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Abstract

Support for ontology evolution becomes extremely
important in distributed development and use of on-
tologies. Information about change can be repre-
sented in many different ways. We describe these
different representations and propose a framework
that integrates them. We show how different repre-
sentations in the framework are related by describ-
ing some techniques and heuristics that supplement
information in one representation with information
from other representations. We present an ontol-
ogy of change operations, which is the kernel of
our framework.

1 Support for Ontology Evolution
Ontologies are increasing in popularity, and researchers and
developers use them in more and more application areas. On-
tologies are used as shared vocabularies, to improve infor-
mation retrieval, or to help data integration. Neither the on-
tology development itself nor its product—the ontology—
is a single-person enterprise. Large standardized ontologies
are often developed by several researchers in parallel (e.g.
SUO1 [9]); a number of ontologies grow in the context of
peer-to-peer applications (e.g. Edutella[5]); other ontolo-
gies are constructed dynamically[2]. Successful applications
of ontologies in such uncontrolled, de-centralized and dis-
tributed environments require substantial support for change
management in ontologies and ontology evolution[7].

Given an ontologyO and its two versions,Vold andVnew,
a complete support for change management in an ontology
environment includes support for the following tasks.2

Data Transformation: When an ontology versionVold is
changed toVnew, data described byVold might need to
translated to bring it in line withVnew. For example, if
we merge two conceptsA andB from Vold into C in
Vnew, we must combine instances ofA andB as well.

1http://suo.ieee.org/
2Note thatVnew is not necessarily a unique replacement forVold.

There might be several new versions based on the old version, and
all of them could exist in parallel. The labels are just used to refer to
two versions of an ontology whereVnew has evolved fromVold.

Data Access:Even if data is not being transformed, if there
exists data conforming toVold, we often want to access
this data and interpret it correctly viaVnew. That is, we
should be able to retrieve all data that was accessible via
queries in terms ofVold with queries in terms ofVnew.
Furthermore, instances of concepts inVold should be in-
stances of equivalent concepts inVnew. This task is a
very common one in the context of the Semantic Web,
where ontologies describe pieces of data on the web.

Ontology Update: When we adapt a remote ontology to
specific local needs, and the remote ontology changes,
we must propagate the changes in the remote ontology
to the adapted local ontology[8].

Consistent Reasoning:Ontologies, being formal descrip-
tions, are often used as logical theories. When ontol-
ogy changes occur, we must analyze the changes to de-
termine whether specific axioms that were valid inVold

are still valid inVnew. For example, it might be useful
to know that a change does not affect the subsumption
relationship between two concepts: ifA v B is valid
in Vold it is also valid inVnew. While a change in the
logical theory will always affects reasoningin general,
answers to specific queries may remain unchanged.

Verification and Approval: Sometimes developers need to
verify and approve ontology changes. This situation of-
ten happens when several people are developing a cen-
tralized ontology, or when developers want to apply
changes selectively. There must be a user interface that
simplifies such verification and allows developers to ac-
cept or reject specific changes, enabling execution of
some changes and rolling back of others.

This list of tasks is not exhaustive. The tools that exist to-
day support these tasks in isolation. For example, the KAON
framework[10] supportsevolution strategies, allowing devel-
opers to specify strategies for updating data when changes in
an ontology occur. The SHOE versioning system specifies
which versions of the ontology the current version isback-
ward compatiblewith [3]. Many ontology-editing environ-
ments (e.g., Protéǵe [1]) provide logs of changes between
versions. While these tools support some of the ontology-
evolution tasks, there is no interaction or sharing of informa-
tion among the tools. However, many of these tasks require
the same elements in the representation of change. Imple-
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Figure 1:Two versions of a wine ontology (a and b).

mentation of support for one task can, and should, use the
change information acquired for another, rather than try to
determine it from scratch. Having a general framework for
ontology evolution that allows tools supporting different evo-
lution tasks to share change information and leverage change
information obtained by other tools, will make ontology evo-
lution much more efficient.

