
An eXtreme method for developing lightweight ontologies
Maia Hristozova

The University of Melbourne
221 Bouverie Str.

Carlton 3010, Vic., Australia
+61 3 8344 9311

majah@cs.mu.oz.au

Leon Sterling

The University of Melbourne

221 Bouverie Str.
Carlton 3010, Vic., Australia

leon@cs.mu.oz.au

'There is no one correct way to model a domain - there are always
viable alternatives. The best solution almost always depends on
the application that you have in mind and the extensions that you
anticipate.' [Noy & McGuiness, 2000]

Abstract
In this paper we propose a method for effective building of
lightweight ontologies, applying the principles of eXtreme
Programming. The method is based on a multi-layered approach,
which combines the advantages of maximum monotonic
extensibility with clarity of the desired terms. The method aims to
make it easy to develop a simple ontology, being careful to avoid
deviation between the user's expectations and the produced
output. We emphasize on capturing system requirements and
consider the intended use of the ontology by analyzing the user-
provided competency questions.

The method is illustrated with the domain of Value-Added
Publishing, which can be represented as a multi-agent system,
where different types of information extraction agents deal with
various aspects of processing information.

Keywords
Requirements for ontology modelling, applications of ontologies,
ontology maintenance/evolution, practical experience.

1. Introduction
Agent-based systems are advancing in many different directions
and the number of multi-agent solutions keeps increasing.
Heterogeneity and diversity of the agent communication
languages, protocols and building techniques give freedom and
flexibility in developing, but at the same time create a major
difficulty in communication between agents within a system and
between different multi-agent systems [9]. The adoption of a
shared ontology allows agents to interoperate without
misunderstanding, while retaining a high degree of autonomy,
flexibility and agility. By reducing semantic ambiguity for the
purpose of sharing and reusing knowledge, ontologies help to
achieve interoperability and robustness in a system. Agents can be
highly adaptable yet are able to meaningfully communicate
domain-specific knowledge. Also since they provide syntactic and
semantic terms for describing knowledge about the domain in the
multi-agent systems, ontologies are trying to find a place as
specification mechanisms.

There are a number of issues covered in [4, 8] that leave a global
ontology infrastructure unsuitable as a sole approach, and it is our
belief that until all agents subscribe to a common ontology or a
centralised language of understanding and representation, the

development of multi-agent systems will necessitate building a
number of small, domain-specific ontologies.

Various methodologies have been developed for building
ontologies. However, most of these emerged from projects whose
final goal was building the ontology itself. All that we are aware
of are based on alteration and improvement on the produced
output and even if the initial details and scope are well-defined an
evolving prototype is the central core. But while visualizing and
navigating ontologies are two relatively simple processes (due to
the increasing number of ontology browsers), practical
modification of an ontology, including improvement, expansion
and updating, remains a very complex task. Removing classes or
changing the structure (relationships) is a complex process that
even the most intelligent agents lack capabilities to perform
satisfactorily, i.e. without compromising the reliability of the
conceptual model. Integration and maintenance of an existing
ontology could also bring to the surface unconsidered difficulties.
For these reasons maintaining a global ontology has so far been
unsuccessful. On the other hand small lightweight methodologies
for ontology-building that are easy to follow, with only a few rules
and practices, have not become wide spread yet. Agent-systems
developers keep building small domain-specific ontologies
ignoring the guidelines and instinctively moving away from
heavyweight methodologies. Most are moving back toward an
earlier, simpler time of lightweight methodologies when a few
rules were enough. The existing ontology-development
methodologies, though, offer processes and rules that by
simplifying can significantly advance the creation of reliable and
quick small ontologies. In this paper we propose a method for
effective building of extreme lightweight ontologies that maintain
the balance between developing an ontology from scratch without
any rules and practices, constantly updating the structure and on
the other hand long-term specification, prototyping and
maintenance. We will do this by introducing some few rules and
practices that are light, concise, and effective, mainly based on the
eXtreme Programming practices. The method is based on a multi-
layered approach, utilising the advantages of monotonic
extensibility and clarity of the desired terms. The method aims to
avoid deviation between the user's expectations and produced
output, by focusing on capturing system requirements as well as
considering the intended use of the ontology by analyzing the
competency questions, provided by the users.

