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Abstract

With the growing use of distributed information
networks, there is an increasing need for algorith-
mic and system solutions for data-driven knowl-
edge acquisition using distributed, heterogeneous
and autonomous data repositories. In many appli-
cations, practical constraints require such systems
to provide support for data analysis where the data
and the computational resources are available. This
presents us with distributed learning problems. We
precisely formulate a class of distributed learning
problems; present a general strategy for transform-
ing traditional machine learning algorithms into
distributed learning algorithms based on the de-
composition of the learning task into hypothesis
generation and information extraction components;
formally defined the information required for gen-
erating the hypothesis (sufficient statistics); and
show how to gather the sufficient statistics from dis-
tributed, heterogeneous, autonomous data sources,
using a query decomposition (planning) approach.
The resulting algorithms are provably exact in that
the hypothesis constructed from distributed data is
identical to that obtained by the corresponding al-
gorithm when in the batch setting.

1 Introduction
Development of high throughput data acquisition technolo-
gies in a number of domains (e.g., biological sciences, envi-
ronmental sciences, space sciences etc.) together with ad-
vances in digital storage, computing, and communications
technologies have resulted in unprecedented opportunities for
scientists, to utilize, at least in principle, the wealth of infor-
mation available on the Internet in learning, scientific dis-
covery, and decision making. In practice, effective use of
the growing body of data, information, and knowledge to
achieve fundamental advances in scientific understanding and
decision making presents several challenges [Honavar et al.,
1998; 2001]:

• In such domains, data repositories are large in size,
dynamic and physically distributed. Consequently, it
is neither desirable nor feasible to gather all the data

in a centralized location for analysis. Hence, efficient
distributed learning algorithms that can operate across
multiple autonomous data sources without the need to
transmit large amounts of data are needed [Caragea et
al., 2001b; Davies and Edwards, 1999; Kargupta et al.,
1999; Prodromidis et al., 2000; Provost and Kolluri,
1999].

• Data sources of interest are autonomously owned and
operated. Consequently, the range of operations that
can be performed on the data source (e.g., the types of
queries allowed), and the precise mode of allowed inter-
actions can be quite diverse (e.g., PROSITE repository
of protein data limits queries to those that can be entered
using the forms provided on the web). Hence, strategies
for obtaining the required information within the opera-
tional constraints imposed by the data source are needed
[Levy, 2000].

• Data sources are heterogeneous in structure (e.g., rela-
tional databases, flat files) and content (names and types
of attributes and relations among attributes used to rep-
resent the data). For example, data about proteins in-
clude the amino acid sequences of proteins, multiple
sources of 3-dimensional structures of proteins, mul-
tiple sources of structural features of proteins, multi-
ple sources of protein-protein interaction data, multiple
sources of functional annotations for proteins (according
to different notions of protein function), among others.

• The ontologies implicit in the design of autonomous data
sources (i.e., assumptions concerning objects that ex-
ist in the world , which determine the choice of terms
and relationships among terms) often do not match the
ontologies of the users of those data sources. In sci-
entific discovery applications, because users often need
to examine data in different contexts from different per-
spectives, methods for context-dependent dynamic in-
formation extraction from distributed data based on user-
specified ontologies are needed to support information
extraction and knowledge acquisition from heteroge-
neous distributed data ([Honavar et al., 2001; Levy,
2000]).

Against this background, our main goal is to develop ef-
ficient strategies for extracting the information needed for
learning (e.g., sufficient statistics) from heterogeneous, au-



tonomous, and distributed data sources, under a given set of
ontological commitments in a given context.

The rest of the paper is organized as follows: In Section
2, we precisely formulate a class of distributed learning prob-
lems and present a general strategy for transforming tradi-
tional machine learning algorithms into distributed learning
algorithms based on the decomposition of the learning task
into hypothesis generation and information extraction com-
ponents. The resulting algorithms are provably exact in that
the hypothesis constructed from distributed data is identical
to that obtained by the corresponding algorithm when in the
batch setting. In Section 3, we formally define the sufficient
statistics of a data set D with respect to a learning algorithm L
and show how we can obtain these statistics from distributed
data sets using a query decomposition (query planning) ap-
proach, assuming that data is presented to the algorithm as a
table whose rows correspond to instances and whose columns
correspond to attributes. Section 4 shows how heterogeneous
data sources can be integrated and made to look as tables.
Section 5 concludes with a summary and a brief outline of
future research directions.