In this paper, we propose a framework that integrates sev-
eral sources of information about ontology change. We ex-
plain how these different change representations are related
to one another and show how we can supplement information
in one representation with the information from other repre-
sentations. More specifically, this paper makes the following
contributions:

• We study formalisms for representing ontology change
(Section 2).

• We present a component-based framework for defining
ontology change (Section 3).

• We present an ontology of basic change operations that
provides the basis for inter-operations between various
components in the framework (Section 4).

• We define complex ontology changes, which provide
the basis for more efficient data transformation and ad-
vanced user-interaction capabilities (Section 4).

• We present rules and heuristics for identifying complex
changes between ontology versions (Section 5).

Throughout this paper, we use the following example to
illustrate our concepts and ideas. Suppose that we are devel-
oping an ontology of wines. In the first version (Figure 1a),
there is a classWine with two subclasses,Red wine andWhite
wine. The hierarchy also includes some specific types of red
and white wines. Figure 1b shows a later version of the same
ontology fragment. Note the changes: we introduced a new
subclass ofWine, Rosé wine; the classes that were previously
subclasses ofWhite wine—Cabernet blanc, White Zinfandel,
andVin gris—are now subclasses of the new classRosé wine;
we renamed theRiesling class toWeisser Riesling.

2 Formalisms for Representing Change
There is a number of ways in which we can represent change
information. On the one end of the spectrum of representa-
tion forms, we may have very few details about changes from

Vold to Vnew. For instance, the two versions of the ontology
may be all the information that we have. On the other end of
the spectrum, we may have a complete and detailed represen-
tation of changes fromVold to Vnew: both versions, a detailed
log of changes, conceptual description of changes, metadata
about them, and so on.

The following are some of the ways to represent change in-
formation for an ontology versionVnew (In a particular envi-
ronment we can have one or more of these elements in place):

• the old version of the ontologyVold (providing thebasis
for finding change information but no explicit change
information)

• a log of changes applied toVold that result inVnew (pro-
viding a record of the ontology-transition process)

• a structural diff between versions that describes differ-
ences between them (providing a declarative view of the
ontology transition)

• a set of conceptual changes between versions (providing
an explicit specification of conceptual relations between
concepts inVold and corresponding concepts inVnew)

• a transformation set that describes a sufficient set of
change operations for the transition fromVold to Vnew

(providing an operational view of the changes)

One of the easiest change representations to create, with
the appropriate tool support, is achange logbetween ver-
sions. A change log records an exact sequence of changes
that occurred when an ontology developer updatedVold to ar-
rive at Vnew. Many ontology-editing tools, such as Protéǵe
[1], OntoEdit[11] and others, record changes that develop-
ers make. There are several detailed proposals for the infor-
mation that logs should contain (e.g., versioning in KAON
[10], Concordia[8]). For example, the evolution framework
of KAON provides a number of “add”, “set” and “delete” op-
erations. The log contains a list of specific operations, such
as “AddPropertyDomain” or “RemoveSubConcept” with ref-
erences to the concepts or properties that they operate on.

Most logs of ontology changes are quite similar to the
KAON format. They contain simple ontology changes, where
the level of granularity at which changes are specified is close
to a single user-interface operation. A log is that it provides
a complete and unambiguous change specification at a very
fine level of detail. Figure 2 shows a possible log of changes
between versions from Figure 1.



Feb 25 13:36, user,
changeName oldName=Riesling, newName=Rheinriesling

Feb 25 13:37, user,
changeName oldName=Rheinriesling, newName=Weisser Riesling

Feb 25 13:37, user,
addSuperclass child=Cabernet blanc, parent=Ros é wine

Feb 25 13:37, user,
removeSuperclass child=Cabernet blanc, parent=White wine

Figure 2: A fragment of a log of changes that took place in
the example in Figure 1.

Change logs may not always be available however. In a
dynamic and de-centralized environment such as the Seman-
tic Web, we may have access only to the old and the new
version of an ontology, but not to the record of the change.
Furthermore, change logs are less useful in an environment
where several editors update an ontology at the same time:
interleaving the logs to find out the final effect of changes is a
difficult task in itself. Therefore, there are a number of ways
to represent change that relateVold andVnew directly, with-
out taking into account the specific sequence of changes that
has actually taken place.