As a use case we take the domain of Value-Added Publishing.
VAP can be represented as a multi-agent system, where different
types of agents deal with different aspects of processing
documents.



The rest of the paper is structured as follows. In section 2 we give
a basic overview of eXtreme Programming principles. More
details and descriptions are given in [1]. We then present some of
the existing methodologies for ontology design and development.
We have limited our review to those that we have tested and
evaluated. In section 4 we briefly define the main aspects of the
proposed eXtreme Ontologies method and present the general
architecture of the prototype.

2. Extreme Programming Basics
EXtreme Programming (XP) has been developed on the basis of
the results of many observations of what makes computer
programming faster and what slows down it. As almost any other
lightweight discipline of software development the main focuses
of XP practices are simplicity, communication and feedback. The
main XP rules that will be mentioned very briefly here and used
for the purpose of this paper are: The Planning Process. It allows
the customer to define the business value of desired features and
uses cost estimates provided by the programmers to choose what
needs to be done and what can be deferred. Small Releases. A
simple system is released early, and updated frequently on a very
short cycle. Metaphor. A common "system of names" and a
common system description are used that guide development and
communication. Simple Design. The program meets the current
requirements. Instead of building "for the future", the focus is on
providing business value. Testing. Focuses on validation at all
times. Firstly the tests are developed and then software that fulfils
the requirements. Customers provide acceptance tests that enable
them to be certain that the features they need are provided.
Refractoring. Improvement of the design throughout the entire
development. Collective Ownership, Continuous Integration.
Integration of the software system multiple times per day.

3. Extreme Ontologies Method
Ontologies may be distinguished by the requirements which they
are able to solve; that is, one ontology may be able to represent
and solve a different set of requirements to another ontology.
Even if two ontologies are in the same domain, in different
environments there is no guarantee that both will be
interchangeable or reusable.

We propose to build the ontology at the end of the process of
developing the system, after all the requirements have been
specified, needs determined and specifications written. One might
argue that the whole system will be dependent on what the user
has specified initially, but the change of requirements won't affect
much on the whole system, since rebuilding the ontology won't be
time-consuming and there won't be a need to change the structure
of the other modules. Its internal model can be well specified in
the beginning and added to the other details of the specification.
Making the ontology the last step of a software development cycle
will reduce the development time, in addition to the benefits that
come from building small, light-weight ontologies, instead of
deep, broad and complex ones which are slow to parse and
eventually retrieve information from.

The difference in the approach is the emphasis on the user. Rather
than compiling all the existing knowledge in an ontology and
teaching the system to browse it, fetch the valuable information
and present it in a convenient way, the user's system plays a
significant role in the initial process of developing the ontology.

We are considering a multi-agent system, in which different types
of agents exist each performing different task or service.

The process consists of:

1. Fetching the requirements of the system. In the traditional
process this could be considered as scoping. The collected data
will be used to create a baseline ontology. Baseline or input
ontology [2] is an ontology that consists of a small number of
concepts that are unavoidable for a particular domain.

Since we are taking value-added publishing (VAP) as a case
study, potential concepts are: author, publication, awards of a
paper, rating of the author, etc. In the context of XP this step of
the process is defined as Collective Ownership, i.e. a full set of
the system and domain requirements is available.

2. After the baseline ontology is created, the competency
questions have to be defined. They are domain-specific and
provided by the user. Competency questions provide the base for
extracting the ontology concepts, or more formally they serve as
test cases for completeness and validity of the ontological
commitments. For example, analysis of a competency question
"What is the ranking of this paper's author?" leads to including
concepts such as 'paper', 'author', 'ranking'. This phase is very
similar to the 'defining the content of the ontology' phase in the
traditional methodologies.

