesling in V,;q is equivalentto
dynamic and de-centralized environment such as the Sematyeisser Riesling in V,,..,. Sometimes, when a consistent in-
tic Web, we may have access only to the old and the newerpretation of already annotated datasets is essential, updates
version of an ontology, but not to the record of the changeare intentionally specified as sets of conceptual changes. For
Furthermore, change logs are less useful in an environmeriample, the EMTREE thesaurtisshich is used by Elsevier
where several editors update an ontology at the same timey index scientific publications, specifies updates by defining
interleaving the logs to find out the final effect of changes is ahat specific terms become subsumed by other terms, or that
difficult task in itself. Therefore, there are a number of waysthey became synonyms of other terms.

to represent change that reldtg, and V..., directly, with- In the OntoView systeni4], developers can augment a
out taking into account the specific sequence of changes th'E‘I’flange description with conceptual relations between frames
has actually taken place. across versions.

A structural diff [6] provides a map of correspondences A transformation set provides a set of change operations

that specify how/,;; can be transformed infdg, ... Figure 4

: o epresents one possible transformation set for versions in Figure
in Ve, (its image) or whether a frame was deleted, or &) “rq transformation set in the figure contains only basic
new frame was added. Figure 3 shows a structural diff begy o qoq: each change is a single knowledge-base operation.
tween ontology Versions n Figure 1. The structu_ral it The set can also include complex changes: for example, we
shows that the clasBosé wine was added, the classies- o, -ombine two operations that add a superclass and remove

It')'?g Waﬁ rena(;n_?d Int(Wellsser R'egl'”g’ theF;Iasg:abFé?.et a superclass for the same class into a singlee operation.
anc ¢ anlge f : s:[sulp;ﬁrc; ass, e;]n s.ot_onot PT 'tFF tIS wurdye define transformation sets formally in Section 3 and we
an example of a ool that uses Neuristcs to create a structurgly o 4,,ce pasic and complex operations in Section 4.

diff automatically. It uses persistent identifiers of the frames . o .
Y P A transformation set is different from a log in several as-

in different versions, or, if such identifiers are not present, ; . ; ;
structural relations between ontology elements. pects. First, while a log contains a recordhifthe operations
A structural diff provides aleclarativeview of changes: it ~that actually took place (including all intermediate steps) dur-
represents the mapping between versions but not the oper g the ontology-editing process, a transfor_mauon set spec-
ifies only the necessary operations to achieve the resulting

tions to get from one version to another. ; i
A set of conceptual changespecifies the conceptual re- change. Second, while a log is arderedsequence of ac-
lation between frameacrossversions, that is, the relation HONS: there is only very limited partial ordering in a transfor-
between a frame iW,;4 and the image of that frame I, .., . mation set (ma|_nly, that E.i" create” operations happen before
all other operations). Third, while a log isumiquerepresen-

In our example in Figure 1, after creating the cl&ssé tation of th tual chan ; ther nb veral (and
wine, we moved a number of classes that were previously sugiation of the actual change process, there can be several (a
often there are many) valid transformation sets for any two

classes ofvhite wine to theRosé wine subtree. In this case, .
versionsV,;q andV,,..,.

Note that if a log of changes between two ontology ver-

fl 2 renamed | operation sions consists of operations that do not undo other operations,
(C)Rosé wine No Add this log is by definition a transformation set between these
(C) Riesling (C) Weisser Riesling Yes Map two versions.
(C) Cabernet blanc (C) Cabernet blanc No Map i i . i i .
(C) Vin gris (C) Vin gris No Map The list of change representations in this section is not ex-
(C)White Zinfandel  (C)White Zinfandel  No Map haustive. For example, some systems store concept-history
(C) White wine () White wine No Map

information, associating with each concept a list of concepts
that it was derived from, whether a concept was “retired” and
ovel P —— ———— which concept replaced [8]. The systems with the primary
Change (direct) superclass changed () White wine (C) Rosé wine purpose of data transformation may store a set of operations
that is a specific “recipe” for transforming data instances.
Other ways to represent change may develop as ontology evo-
Figure 3: A table representing a fragment of the structuralution becomes more and more common.
diff between ontology versions in Figure 1 (generated by