A structural diff [6] provides a map of correspondences
between frames inVold and Vnew. For each from inVold,
it identifies whether or not there is a corresponding frame
in Vnew (its image) or whether a frame was deleted, or a
new frame was added. Figure 3 shows a structural diff be-
tween ontology versions in Figure 1. The structural diff
shows that the classRosé wine was added, the classRies-
ling was renamed intoWeisser Riesling, the classCabernet
blanc changed its superclass, and so on. PROMPTDIFF [6] is
an example of a tool that uses heuristics to create a structural
diff automatically. It uses persistent identifiers of the frames
in different versions, or, if such identifiers are not present,
structural relations between ontology elements.

A structural diff provides adeclarativeview of changes: it
represents the mapping between versions but not the opera-
tions to get from one version to another.

A set of conceptual changesspecifies the conceptual re-
lation between framesacrossversions, that is, the relation
between a frame inVold and the image of that frame inVnew.
In our example in Figure 1, after creating the classRosé
wine, we moved a number of classes that were previously sub-
classes ofWhite wine to theRosé wine subtree. In this case,

Figure 3: A table representing a fragment of the structural
diff between ontology versions in Figure 1 (generated by
PROMPTDIFF).

changeName oldName=Riesling, newName=Weisser Riesling
addSuperclass child=Cabernet blanc, parent=Ros é wine
addSuperclass child=Vin gris, parent=Ros é wine
removeSuperclass child=Cabernet blanc, parent=White wine
removeSuperclass child=Vin gris, parent=White wine

Figure 4: A fragment of a transformation set for the example
in Figure 1.

a conceptual change could specify that the classWhite wine
in Vnew is a subclassof the classWhite wine in Vold. Sim-
ilarly, it could specify thatRiesling in Vold is equivalentto
Weisser Riesling in Vnew. Sometimes, when a consistent in-
terpretation of already annotated datasets is essential, updates
are intentionally specified as sets of conceptual changes. For
example, the EMTREE thesaurus,3 which is used by Elsevier
to index scientific publications, specifies updates by defining
that specific terms become subsumed by other terms, or that
they became synonyms of other terms.

In the OntoView system[4], developers can augment a
change description with conceptual relations between frames
across versions.

A transformation set provides a set of change operations
that specify howVold can be transformed intoVnew. Figure 4
presents one possible transformation set for versions in Figure
1. The transformation set in the figure contains only basic
changes: each change is a single knowledge-base operation.
The set can also include complex changes: for example, we
can combine two operations that add a superclass and remove
a superclass for the same class into a singlemove operation.
We define transformation sets formally in Section 3 and we
introduce basic and complex operations in Section 4.

A transformation set is different from a log in several as-
pects. First, while a log contains a record ofall the operations
that actually took place (including all intermediate steps) dur-
ing the ontology-editing process, a transformation set spec-
ifies only the necessary operations to achieve the resulting
change. Second, while a log is anorderedsequence of ac-
tions, there is only very limited partial ordering in a transfor-
mation set (mainly, that all “create” operations happen before
all other operations). Third, while a log is auniquerepresen-
tation of the actual change process, there can be several (and
often there are many) valid transformation sets for any two
versionsVold andVnew.

Note that if a log of changes between two ontology ver-
sions consists of operations that do not undo other operations,
this log is by definition a transformation set between these
two versions.

The list of change representations in this section is not ex-
haustive. For example, some systems store concept-history
information, associating with each concept a list of concepts
that it was derived from, whether a concept was “retired” and
which concept replaced it[8]. The systems with the primary
purpose of data transformation may store a set of operations
that is a specific “recipe” for transforming data instances.
Other ways to represent change may develop as ontology evo-
lution becomes more and more common.