2 Distributed Learning
The problem of learning from distributed data sets can be
summarized as follows: data is distributed across multiple
sites and the learner’s task is to discover useful knowledge
from all the available data. For example, such knowledge
might be expressed in the form of a decision tree or a set of
rules for pattern classification. We assume that it is not fea-
sible to transmit raw data between sites. Consequently, the
learner has to rely on information (e.g., statistical summaries
such as counts of data tuples that satisfy particular criteria)
extracted from the sites.
Definition: A distributed learning algorithm LD is said to
be exact with respect to the hypothesis inferred by a learning
algorithm L, if the hypothesis produced by LD, using dis-
tributed data sets D1 through Dn is the same (in terms of
error) as that obtained by L when it is given access to the
complete data set D, which can be constructed (in principle)
by combining the individual data sets D1 through Dn (i.e.,
|error(LD(D1, · · · , Dn))−error(L(D1∪· · ·∪Dn))| = 0)).
Definition: A distributed learning algorithm LD is said
to be approximate with respect to the hypothesis inferred
by a learning algorithm L, if the hypothesis produced by
LD, using distributed data sets D1 through Dn is a good
approximation (in terms of error) of that obtained by L
when it is given access to the complete data set D (i.e.,
|error(LD(D1, · · · , Dn)) − error(L(D1 ∪ · · · ∪ Dn))| <
ε, ∀ε > 0)).

Our approach to the exact/approximate distributed learning
is based on a decomposition of the learning task into a control
part which drives the execution of the algorithm toward the
generation of a hypothesis and an information extraction part
which is triggered by the control part whenever the algorithm
requires statistics about the available data in order to generate
the hypothesis (Figure 1).

In this approach to distributed learning, only the informa-
tion extraction component has to effectively cope with the
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Figure 1: Task Decomposition into Hypothesis Generation
and Information Extraction Components.

distributed and heterogeneous nature of the data in order to
guarantee provably exact or approximate learning algorithms.
The control component doesn’t access data directly, but just
the statistics extracted from data. These statistics are obtained
from queries that the control part asks in the process of the
hypothesis generation.

A query answering engine, which acts like a planner, de-
composes the queries in terms of operators available to the
data sources and returns the answers to the control part. The
results of the queries can be seen as a statistics oracle which
responds according to the needs of the control part (i.e., ac-
cording to the requirements of a particular algorithm at each
step). The classical example oracle, which here is distributed
into a network, is used to provide sufficient statistics (e.g.,
counts for decision tree) to the centralized statistics oracle.
The statistics oracle acts as a buffer between the data and the
hypothesis corresponding to that data (Figure 2).

Our strategy for the distributed learning can be used to
transform any batch learning algorithm into an efficient dis-
tributed learning algorithm, once the sufficient statistics with
respect to that particular learning algorithm have been identi-
fied and a plan for gathering them has been found.

3 Sufficient Statistics
In order to be able to define sufficient statistics [Casella and
Berger, 1990] in the context of learning, we look at a learn-
ing algorithm as search into a space of possible hypotheses.
The hypotheses in the search space can be thought as defin-
ing a parametric function. A particular choice for the set of
parameters will give us a particular hypothesis. In particular,
those parameters can be estimated through learning based on
the given data.
Definition: Let F be a class of functions that a learning al-
gorithm is called upon to learn. A statistic s(D) is called a
sufficient statistic for learning a function f ∈ F given a data
set D = {(x1, y1) · · · , (xm, ym)}, if there exists a function g
such that g(s(D)) = f(D).