PROMPTDIFF). 3Seehttp://www.elsevier.com/locate/emtree

(C) Wine () Wine No Map

-




conceptual : structural they need to exist in order to be used in other operations.
relations diff We also define aontology of change operatiorikat can

* constitute a transformation set. This ontology is also a central
3 element in our framework, because different tools using the

ontology V, inimal transf tion set ontology V.., ! J
| €= minimal transformation se framework must agree on the part of the ontology describing

f ‘ I basic change operations. As tools use different formalisms

3 complex for change representation for different tasks or augment infor-
change log changes mation represented in one formalism with information in an-
: other, this set of basic operations is the “common language”
ontology of that th_ey share. This re_quire_:me_nt_ to agree on a common set
change operations of basic change operations is similar to the requirement that

agents on the Semantic Web share a common ontology lan-

. . . guage, such as OWL. Defining such an standard set is not
Figure 5: A schematic representation of the framework: g regjistic: once there is a common ontology language (e.g.,
transformation set between two versions, specified with 0pgnce OWL becomes a standard), developing and agreeing on
erations from the change ontology, and possible interactiong, ontology of basic changes is doable. Essentially, an on-

with other change representations. tology of basic changes is directly related to the ontology
language itself and constitutes a set of simple operations to
3 A Framework for Ontology Evolution build an ontology in this language. We present the ontology

] ] ) of change operations in Section 4.
We now bring together the different formalisms that we de-

scribed in Section 2 in a single ontology-evolution frame-3.1 Interaction of Framework Components

work. In a distributed evolution environment, such as theAS we mentioned earlier, we often have only an incomplete
Semantic We_b, given an evolving ontology we can h_ave escription of the change, with only some of the components
someinformation about the change between two Versions of, 4 e - pifferent tools in the framework can use the avail-
0. ror;nst?g'cf(ra, :I"e may have only tue log of char;g:ﬁs, ohr Onl3é\ble representations to derive new ones. As a result, having
a structural dil. However, once we nhave Some of the Changg, yeinformation about change enables us to complete the

information, we can use additional tools to derive other infor- icture by deriving additional elements of the change descrip-
mation. For instance, we can use a log to derive a trans'fc')r'mefl)—on_ We use existing pieces of the puzzle to fill (some of) the
tion set or we can use a structural diff to derive the definition

f tual oh missing pieces. Even in the case that we cannot fill in all the
of conceptual changes. .. pieces, we might still be able to support tasks that we could
The purpose of our framework for ontology evolution is
wofold: not support before.
wotola: We now describe some of the transformations from one
1. relate the change information that is available in differ-change description to another. Tools already exist for most

ent formalisms (Section 2), and of these transformations.
2. provide mechanisms to derive new pieces of informatiorbhange log — minimal transformation set Many
from existing information. ontology-editing tools provide logs of changes (e.g., &yet

Figure 5 shows the components of the ontology-evolutiorOntoEdit). These changes are often at the level of simple
framework and some of the possible interactions betweeknowledge-base operations: adding a superclass to a class
them. or removing one. We can transform logs into transformation
The kernel of the framework is minimal transformation sets by translating the operations into our vocabulary of basic
set which provides a set of operations that are necessary arthanges (Section 4) and removing redundant changes.
sufficient to transfornV,,; into V,,..,. We already introduced
the idea of a transformation set, here we define it formally.
Definition 1 (Transformation set) Given two versions of
an ontology O, V.4 and V,.,, a transformation set
T(Voud, Vaew) is @ set of ontology-change operations that ap-

Basic changes— complex changes If we have a transfor-
mation set consisting of basic operations, we can use heuris-
tics to combine these simple operations to create complex
change operations. For instance, if we have a set of siblings in

\ . . . a class hierarchy and each of these siblings had the same class
plledbtoVoldfresuItds NVrew- Tdhe op.ek:atmns i (Vota, V”TI”) added as a superclass and the original superclass removed, we
can be performed in any order, with one exception: all 0per-. , iter that the whole set of siblings was moved from one

ations thatcreatenew classes, properties, and instances arg,,+ of the hierarchy to another. In addition to the set of basic
performed first.