3Seehttp://www.elsevier.com/locate/emtree .
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3 A Framework for Ontology Evolution
We now bring together the different formalisms that we de-
scribed in Section 2 in a single ontology-evolution frame-
work. In a distributed evolution environment, such as the
Semantic Web, given an evolving ontologyO, we can have
someinformation about the change between two versions of
O. For instance, we may have only the log of changes, or only
a structural diff. However, once we have some of the change
information, we can use additional tools to derive other infor-
mation. For instance, we can use a log to derive a transforma-
tion set or we can use a structural diff to derive the definition
of conceptual changes.

The purpose of our framework for ontology evolution is
twofold:

1. relate the change information that is available in differ-
ent formalisms (Section 2), and

2. provide mechanisms to derive new pieces of information
from existing information.

Figure 5 shows the components of the ontology-evolution
framework and some of the possible interactions between
them.

The kernel of the framework is aminimal transformation
set, which provides a set of operations that are necessary and
sufficient to transformVold into Vnew. We already introduced
the idea of a transformation set, here we define it formally.
Definition 1 (Transformation set) Given two versions of
an ontology O, Vold and Vnew, a transformation set
T (Vold, Vnew) is a set of ontology-change operations that ap-
plied toVold results inVnew. The operations inT (Vold, Vnew)
can be performed in any order, with one exception: all oper-
ations thatcreatenew classes, properties, and instances are
performed first.

A transformation setT (Vold, Vnew) is minimal if removing
any operation from the set results in a set that is no longer a
transformation set fromVold to Vnew.

A transformation set is not necessarily unique. The re-
quirement thatcreate operations are performed first has a
very practical reason: some of the operations in the trans-
formation set may refer to the newly created concepts. Thus

they need to exist in order to be used in other operations.
We also define anontology of change operationsthat can

constitute a transformation set. This ontology is also a central
element in our framework, because different tools using the
framework must agree on the part of the ontology describing
basic change operations. As tools use different formalisms
for change representation for different tasks or augment infor-
mation represented in one formalism with information in an-
other, this set of basic operations is the “common language”
that they share. This requirement to agree on a common set
of basic change operations is similar to the requirement that
agents on the Semantic Web share a common ontology lan-
guage, such as OWL. Defining such an standard set is not
unrealistic: once there is a common ontology language (e.g.,
once OWL becomes a standard), developing and agreeing on
an ontology of basic changes is doable. Essentially, an on-
tology of basic changes is directly related to the ontology
language itself and constitutes a set of simple operations to
build an ontology in this language. We present the ontology
of change operations in Section 4.

3.1 Interaction of Framework Components
As we mentioned earlier, we often have only an incomplete
description of the change, with only some of the components
in place. Different tools in the framework can use the avail-
able representations to derive new ones. As a result, having
someinformation about change enables us to complete the
picture by deriving additional elements of the change descrip-
tion. We use existing pieces of the puzzle to fill (some of) the
missing pieces. Even in the case that we cannot fill in all the
pieces, we might still be able to support tasks that we could
not support before.

We now describe some of the transformations from one
change description to another. Tools already exist for most
of these transformations.

Change log → minimal transformation set Many
ontology-editing tools provide logs of changes (e.g., Protéǵe,
OntoEdit). These changes are often at the level of simple
knowledge-base operations: adding a superclass to a class
or removing one. We can transform logs into transformation
sets by translating the operations into our vocabulary of basic
changes (Section 4) and removing redundant changes.

Basic changes→ complex changes If we have a transfor-
mation set consisting of basic operations, we can use heuris-
tics to combine these simple operations to create complex
change operations. For instance, if we have a set of siblings in
a class hierarchy and each of these siblings had the same class
added as a superclass and the original superclass removed, we
can infer that the whole set of siblings was moved from one
part of the hierarchy to another. In addition to the set of basic
changes, we may need direct access toVold to find complex
changes. We describe such heuristics in Section 5.