3. Validation test. The main difference of eXtreme Ontologies
approach is that once the list of the competency questions is
determined, they are tested using the baseline (or extended)
ontology. The validation test checks if the competency question
could be answered using the existing ontology. If the result is
successful the next competency question is asked. In terms of XP,
since the ontology is being tested and updated frequently after
each competency question, this step covers Small Releases.

4. Redundancy test. A negative result to the previous step would
lead to extending the existing ontology with new classes or
relationships extracted from the competency question. For this
purpose a redundancy test is run that checks for existing classes,
attributes or relationships with similar or matching names. This
phase ensures metaphor or unification of the name standards,
which was introduced by Aspirez J. in 1993 and exists as a
requirement for a good ontology design.

5. Planning. The planning process in ontology development is
extended beyond the identification of requirements of the system.
It also includes estimation of the cost and time for building and
subsequently managing the developed ontology. The depth and
width of the ontology to be created are analyzed by calculating the
time for developing and use time (which is a function of time to
parse, time to summarize and time to convert the ontology into the
needed form). Since the rest of the system modules are already
developed the workings of the parser, for example the expected
output and the converted type of ontology concepts, are known.
During the process of planning there is a number of inevitable
issues to be considered. The tightness between classes or the type
of the relationship between them is such. For example a
relationship 'car_has_wheels' will always be slower to parse than
'tree_has_nests', because whenever the structure is created for a
'car', there will be need to create a structure for 'wheels' as well
(cars always have wheels), while in parsing both 'tree' and 'nest'
the existence of one does not lead to the creation of the second
(trees can exist without nests). Planning also includes estimating



Middle Agent

(Collective Ownership)

Structural
Requirements

Baseline Ontology

(Small releases)

Concept
Requirement

s

Competency Questions

Redundancy Test

(Metaphor)

Validation Test

Management Assistant

(Planning)

Acceptance
Test

Structural and
Concept

Requirements

Would you like 
‘Award’ 1. as a 

separate class? or 2. a 
subclass of ‘Paper’. 

Continuous Integration

Figure 1

the optimal depth and width and answering questions such as
"How much information should be encoded in the relations and
how much in the hierarchy itself?", since ontologies with different
structure perform differently even if they produce the same result.

6. After all the planning and estimations have been done the next
step in the process is Continuous Integration. Ultimately any
methodology needs to be customized to the circumstances and
environment. No methodology is just a collection of rules to be
performed in rote fashion. During the process of integration it is
very important to explore how the ontology will react with the
other modules of the environment. If for example there is a
converter in the system that parses the ontology, it has to produce
correct class structure output. If the purpose of the ontology is to
fill up a database it must be checked for consistency and structure.
The result and the benefit of the continuous integration is a clean
and simple ontology without duplications.

7. Acceptance tests. One of the key tasks to be done (some might
argue that they should be created even before the planning) is to
define the acceptance tests. It is very important for the user to
know in
advance what
the system
should do and
to understand
it. Tests
should be
created for
each iteration
step. For each
question and
validation test
there is a level
of acceptance
of the result.
As in TOVE
[5,6], the
acceptance
tests should be
on more than one levels according to the priority. Ideally they
should be defined in a hierarchy with higher-level questions
requiring the solution of lower level questions. It is not a well-
defined ontology if all the questions have the form of a simple
query; the solutions of some questions should use the solutions of
the others. It is important to mention that these tests do not
generate ontology structure. Rather they are used to evaluate those
concepts that are ontology commitments. They evaluate the
expressiveness of the ontology that is required to represent the
questions and to characterize their solutions.