The particular learning algorithm considered determines a
particular class of functions F (e.g., decision trees in the case
of the decision tree algorithm, hyperplanes in the case of the
SVM algorithm), which, in turn, determines a particular class
of statistics (e.g., counts satisfying some criteria in the case
of the decision trees). However, a sufficient statistic is de-
fined with respect to a learning algorithm and a training data
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set. Note that a data set D is a trivial sufficient statistic for
D. However, whenever possible, we are interested in finding
minimal sufficient statistics.
Definition: The sufficient statistic s∗(D) is called minimal
sufficient statistic if for any other sufficient statistic s(D),
s∗(D) is a function of s(D), i.e. there exists h such that
s∗(D) = h(s(D)) for any data set D.

For some learning algorithms (e.g., Naive Bayes), the suf-
ficient statistics have to be computed once in order for the
learning algorithm to generate the hypothesis. However, for
other algorithms (e.g., Decision Trees) the statistics gather-
ing process and the hypothesis generation are interleaved. In
this case, the target function cannot be computed in one step;
the learner has to go back and forth between the data and the
partially learned hypotheses several times. Instead of deal-
ing with sufficient statistics, we use partial sufficient statistics
here.

Examples of sufficient statistics for several classes of learn-
ing algorithms are shown below:

• Naive Bayes algorithm (NB) - counts of the instances
that match certain criteria (e.g., attribute-value-class
counts) represent minimal sufficient statistics.

• Decision Tree algorithm (DT) - counts of the instances
that match certain criteria (e.g., attribute-value-class) are
minimal partial sufficient statistics for computing one
level of the tree. Subsequent counts that depend on the
current built hypothesis (tree) are needed in order to find
the final decision tree [Bhatnagar and Srinivasan, 1997].

• Support Vector Machines algorithm (SVM) - the weight
vector which determines the separating hyperplane, can
be considered sufficient statistics for the separating hy-
perplane.

3.1 Gathering Sufficient Statistics from
Homogenous Data

To keep things simple, in what follows, we assume that re-
gardless of the structure of the individual data repositories
(relational databases, flat files, etc.) the effective data set for

learning algorithm can be thought of as a table whose rows
correspond to instances and whose columns correspond to at-
tributes. We will show in Section 4 how heterogeneous data
can be integrated and put into this form.

In designing distributed learning algoritms using our de-
composition strategy, we assume that the identification of the
sufficient statistics is done by a human expert, who also de-
signs the control part of the algorithm (function g in the def-
inition of the sufficient statistics). However, the gathering of
the sufficient statistics necessary for learning (construction of
the statistics oracle) is done automatically every time when
the control part needs some statistics about data, by the query
answering engine. The query answering engine receives as
input a query, and builds a plan for this query according to the
resources and the operators available to each data set (Figure
2).

The operators associated with a data source can be primi-
tive operators (such as selection, projection, union, addition
etc.), or they can be aggregate operators (e.g, counts or other
database built-in functions). If the data source allows, the user
can define specific operators (functions of the primitive oper-
ators). The set of primitive operators should be complete with
respect to the set of learning tasks that needs to be executed
(i.e., the application of these operators or functions of these
operators is enough for gathering the information necessary
for a particular learning task considered).
Definition: We call learning plan for computing the statistics
s required by a learning algorithm L, from the distributed data
sets D1, · · · , Dn a procedure P , which transforms a given
query into an execution plan. An execution plan can be seen
as an expression tree, where each node corresponds to an op-
erator and each leaf corresponds to basic statistics that can
be extracted directly from the data sources. All the statistics
that cannot be extracted directly from the data sources, should
be replaced by their definitions recursively, until we obtain a
plan in which only basic statistics appear as leaves.