Vold andVnew → structural diff If we do not have any spe-
cific information about the change, but we have bothVold and
Vnew, we can compare the two versions to create automati-
cally a structural diff between them. For example, if concepts
in an ontology have immutable concept ids, a simple tool can



create a diff between versions identifying for each frameF
in Vold its image inVnew. If we do not have immutable con-
cept ids, tools such as PROMPTDIFF[6] use a set of heuris-
tics based on concept names, class-tree structure, and concept
definitions to create a structural diff.

Structural diff → transformation set If we have a struc-
tural diff, we can use it to create more useful change descrip-
tions. Consider for example the structural diff in Figure 3.
Knowing thatRiesling becameWeisser Riesling, we can add
a changeName operation to the transformation set.

Transformation set → conceptual relations If we have a
transformation set with both simple and complex operations
defined between versions, we can use a set of heuristics to
suggest conceptual relations between frames in versions to
the user. For example, if we add a property to a class, we
might suggest to the user that the new version of the class has
become a subclass of the old version.

Structural diff → conceptual relations Similarly, we can
use a structural diff to derive conceptual relations. For in-
stance, the mappings of a structural diff directly suggest
equivalence relations betweens concepts. In fact, we have
integrated PROMPTDIFF, a tool that finds a structural diff[6],
and OntoView, a tool for specifying conceptual relations[4],
using the information produced by PROMPTDIFF to suggest
initial conceptual relations in OntoView.

We outlined some of the ways to fill in missing pieces of
the puzzle based on the pieces that we have. However, we
cannot possibly envision what future tools will exist and what
other ways to fill in new pieces researchers will come up with.
Moreover, there could be more potential pieces of informa-
tion that we may want to have, that our picture is currently
missing. For example, several years ago, we might not have
had either structural diffs or conceptual relations between ver-
sions in this picture. The main idea is to have this framework
extensible. The guiding principle is “we’ll take whatever in-
put we have and do the best to find out more information.”

3.2 Framework Components and Evolution Tasks
Each way to represent change in our framework is useful for
some ontology evolution tasks that we listed in Section 1.

Minimal transformation set The minimal transformation
set provides an operational view of the change. Thus we
can use it for translation of other ontologies, for reversing
changes, and as a starting point for data translation.

Complex changes Together with the minimal transforma-
tion set, we can use the complex operations to create data-
transformation scripts. Also, complex changes allow us to
determine in more detail the effect of changes on data ac-
cessibility and specific logical queries. Moreover, visualizing
complex rather than basic changes, makes validation and ap-
proval tasks much easier for users.

Structural diff A structural diff is also useful for visualiz-
ing differences between ontologies. In addition, it is an es-
sential information source for most of the supplementation
techniques that are described in the next section.

Conceptual relations Finally, conceptual relations be-
tween concepts across versions facilitates data access by im-
proving the interpretation and query of data sources that were
described with different versions of ontologies.

4 Ontology of Change Operations
We have developed an ontology of change operations for the
OWL knowledge model as an example of a common language
for the interaction of tools and components in our frame-
work.4 The operations in this ontology are the elements for
the specification of atransformation set(Definition 1). The
ontology consists of two parts. The basis is an ontology of
basic change operationsand there is an extension that de-
finescomplex change operations. We chose the set of ba-
sic operations in such a way that the required commitment is
minimal, while the set is still rich enough to capture enough
knowledge about the change to derive new information.

4.1 Basic Change Operations
Each of the basic change operations modifies onlyonespe-
cific feature of the OWL knowledge model.5 Examples of
such operations arecardinality change, changing the cardinal-
ity of a property restriction, orproperty transitivity addition,
declaring a specific property as transitive. Altogether, we dis-
tinguish more than 80 different basic change operations.

We model change operations as a hierarchy of classes,
where each class represents a specific type of change oper-
ation. The ontology specifies characteristics of each change
type via property restrictions. All change classes use the
from and to properties to refer to the source and target of
the change.6 In addition, most change classes have properties
that specify an argument for a change operations. For exam-
ple, one of the arguments for thecardinality change operation
is the integer specifying the new cardinality restriction.