A transformation SeT'(Vyya, Vsew ) is minimal if removing changes, we may need direct acces¥jg to find complex

. : . changes. We describe such heuristics in Section 5.
any operation from the set results in a set that is no longer a

transformation set front,;4 to Ve, V,1q and V.., — structural diff  If we do not have any spe-

A transformation set is not necessarily unique. The re<ific information about the change, but we have bigsly and
guirement thatcreate operations are performed first has a V,,.,,, we can compare the two versions to create automati-
very practical reason: some of the operations in the transzally a structural diff between them. For example, if concepts
formation set may refer to the newly created concepts. Thus an ontology have immutable concept ids, a simple tool can



create a diff between versions identifying for each frame Conceptual relations Finally, conceptual relations be-

in V4 its image inV,,.,,. If we do not have immutable con- tween concepts across versions facilitates data access by im-
cept ids, tools such asRRMPTDIFF[6] use a set of heuris- proving the interpretation and query of data sources that were
tics based on concept names, class-tree structure, and concépscribed with different versions of ontologies.

definitions to create a structural diff.

Structural diff — transformation set If we have a struc- 4 OntOIOgy of Change Operations

tural diff, we can use it to create more useful change descripwe have developed an ontology of change operations for the
tions. Consider for example the structural diff in Figure 3. OWL knowledge model as an example of a common language
Knowing thatRiesling becameweisser Riesling, we can add for the interaction of tools and components in our frame-
achangeName operation to the transformation set. work* The operations in this ontology are the elements for

] . the specification of @&ransformation se{Definition 1). The
Transformation set — conceptual relations If we have a  ontology consists of two parts. The basis is an ontology of
transformation set with both simple and complex operationasic change operationsand there is an extension that de-
defined between versions, we can use a set of heuristics tthhescomplex change operations We chose the set of ba-
suggest conceptual relations between frames in versions ¢ operations in such a way that the required commitment is
the user. For example, if we add a property to a class, Weninimal, while the set is still rich enough to capture enough
might suggest to the user that the new version of the class hfkﬁowledge about the change to derive new information.
become a subclass of the old version.

. _ . 4.1 Basic Change Operations
Structural diff — conceptual relations Similarly, we can . ! .
use a structural diff to derive conceptual relations. For in-Each of the basic change operations modifies onlgspe-

stance, the mappings of a structural diff directly sugges€ific feature of the OWL knowledge model.Examples of
equivalence relations betweens concepts. In fact, we haveHCh operations arardinality.change, changing the cardinal-
ity of a property restriction, oproperty_transitivity_addition,

integrated ROMPTDIFF, a tool that finds a structural diff6], : ! y- )
and OntoView, a tool for specifying conceptual relatigals ~ declaring a specific property as transitive. Altogether, we dis-
tinguish more than 80 different basic change operations.

using the information produced byrRBMPTDIFF to suggest . :
d b W 99 We model change operations as a hierarchy of classes,

initial conceptual relations in OntoView. o
We outlined some of the ways to fill in missing pieces Ofwhere each class represents a speCIflc_ type of change oper-
ion. The ontology specifies characteristics of each change

the puzzle based on the pieces that we have. However, . . Il ch | h
cannot possibly envision what future tools will exist and whatYP€ Via property restrictions. All change classes use the
from andto properties to refer to the source and target of

other ways to fill in new pieces researchers will come up with.

Moreover, there could be more potential pieces of informath€ changé.n addition, most change classes have properties

tion that we may want to have, that our picture is currentlyth@t specify an argument for a change operations. For exam-
le, one of the arguments for therdinality_change operation

missing. For example, several years ago, we might not hav@ he i #ving th dinali LY
had either structural diffs or conceptual relations between verS the integer specifying the new cardinality restriction.
By organizing the change operations in a class hierarchy,

sions in this picture. The main idea is to have this framework it the inheri hani ;
extensible. The guiding principle is “we’ll take whatever in- W& €xploit the inheritance mechanism to specify common

put we have and do the best to find out more information,” Properties of change operations in an efficient way. For ex-
ample, all changes in property restrictions require two argu-
3.2 Framework Components and Evolution Tasks ~ ments to identify the source, namely the class identifier and

Each way to represent change in our framework is useful fc)the property identifier. Since all changes in property restric-

; : . : fions are subclasses pfoperty_restriction_change, we can
some ontology evolution tasks that we listed in Section 1. easily specify this fact for all operations at once.