This method does not include maintenance as a final stage of the
ontology development. The main reason is that since the
requirements are carefully specified in the initial stage, once an
ontology is created it is guaranteed that it meets the specific needs
of the current application. All the inconsistencies or potential
problems with the developed ontology are avoided during the
testing and planning stages. A situation commonly encountered
during software development is that of changing requirements.
Drawing on the principles of XP, the eXtreme Ontology method
handles changes by focusing on keeping ontologies lightweight
and highly adaptable. Frequent iterations and continuous
integration ensure that any necessary changes are identified

immediately, and no unnecessary changes are made. The fact that
the ontology is developed after the system is specified indicates
that the requirements will be much more stable during the
ontology development phase. In this way, the problems are
avoided that traditional methods face when the ontology is frozen
long before any prototypes can be presented to the client for initial
feedback (the point at which the client usually realises that their
initial requirements are not what they really want). Also in case of
adding new modules of components to the system, due to the
semi-automated tools, the process of building the ontology is easy
and quick.
Following the described method at the moment we are developing
a prototype to test the usability and effectiveness of the process.
The final purpose is to measure and compare the extreme
ontologies approach to other traditional ontology-development
methodologies in terms of success of using the provided tools,
techniques and integration of the produced ontology in a complex
organization. The prototype is still in development but the draft
version of its architecture is given in Figure 1.

A module that has
the 'full'
knowledge of the
system achieves
the Collective
Ownership
principle. The way
we propose that
this be done is by
using one or more
middle agents
[4,11,12] that
collect agents'
capabilities.
Capabilities briefly
define the purpose
of an agent, for
example finding
the rating of an
author. In a multi-

agent system whenever agents 'come' into a system they register
their capabilities to the middle agent by sending to it a basic
description of their input and output. There are a number of ways
this can done, generally by using an interface description
language, or an agent description language. Another comparison
to XP is the fact that the requirements are extracted from some
form of system by one module and further processed by another
module. We consider the second stage to be performed by humans
and the requirements are expressed in a primitive and simple
enough way to act as tokens. So far the existing methodologies
suggest that ontology engineers create the baseline ontology
manually. In our case it is done semi-automatically - the middle
agent provides concepts and attributes, but engineers define the
structure. For example, based on the description of agent’s
capabilities, a middle agent will suggest concepts such as ‘author’
and ‘paper’, the type of the output, i.e. ‘list of papers’ [and maybe
other information, depending on what is provided by the
information extraction agent] but the relationship between them -
‘writes’ - will be defined manually.

The validation test module ensures small releases of the ontology.
For example in the case of VAP a competency question might be:



"Provide a list of books written by this author?". If the question
can be answered using the current ontology the ontological
commitments are valid and the next question is tested. Otherwise
the redundancy test checks if the competency question contains
words similar to the already existing concepts in the ontology. At
this stage the comparison is mainly syntactic, based on pattern
matching, but further it could be extended to semantic mapping
[8,12].

In [2] is proposed a semi-automated approach for modifying
ontologies, using management assistants. For the different
modifications of the ontology corresponding assistants analyze the
model to identify the consequences of the planned actions. The
assistant then works in cooperation with the user to select and
perform operations without violating the consistency of the
knowledge base in order to achieve the user's goal. An intelligent
agent can predict the consequences of an ontology structure, thus
the evaluation will be performed before the actual change.

Referring back to XP the management assistant does not play its
initial role of interface between requirements and development,
but acts rather as facilitator to the customer. In this sense little
freedom is given to the user - they must choose between a number
of options provided by the management assistant. Thus rather than
translating the informal requirements into formal, the assistant
helps the user to express the requirements clearly but still in their
own words, as close as possible to the ontology representation.
According to XP practices, in cases of multiple users it is not the
assistant's responsibility to prioritize the requirements - it only
helps the customers to sort out and schedule in time the things
between themselves. In an ideal system they can even negotiate
and distribute the time to perform each one's requirements (or
during a different iteration). But in the end, feedback is given
prior to the release about what will be done, how and why.