By organizing the change operations in a class hierarchy,
we exploit the inheritance mechanism to specify common
properties of change operations in an efficient way. For ex-
ample, all changes in property restrictions require two argu-
ments to identify the source, namely the class identifier and
the property identifier. Since all changes in property restric-
tions are subclasses ofproperty restriction change, we can
easily specify this fact for all operations at once.

The ontology of basic changes contains “add” and “delete”
operations for each feature of the OWL knowledge model.
This set of operations ensures the completeness of the on-
tology of basic changes since it is sufficient for defining a
transformation set from any ontologyVold to any other ontol-
ogy Vnew. While not being the most useful or efficient, such
transformation set can contain the operations that delete all
elements inVold and then add all elements inVnew.

The ontology of basic changes also contains ‘modify’ op-
erations, which specify that an old value is replaced by a new
value. For example, arange change operation specifies that

4A snapshot of a recent version of this ontology can be found at
http://ontoview.org/changes/1/3/ .

5Seehttp://www.w3.org/TR/owl-features/ .
6Additions and removals of classes or properties are the only ex-

ceptions, since they only have one of these two properties.



Figure 6: Some of the basic change operations.

the filler of the range of a property has changed. We can form
these operations by combing a ‘delete’ and an ‘add’ opera-
tion. However, we have included them in the ontology of
basic changes because this information will often be avail-
able. For instance, logs of changes provided by tools will of-
ten contain information on modifications. ‘Modify’ operation
classes have properties for both old and new values, which
give a reversible specification of the modification. Figure 6
shows a screenshot with some basic changes.

4.2 Complex Change Operations
In addition to the basic change operations, the ontology of
change operations also contains complex change operations.
Complex change operations are operations that are composed
of multiple basic operations or that incorporate some addi-
tional knowledge about the change.

Complex operations thus provide a mechanism for group-
ing a number of basic operations that together constitute
a logical entity. For example, a complex operationsib-
lings move consists of several changes of superclass relations.

Complex changes could also incorporate information about
the implication of the operation on the logical model of the
ontology. For example, a complex change might specify that
the range of a property isenlarged, that is, that the filler of
the range changed to a superclass of the original filler. To
identify such changes, we need to query the logical theory of
the ontology. In contrast, basic changes can be detected by
analyzing the structure only.

We define the ontology of complex changes as an exten-
sion of the ontology of basic changes. We model specific
variants of a basic change as subclasses of the basic change
class. For example, the basic changesuperclass change has
two subclasses:superclass changed to superclass and su-
perclass changed to subclass. Figure 7 shows a number of
complex operations in our ontology.

Knowing complex operations rather than only the basic
ones has a number of benefits.

Figure 7: A (non-hierarchical) list of some complex change
operations.

• First, we can use complex operations to improve the
user interface for the task of verifying and approving
changes. Quite often, an ontology editor performs a
number of changes that are all part of one “conceptual”
operation. Some complex operations, likesibling move,
capture this knowledge. Visualizing these operations
helps the user to verify modifications.

• Second, knowing complex operations, we can transform
instance data with less data loss. For example, consider
the move of a class: if we just had the “remove class”
and “add class” operations, we will loose all instances
of that class; knowing that the class was moved allows
to move the instance data, too.

• Finally, knowing complex operations enables us to de-
termine the effect of operations more precisely. If we
only know that the range of a property has changed, we
cannot tell anything about the effect on data. However,
if we know that the range of the property isenlarged, we
know that all old instance data is still valid.

If we know a set of basic change operations, we can use
a set of rules and heuristics toenrich the basic changes with
complex ones. We describe some of theseenrichmentproce-
dures in Section 5.

The set of complex change operations is never finished
or complete. It is always possible to define new complex
changes that are useful in some setting. At the same time,
a specific application does not have to use (or commit to) all
complex change operations. The set of basic operations is
already sufficient to specify all possible transformations.