Minimal transformation set The minimal transformation ~ The ontology of basic changes contains “add” and “delete”
set provides an operational view of the change. Thus wéperations for each feature of the OWL knowledge model.
can use it for translation of other ontologies, for reversingThis set of operations ensures the completeness of the on-

changes, and as a starting point for data translation. tology of basic changes since it is sufficient for defining a
transformation set from any ontolody;; to any other ontol-

Complex changes Together with the minimal transforma- ogy V,,..,. While not being the most useful or efficient, such
tion set, we can use the complex operations to create dat@&ansformation set can contain the operations that delete all
transformation scripts. Also, complex changes allow us taelements if/,;; and then add all elements ., .

determine in more detail the effect of changes on data ac- The ontology of basic changes also contains ‘modify’ op-
cessibility and specific logical queries. Moreover, visualizingerations, which specify that an old value is replaced by a new
complex rather than basic changes, makes validation and apalue. For example, snge_change operation specifies that
proval tasks much easier for users.

) . i ) *A snapshot of a recent version of this ontology can be found at
Structural diff A structural diff is also useful for visualiz- http://ontoview.org/changes/1/3/

ing differences between ontologies. In addition, it is an es-  5Seehttp://www.w3.0rg/TR/owl-features/ .
sential information source for most of the supplementation SAdditions and removals of classes or properties are the only ex-
techniques that are described in the next section. ceptions, since they only have one of these two properties.



Relationship Superciass

M EIETES

§ (C) Class change - |
Q@ class equivalence change
(Tl class equivalence added
®'©class equivalence modified
class equivalence removed
& (C) metaclass changed
o @Slutrestriction change
@ @cardinaliw chanoe
@ (T lowerbound change ®
@ cardinality lowerbound added
Lo @ cardinality lowerbound modified
() cardinality lowerbound removed

@ equivalence changed to subproperty

T equivalence changed to superproperty

@ﬁller changed to subclass

@ﬁller changed to superclass

T inverse changed to subproperty

@ imverse changed to superproperty

@ merge multiple siblings into single class
metaclass changed to subclass

@ metaclass changed to superclass

@ move a set of siblings

T move a set of siblings to a new subclass

@ move a subtree

@ move slots from one class to a new refering class |«

| »

®'©upperbuund change
@Slotrestrictiun added
'3"@slotrestrictinnﬂllermndiﬂed
@ slotrestriction removed
L2 @Slotrestrictiun type change‘“
@'Wpecnangegfa”Va“:fTFmrF” e First, we can use complex operations to improve the
o @Supemggiﬁh:zgg o sumevaueshTom user interface for the task of verifying and approving
(C) superclass added = changes. Quite often, an ontology editor performs a
number of changes that are all part of one “conceptual’
operation. Some complex operations, lgdging_move,
capture this knowledge. Visualizing these operations

helps the user to verify modifications.

e Second, knowing complex operations, we can transform
instance data with less data loss. For example, consider
the move of a class: if we just had the “remove class”
and “add class” operations, we will loose all instances
of that class; knowing that the class was moved allows
to move the instance data, too.

Figure 7: A (non-hierarchical) list of some complex change
operations.

Figure 6: Some of the basic change operations.

the filler of the range of a property has changed. We can form
these operations by combing a ‘delete’ and an ‘add’ opera-
tion. However, we have included them in the ontology of
basic changes because this information will often be avail-
able. For instance, logs of changes provided by tools will of-
ten contain information on modifications. ‘Modify’ operation
classes have properties for both old and new values, which
give a reversible specification of the modification. Figure 6 e Finally, knowing complex operations enables us to de-
shows a screenshot with some basic changes. termine the effect of operations more precisely. If we
only know that the range of a property has changed, we
4.2 Complex Change Operations cannot tell anything about the effect on data. However,

In addition to the basic change operations, the ontology of  if we know that the range of the propertyéislarged we

change operations also contains complex change operations, Know that all old instance data is still valid.