4. Conclusions and Future Work
After reviewing some of the existing methodologies for ontology
development, in this paper we have proposed a new approach for
developing lightweight ontologies. We are combining some of the
beneficial characteristics of the existing methods, but avoiding the
attitude that "ontologies are the core element" of the systems
being developed. EXtreme Ontologies approach involves humans
to create the baseline ontology, but all the consequent changes are
only guided by the user, while the internal processes are
performed by automated tools. The method ensures that
development effort is not spent on unnecessary implementation of
classes and relations. The derived ontology only meets the
requirements that match the validation rules and test cases.
Despite the fact that our project is still in an initial phase, and
tools that reduce risk and gain benefit from the validation tests
and rules before the actual implementation of an ontology have
not yet been developed, we believe that it will significantly
contribute to this area. Additionally, the evaluation of the method
and subsequent experiments will reveal the effectiveness of
applying the eXtreme Programming principles and rules to
ontology design and development. The final purpose is to explore

and compare the extreme ontologies approach to other traditional
ontology-development methodologies in terms of success of using
the provided tools, techniques and integration of the produced
ontology in a complex organization.

5. REFERENCES
[1] Beck, K. Extreme Programming Explained: Embrace Change,
Addison Wesley, 2000.

[2] Boicu, M., Tecuci, Gh. et al. Ontologies and the Knowledge
Acquisition Bottleneck. In Proceedings of the IJCAI-01
Workshop on Ontologies and Information Sharing. 2001.

[3] Fernandez L. Overview Of Methodologies For Building
Ontologies, 1996.

[4] Giampapa, J., Paolucci, M., Sycara, K. Agent Interoperation
Across Multagent System Boundaries. In Proceedings of the
Fourth International Conference on Autonomous Agents (Agents
2000). Association for Computing Machinery, ACM, 1515
Broadway, New York, NY, 10036, USA. June, 2000.

[5] Grüninger, M., Fox, M. Methodology for the Design and
Evaluation of Ontologies. Canada M5S 1A4, April 1995.

[6] Grüninger, M., Fox M. The Design and Evaluation of
Ontologies for Enterprise Engineering. IFIP WG5.7 Workshop on
Benchmarking - Theory and Practice. Norway, 1994.

[7] KBSI. The IDEF5 Ontology Description Capture Method
Overview. KBSI Report. USA, 1994.

[8] Lister, K., Sterling, L. Agents in a Multi-Cultural World:
Towards Ontological Reconciliation, Markus Stumptner, Dan
Corbett and Mike Brooks (eds), AI 2001. Advances in Artificial
Intelligence. In Proceedings of the 14th Australian Joint
Conference on Artificial Intelligence. Adelaide, 2001.

[9] Subrahmanian, V. S., Bonatti, P., Dix, J., Eiter, T., Ozcan, F.
Heterogeneous Agent Systems. MIT Press, 2000.

[10] Swartout, W.R., Patil, R., Knight, K. and Russ, T. Towards
Distributed Use of Large-Scale Ontologies. AAAI-97. Spring
Symposium on Ontological Engineering, Stanford University.
1997.

[11] Sycara, K., Chi Wong, H. A Taxonomy of Middle-agents for
the Internet. Proceedings of the Fourth International Conference
on MultiAgent Systems, 2000.

[12] Sycara, K., Klusch, M., Widoff, S., Lu, J. Dynamic Service
Matchmaking among Agents in Open Information Environments.
In ACM SIGMOD Record, Special Issue on Semantic
Interoperability in Global Information Systems, 1999.

[13] Uschold, M. and King, M. Towards a Methodology for
Building Ontologies. IJCAI-95. Workshop on Basic Ontological
Issues in Knowledge Sharing. Montreal, Canada. 1995.

[14] Uschold, M. Building Ontologies: Towards A Unified
Methodology. Proceedings Expert Systems 96. Cambridge, 1996.