Representing actual modifications By using an ontology
to structure the operations, we do not need to define a syntax
for the representation of actual changes. Instead, we can use
the representation format that comes with the ontology lan-
guage that we use. Our ontology of basic change operations
uses RDF Schema as the “ontology language.”7. Therefore
actual changes can be represented as RDF data. Because both
our ontology of changes and OWL itself can be represented

7We used RDF Schema instead of OWL because the expressivity
of RDF Schema was sufficient to capture the main aspects of the
ontology (the hierarchy of operations and their properties) In fact,
because RDF Schema is a subset of OWL, we can also say that our
ontology is represented in OWL



in RDF it is very simple to represent complex arguments. The
RDF representation of the complex argument can just be in-
serted as value of a property in our ontology.

5 Finding Complex Operations
Existing tools that currently do provide change information,
usually do it at the level of basic changes (e.g., logs of opera-
tions [10]). We are currently working on tools for identifying
and presenting complex operations based on a set of basic op-
erations or a structural diff between versions. In some cases,
we can use a set of rules to generate a complex change from
a set of basic changes (Section 5.1). For other changes, we
may not have a definitive set of rules for finding the com-
plex changes and will need to use heuristics to determine if
a complex change occurred (Section 5.2). In the rest of this
section we sketch some of the approaches for supplement-
ing change description with complex operations that we are
working on. However, as with everything else in the frame-
work, these rules and heuristics can be extended with addi-
tional ones that other tools provide.

5.1 Using combination rules to find complex
operations

Consider again the example in Figure 1. And consider the
change to the classes that were subclasses ofWhite wine in
Vold and became subclasses ofRosé wine in Vnew. We as-
sume that we have an instantiated ontology of basic changes
between the two versions. We can view this change as a set
of several basic operations:

1. add a superclass relation betweenRosé wine andVin gris

2. remove a superclass relation betweenVin gris andWhite
wine

3. repeat the same for classesCabernet blanc and White
Ziinfandel

If we look at this set of operations conceptually, we can see
that a complex operation was performed: a set of siblings was
moved to a different location in the class hierarchy. Note that
there are two levels of “enrichment” that we can identify in
this example. First, we can recognize the “add superclass”–
“remove superclass” sequence for each of the classesVin gris,
Cabernet blanc, andWhite Ziinfandel as amove in the tree.
Second, we can recognize thatVin gris, Cabernet blanc, and
White Ziinfandel were and remain siblings in the class hierar-
chy and thus we have a “move siblings” operation.

The set of rules to recognize this change is rather simple:
as long as we know that the classA in theVnew is the same
as the classA in Vold (this information is readily available
in a structural diff) and their superclasses are different, we
can identify a “move” operation. To recognize that a set of
siblings was moved together, we compare arguments to the
“move” operations. If theto andfrom arguments for a set of
“move” operations are the same, we have a “move siblings”
operation.

For some complex operations, just having a set of basic op-
erations and access toVnew is not sufficient to determine that
the complex operation has occurred. We may also need to
have direct access toVold. Suppose we know that a range of

a propertyP was changed fromC1 to C2. If we have access
to Vold, we can check whetherC2 is a subclass ofC1 in Vold.
If it is, then the range of the propertyP was restricted. As a
result, for example, some instances that use this property may
become invalid). On the other hand, if we know thatC2 is a
superclassof C1 in Vold, we also know that the range of the
propertyP has become less restrictive (another complex op-
eration). If our task is data transformation, we can conclude
that no instances were affected. Therefore, if all we have, for
example, areVnew and a transformation set with basic oper-
ations, these are the complex operations we will not be able
to identify. Restricting a range of a property is an example of
such operation.

5.2 Adding Uncertainty to Finding Complex
Operations

While we can precisely identify when a group of sibling
classes was moved to a new place in the class hierarchy, some
other complex operations in practice may not have such pre-
cise definitions and may require a set of rules involving un-
certainty to determine if the complex operation has occurred.
In other words, while in principle we can specify a precise
set of rules to determine when a complex operation occurs,
in practice additional changes in the ontology involving the
same concepts, may make a decision that a complex change
has occurred less clear-cut.