Complex change operations are operations that are composedif we know a set of basic change operations, we can use

of multiple basic operations or that incorporate some addia set of rules and heuristics émrichthe basic changes with

tional knowledge about the change. complex ones. We describe some of thesechmeniproce-
Complex operations thus provide a mechanism for groupelures in Section 5.

ing a number of basic operations that together constitute The set of complex change operations is never finished

a logical entity. For example, a complex operatisih-  or complete. It is always possible to define new complex

lings_move consists of several changes of superclass relationghanges that are useful in some setting. At the same time,
Complex changes could also incorporate information abou& specific application does not have to use (or commit to) all

the implication of the operation on the logical model of the complex change operations. The set of basic operations is

ontology. For example, a complex change might specify thatlready sufficient to specify all possible transformations.

the range of a property isnlarged that is, that the filler of . e :

the range changed to a superclass of the original filler. T&XePresenting actual modifications By using an ontology

identify such changes, we need to query the logical theory of structure the operations, we do not need to define a syntax

the ontology. In contrast, basic changes can be detected gr the representation of actual changes. Instead, we can use

analyzing the structure only. the representation format that comes with the ontology lan-
We define the ontology of complex changes as an exter@Uag¢€ that we use. Our onEology of basic change operations

sion of the ontology of basic changes. We model specifit!SéS RDF Schema as the “ontology langudgeTherefore

variants of a basic change as subclasses of the basic char@‘é‘uaI changes can be represented as RDF data. Because both
class. For example, the basic chamsggerclass_change has ur ontology of changes and OWL itself can be represented

two subclassessuperclass_changed-to_superclass and su- "We used RDF Schema instead of OWL because the expressivity

perclass_changed_to_subclass. Figure 7 shows a number of 4t RpF Schema was sufficient to capture the main aspects of the
complex operations in our ontology. _ontology (the hierarchy of operations and their properties) In fact,

Knowing complex operations rather than only the basichecause RDF Schema is a subset of OWL, we can also say that our
ones has a number of benefits. ontology is represented in OWL



in RDF it is very simple to represent complex arguments. Thea propertyP was changed fromd’; to Cs. If we have access
RDF representation of the complex argument can just be into V4, we can check whethérs is a subclass of'; in V.

serted as value of a property in our ontology. If it is, then the range of the properfy was restricted. As a
result, for example, some instances that use this property may
5 Finding Complex Operations become invalid). On the other hand, if we know tligtis a

Existing tools that currently do provide change informati nsuperclass)f C1 in V4, we also know that the range of the
sting 1oois that currently do provide change information, roperty P has become less restrictive (another complex op-

?suall[{g]o 'wt the level o1‘t|ba5|c|§hangets, (el'gf" I(_)é;s ?f OP€T3aration). If our task is data transformation, we can conclude
lons )- We are currently working on tools for identifying that no instances were affected. Therefore, if all we have, for

and_presenting complex operations based on a set of basic o@)iample, aréd/,..,, and a transformation set with basic oper-

we can Use a set of rules to generate a complex change fro%é[ions’ these are the complex operations we will not be able
a set of basic changes (Section 5.1). For other changes, identify. Restricting a range of a property is an example of

may not have a definitive set of rules for finding the cong%Ch operation.

plex changes and will need to use heuristics to determine ig 2 Addina Uncertainty to Finding Complex
a complex change occurred (Section 5.2). In the rest of this” 0 9 y 9 P

; perations
section we sketch some of the approaches for supplement- _ _ _ .
ing change description with complex operations that we ardVhile we can precisely identify when a group of sibling
working on. However, as with everything else in the frame-classes was moved to a new place in the class hierarchy, some
work, these rules and heuristics can be extended with addpther complex operations in practice may not have such pre-

tional ones that other tools provide. cise definitions and may require a set of rules involving un-
certainty to determine if the complex operation has occurred.