Each of the operators available at the distributed data
sources has a cost associated with it. Based on these opera-
tors and their costs, the query answering engine, which plays



the role of the planner, finds the best execution plan for the
current query and sends it to the distributed data sources for
execution. Each data source returns the statistics (answers to
queries) extracted from its data to the query answering en-
gine, which sends the final result to the learning agent. If the
algorithm needs more information about data in order to fin-
ish its job, a new query is sent to the query answering engine,
and the process repeats.
Definition: We say that two learning plans P1 and P2 are
equivalent if they compute the same set of statistics. If we
consider the costs associated with the operators included in
a plan, we say that a learning plan P1 is more efficient than
an equivalent learning plan P2 if the cost of the first plan is
smaller than the cost of the second plan.

The job of the query answering engine is to find the best
learning plan for a query, given a set of primitive operators,
aggregate operators and user defined functions that can be
applied to these operators, and their associated costs.

4 Gathering Sufficient Statistics from
Heterogeneous Data Sources

In the previous section, we assumed that data is presented to
the distributed algorithms as tables whose rows correspond to
instances and whose columns correspond to attributes. How-
ever, in a heterogeneous environment, it is not trivial to get the
data into this format. The differences in ontological commit-
ments assumed by autonomous data sources present a signif-
icant hurdle in the flexible use of data from multiple sources
and from different perspectives in scientific discovery.

To address this problem, we developed the INDUS soft-
ware environment [Reinoso-Castillo, 2002] for rapid and
flexible assembly of data sets derived from multiple data
sources. INDUS is designed to provide a unified query in-
terface over a set of distributed data sources which enables us
to view each data source as if it were a table. Thus, a scien-
tist can integrate data from different sources from his or her
own perspective using INDUS. INDUS builds on a large body
of work on information integration, including in particular,
approaches to querying heterogeneous information sources
using source descriptions [Levy et al., 1996; Levy, 2000;
Ullman, 1997], as well as distributed computing [Honavar et
al., 1998; Wong et al., ].

The input from a typical user (scientist) includes: an on-
tology that links the various data sources from the users point
of view, executable code that performs specific computations,
needed if they are not directly supported by the data sources,
and a query expressed in terms of the user-specified ontol-
ogy. In this case, the query answering engine, receives this
query as input, finds the best execution plan for it, translates
the plan according to the ontologies specific to the distributed
data sources, and sends it to the distributed data sources. Each
data source returns answers to the queries it receives and the
planner translates them back to the user (learning agent) on-
tology. Thus, the user can extract and combine data from mul-
tiple data sources and store the results in a relational database
which is structured according to his or her own ontology. The
results of the queries thus executed are stored in a relational
database and can be manipulated using application programs

or relational database (SQL) operations and used to derive
other data sets (as those necessary for learning algorithms).

More precisely, INDUS integration system is based on
a federated query centric database approach [Mena et al.,
2000]. It consists of three principal layers which together
provide a solution to the data integration problem in a scien-
tific discovery environment (Figure 3):

• The physical layer allows the system to communicate
with data sources. This layer is based on a federated
database architecture (data is retrieved only in response
to a query). It implements a set of instantiators which
allow the interaction with each data source according to
the constraints imposed by their autonomy and limited
query capabilities. As a consequence, the central repos-
itory can view disparate data sources as if they were a
set of tables (relations). New iterators may be added to
the system when needed (e.g. a new kind of data source
has become available, the functionality offered by a data
source has changed).

• The ontological layer permits users to define one or
more global (user/learning agent) ontologies and also to
automatically transform queries into execution plans us-
ing a query-centric approach. More specifically, it con-
sists of the following:

– A meta-model, developed under a relational
database, allowing users to define one or more
global ontologies of any size. New statistics can
be defined in terms of existing statistics using a set
of compositional operators. The set of operators is
extensible allowing users to add new operators as
needed.

– An interface for defining queries based on statistics
in a global ontology.

– An algorithm, based on a query-centric approach,
for transforming those queries into an executable
plan. The query-centric approach allows users to
define each compound statistics in terms of basic
statistics, (i.e. statistics whose instances are di-
rectly retrieved from data sources), using a prede-
fined set of compositional operations. Therefore,
the system has a description of how to obtain the set
of instances of a global statistic based on extracting
and processing instances from data sources. The
plans describe what information to extract from
each data source and how to combine the results.