Consider for example the following operation: group a set
of siblings to create a new superclass (create a new abstrac-
tion). We would have such an example if we grouped the rosé
wines in Figure 1a together to create theRosé wine class, but
have left this new class as a subclass ofWhite wine.

In the ideal case, we have the following conditions that de-
scribe the case when such an operation has occurred:

1. A class C ∈ Vold has n direct subclasses:
subC1, subC2, · · · , subCn

2. There is a classnewC ∈ Vnew such that:

• newC is a direct subclass ofC
• ∀ subC ∈ Vnew such thatsubCi is a direct subclass

of newC, subCi was a direct subclass ofC in Vold

However, the user may have also, for example, added other
subclasses tonewC (e.g., adding new types of rosé wines).
He may have also added another level of classes betweenC
andnewC. Thus, we can rephrase the conditions fornewC
above defining the heuristic to the following form:

• newC is a subclass ofC (not necessarily direct)

• Among the direct subclasses ofnewC, mostcome from
subC1, subC2, · · · , subCn

We need to determine empirically what is a practical value
for most. Our heuristic rule could say that more than 50% of
subclasses ofnewC must be former subclasses ofC; or that
there is at most one level of classes betweenC andnewC.

Determining whether a class was split or two classes were
merged into a single class has to rely on such heuristics even
more unless an ontology-editing tool provides the merge and
split operations directly and records them in the log. By just



looking at two versions of an ontology and even at the trans-
formation set including simple operations, it is often hard,
if not impossible, to determine whether either of these op-
erations has occurred. However, if we have some additional
information, we may be able to identify such complex op-
eration in some cases. In particular, if concepts have sets of
instances associated with them or sets of properties that differ
significantly, we can have the following set of heuristic rules
(for merge in this example):

1. A classC ∈ Vold has subclassessubC1 andsubC2; I1

andI2 are sets of instances ofsubC1 andsubC2; S1 and
S2 are sets of properties forsubC1 andsubC2.

2. The classC ∈ Vnew has a subclasssubC; I is a set of
instances ofsubC; S is a set of properties forsubC and
the following is true:

• I is similar to I1

⋃
I2

• S is similar toS1

⋃
S2

Here again we need to determine empirically the meaning-
ful interpretations ofsimilar to. Should the sets overlap by
90%? 50%? What if the classes were merged and then some
of the instances of the merged class were deleted? Or new
instances were added to the merged class?

We define the same set of rules and need to answer the
same set of questions for the operations of splitting classes.

6 Summary And Outlook For Future Work
When we use ontologies in a distributed and dynamic en-
vironment, we need support for several ontology-evolution
tasks, ranging from data translation to change visualization.
Providing this support is difficult, as the distributed environ-
ment does not allow us to enforce specific development pro-
cedures, and we cannot count on having complete informa-
tion about changes.

As a first step towards a solution of this problem, we have
analyzed different formalisms for representing changes be-
tween ontologies and developed a framework that integrates
and relates them. The framework specifies how we can sup-
plement information in one representation with information
from other representations.

An ontology of change operations is a key element in this
framework. The ontology of change operations makes a dis-
tinction between basic operations and complex operations.
Complex operations are often more useful for specification
of the consequences of a change. We have described a num-
ber of rules and heuristics to distill complex operations from
a set of basic operations.

The framework and the procedures that we described make
it possible to supplement information about change, and thus
to support ontology-evolution tasks that the original change
information did not allow. However, the procedure does not
guarantee, nor depend on, a complete description of a change.
The more information we have, the more we can do with it.

Although many elements of the framework are already in
place, a lot more work remains to be done. We need to experi-
ment with the heuristics that we defined to test their effective-
ness and to determine the optimal values for the parameters.

We will need to build translators from existing change repre-
sentations, such as change logs provided by specific tools to
the vocabulary of basic changes. A crucial feature of the our
framework is its extendability: it is always possible to define
new interesting complex changes, new heuristics, or new and
more complete ways of filling in missing change representa-
tions from available ones. Finally, we need change represen-
tations to build tools to support various evolution tasks. The
more complete representation of change enables us to build
better, more robust and more efficient tools.
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