5.1 Using combination rules to find complex In other words, while in principle we can specify a precise
operations set of rules to determine when a complex operation occurs,

Consider again the example in Figure 1. And consider thd" Practice additional changes in the ontology involving the
change to the classes that were subclass&ghit wine in same concepts, may make a decision that a complex change
V,.a and became subclassesRifsé wine in V,,.,,. We as- has occurred less clear-cut. . _

sume that we have an instantiated ontology of basic changes Consider for example the following operation: group a set

between the two versions. We can view this change as a séf siblings to create a new superclass (create a new abstrac-
of several basic operations: tion). We would have such an example if we grouped thé ros

wines in Figure la together to create tasé wine class, but

1. add a superclass relation betw&aisé wine andVin gris have left this new class as a subclassvbite wine

2. remove a superclass relation betwseéngris andwhite In the ideal case, we have the following conditions that de-
wine scribe the case when such an operation has occurred:

3. repeat the same for class@sabernet blanc and White 1. A class C € V,; has n direct subclasses:
Ziinfandel subCh, subCsq, - - -, subCl,

If we look at this set of operations conceptually, we cansee 5 There is a classewC < V... such that:
that a complex operation was performed: a set of siblings was new

moved to a different location in the class hierarchy. Note that e newC'is a direct subclass «f
there are two levels of “enrichment” that we can identify in o V subC € V.., such thasubC; is a direct subclass
this example. First, we can recognize the “add superclass’— of newC, subC; was a direct subclass 6f in V4

“remove superclass” sequence for each of the clagsagis,
Cabernet blanc, andWhite Ziinfandel as amove in the tree.
Second, we can recognize théh gris, Cabernet blanc, and
e S oo " apdcuc. T, we can rphrase th condiions fon

The set of rules to recognize this change is rather simple"?lbove defining the heuristic to the following form:
as long as we know that the cladsin the V,,.,, is the same e newC is a subclass of' (not necessarily direct)
as the classA in V4 (this information is readily available .
in a structural diff) and their superclasses are different, we * Arzgng thbecdlrect sutl))gassesmfwc*, mostcome from
can identify a “move” operation. To recognize that a set of "V~ SUPt2, 70, SUOLm
siblings was moved together, we compare arguments to the We need to determine empirically what is a practical value
“move” operations. If theo andfrom arguments for a set of for most Our heuristic rule could say that more than 50% of
“move” operations are the same, we have a “move siblings’subclasses afewC must be former subclasses@f or that
operation. there is at most one level of classes betw€esmdnewC.

For some complex operations, just having a set of basic op- Determining whether a class was split or two classes were
erations and access ¥§,.,, is not sufficient to determine that merged into a single class has to rely on such heuristics even
the complex operation has occurred. We may also need tmore unless an ontology-editing tool provides the merge and
have direct access 1d,;;. Suppose we know that a range of split operations directly and records them in the log. By just

However, the user may have also, for example, added other
subclasses tacwC' (e.g., adding new types of reswines).
He may have also added another level of classes bet@een



looking at two versions of an ontology and even at the transWe will need to build translators from existing change repre-
formation set including simple operations, it is often hard,sentations, such as change logs provided by specific tools to
if not impossible, to determine whether either of these opthe vocabulary of basic changes. A crucial feature of the our
erations has occurred. However, if we have some additiondtamework is its extendability: it is always possible to define
information, we may be able to identify such complex op-new interesting complex changes, new heuristics, or new and
eration in some cases. In particular, if concepts have sets afiore complete ways of filling in missing change representa-
instances associated with them or sets of properties that difféions from available ones. Finally, we need change represen-
significantly, we can have the following set of heuristic rulestations to build tools to support various evolution tasks. The
more complete representation of change enables us to build
better, more robust and more efficient tools.

(for merge in this example):

1. AclassC € V,;4 has subclasses:bC; andsubCs; I
andI, are sets of instances ofbC, andsubC5; S; and
S, are sets of properties feubC; andsubCs.

2. The clasg” € V,.., has a subclassubC'; I is a set of
instances ofubC; S is a set of properties forubC and
the following is true:

e Tissimilartol; |JI>
e Sissimilarto Sy | S
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Here again we need to determine empirically the meaning-
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We define the same set of rules and need to answer the
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