– An algorithm that executes a plan by invoking the
appropriate set of instantiators and combining the
results.

– A repository for materialized (instantiated) plans
which allow users to inspect them if necessary.

• Finally, the user interface layer enable users to interact
with the system, define ontologies, post queries and re-
ceive answers. Also, the materialization of an executed
plan can be inspected.

In conclusion, the most important features that INDUS of-
fers in terms of data integration are summarized below:
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• From a user perspective, data accessible through IN-
DUS can be represented as tables in which the rows
correspond to instances and columns correspond to at-
tributes, regardless of the structure of the underlying
data sources.

• The system can include several ontologies at any time.
Individual users can introduce new ontologies as needed.

• New data sources can be incorporated into INDUS by
specifying the data source descriptions including the
corresponding data-source specific ontology and the set
of instantiators.

The main difference between INDUS and other integra-
tion systems [Garcia-Molina et al., 1997; Arens et al., 1993;
Knoblock et al., 2001; Subrahmanian et al., June 2000;
Draper et al., 2001; Paton et al., 1999] is that it can include
several ontologies at any time. The users can introduce new
ontologies or add new data sources and their associated on-
tologies, as needed.

INDUS has been successfully used by computational biol-
ogists (including graduate and undergraduate students with
varying degrees of expertise in computing) in our lab for
quickly extracting and assembling the necessary data sets
from multiple data repositories for exploring and visualiz-
ing protein sequence-structure-function relationships [Wang
et al., 2002; Andorf et al., 2002].

For the purpose of distributed learning, INDUS is used to
execute queries whose results are tables containing data of
interest (e.g., counts). Depending on the operations that are
allowed at a particular data source, these tables may contain
raw but integrated data (according to the global ontology that
different data sources share) or counts or other statistics ex-
tracted from the data sources. Thus, if a particular data source
can answer specific queries, but it does not allow the execu-
tion of any program or the storage of any data at that site, then
the answer to the query will produce a table that needs to be
stored locally, but closely to the original data source, in order
to avoid the transfer of large amount of data. This table can
be further used to obtain the statistics needed for the genera-

tion of the hypothesis. On the other hand, if the data sources
support aggregate operations (e.g., those that provide statis-
tics needed by the learning algorithm) or allow user-supplied
programs to be executed at the data source, we can avoid ship-
ping large amounts of data from distributed repositories.

5 Summary and Future Work
The approach to the distributed learning taken in this paper
is a generalization of a federated query centric database ap-
proach [Mena et al., 2000]. In the case of distributed learning
the set of operators is usually a superset of the operators used
in classical databases. Besides, here the whole query answer-
ing process is just one step in the execution of the learning al-
gorithm during which the statistics required by the algorithm
are provided to the statistic oracle.

Assuming that the points of interaction between a learning
algorithm and the available training data can be identified, the
distributed learning strategy described here can be easily used
to transform any batch learning algorithm into an exact (or at
least approximate) distributed learning algorithm.

Future work is aimed at:
• Experiment with the decomposition strategy for various

classes of learning algorithms and prove theoretical re-
sults with respect to the exact or the approximate quality
of the distributed algorithms obtained.

• A big variety of data mining algorithms, such as deci-
sion trees, instance-based learners, Bayesian classifiers,
Bayesian networks, multi-layer neural networks and
support vector machines, among others, will be incorpo-
rated in our distributed learning system. Some of these
algorithms can be easily decomposed into hypothesis
generation and information extraction components ac-
cording to our task decomposition strategy (e.g., Naive
Bayes, decision trees), while others require substan-
tial changes to the traditional learning algorithm (e.g.,
Support Vector Machines), resulting sometimes in new
learning algorithms for distributed learning [Caragea et
al., 2001a; 2000].

• Formally define the set of operators for the algorithms
that will be included in our distributed learning system
and prove its completeness with respect to these algo-
rithms.

• Extend the formal definitions for plans, formulate prop-
erties of these plans and prove these properties under
various assumptions made in a distributed heteroge-
neous environment.
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