
A Multi-agent System for Collaborative Bookmarking

Rushed Kanawati1, Maria Malek2

1LIPN-CNRS UMR Q 7030 , 99 Av. J. B. Clément, F-93430 Villetaneuse
rushed.kanawati@lipn.univ-paris13.fr

2LAPI-EISTI, Av. du Parc, F-95011 Cergy
maria.malek@eisti.fr

Abstract. In this paper we describe a multi-agent system, called COWING that
aims at enabling an organised group of people to share their results of
information searching on the World Wide Web. Users normally save relevant
sites they found in their private collections of bookmarks. The goal of the
proposed system is to enable users to share their bookmarks, in an implicit,
secure and effective way. By implicit we mean that users are not required to
spend extra effort in order to use the system. Secure sharing refers to the
capacity of each user to control who knows what about her/his own bookmark
collections. Finally effectiveness is ensured by recommending users with
relevant bookmarks that are computed by applying a distributed collaborative
filtering algorithm. Recommended bookmarks are automatically inserted in the
most appropriate bookmark folder in the user's local collection. When accessing
a folder the user can evaluate (accept or reject) provided recommendations. Our
system is a multi-agent system where each user is associated to an assistant
agent, called a WING agent. A WING agent observes the user's behaviour when
managing her/his own bookmark collection. It learns how the user classifies
her/his bookmarks. A hybrid neural/case-based reasoning supervised classifier
is used for this purpose. WING agents exchange bookmarks according to a
defined collaboration protocol that protects associated users privacy.

Keywords: Collaborative Information Agents, Bookmark, Hybrid Neural/CBR
classification.

1.� Introduction

The most intelligent agents that browse and index sites on the World Wide Web
(the Web hereafter) still to be humans. Consequently, an effective way to locate
relevant information on the Web is to locate people who are likely to know where to
find the searched information [25]. Users usually store addresses of relevant Web
sites in a bookmark directory. Almost all Web browsers available today provide users
with some bookmaking facility. Typically a bookmark is a record that holds the
information like: the site address (i.e. URL), the site title (i.e. the title of the indexed

E Yu
84

page), and some other data such as bookmark creation date, last visit date and user-
provided description of the indexed page. The bookmark set becomes a personal web
space that helps the user in land-marking the huge information space composed of the
currently available web pages. A major reason behind the popularity of bookmarks is
their ease of use. In most browsers a simple click is enough to save the currently
visited web page into the list of bookmarks. Later, another simple click on the saved
bookmark takes the user directly to the required site. In order to enhance access time
to saved bookmarks, most existing bookmarking tools allow users to organise their
collections in a hierarchy of folders. While this may effectively enhance the access
time, it introduces new problems: "users must continually trade-off the cost of
organising their bookmarks and remembering which bookmark are in which folder
versus the cost of having to deal with a disorganised set of bookmarks" [1]. Finding
the appropriate folder for a given bookmark is not an easy task. The same bookmark
may fit in more than one folder. A bookmark may require creating a new folder,
splitting existing ones, etc. [17]. Currently, saving a bookmark in a given folder is not
as easily supported, by current tools, as the creation of a bookmark. However, in this
paper we make the assumption that users do organise their bookmarks in hierarchy of
folders.

A user’s bookmark collection can be a valuable information source for other users.
Bookmarks are valuable for two main reasons. First of all, bookmarks are often the
results of tedious and hard information searching process. If users can access others
bookmark collections they can spare the required information searching effort. Lastly,
because bookmarks are explicitly and intentionally added by the user, they give a
precise evidence about the information interests of that user. By applying a
collaborative filtering algorithm [21], communities of users that share the same
interests can be identified. This can help to establish alternative information searching
tools that are community-centred.

Recently, a number of academic and commercial systems have tackled the problem of
building collaborative or shared bookmark repositories. Systems such as Groupfire
(www.groupfire.com) and MyLynx (www.mylynx.com) allow users to save their
bookmarks on a remote server. Users can select whether they wish to make some of
their bookmarks public. The WebTagger system [13] makes the bookmark pool
sharable and searchable by a group of users. The GAB system can automatically
merge different user’s bookmark lists in a single and a seamless hierarchy [25]. RAPP
provides users with personalised help for bookmark classification and group-based
bookmark recommendation service [5]. Other systems allow to build and to identify
communities of interest by analysing user’s bookmark collections. Communities are
manually defined in Pharos [3], semi-automatically in GroupMark [19] and
computationally in KnowledgePump [7].

Amazingly, almost all existing collaborative bookmarking tools seems to ignore
major lessons learned in the last decade by the Computer Supported Collaborative
Work (CSCW) [12, 20]. In this paper we outline an original collaborative
bookmarking system called COWING (for COllaborative Web IndexiNG), that enables
an organised group of users to share their bookmarks, in an implicit, secure and an

E Yu
85

effective way. By implicit we mean that users are not required to do extra work in to
sharing their bookmarks. The only additional work to do is to define other’s access
rights on their own repositories. A role-based access control service is provided in
order to ease this task [23]. Secure sharing refers to the capacity of each user to
control who knows what about her/his own bookmark collections. Finally
effectiveness is ensured by recommending users with relevant bookmarks that are
computed by applying a distributed collaborative filtering algorithm. The proposed
system is implemented as a multi-agent system. Each user is associated with a
learning-assistant agent called a WING agent (for Web IndexiNG). A WING agent
observes the user behaviour and learns how the user classified her/his own
bookmarks. Each WING interacts with peer agents in order to identify communities of
interests. Each community is centred on a local bookmark folder. Identified
communities are then used to recommend the user with new bookmarks that are likely
to interest her/him. When the user access a bookmark folder, recommended items
relative to that folder are displayed. The user can then accept or reject some or all of
delivered recommendations. Thus recommendation evaluation is made in an
appropriate context rather than being intrusive. WING agents can apply different
interaction protocols in order to share their knowledge and compute
recommendations. In this paper we discuss the most basic interaction protocol that
allow agents to exchange raw date only (i.e. bookmark folders)

The reminder of this paper is organised as follows. The COWING system is detailed in
section 2. First a quick overview is given in section 2.1. Some notations are
introduced in 2.2 then the three main services implemented in the systems are
discussed: the access control service, yser’s bookmark classification learning and
recommendation computation service. Related work is briefly presented in section 3.
Finally we conclude in section 4.

2. The COWING System

2.1 System overview

The overall architecture of the COWING system is illustrated on figure 1.

E Yu
86

4HE�#O7ING

!GENT

7ING

7ING

7ING
5SER

!

5SER

#

5SER

"

"OOKMARK
REPOSITORY

"OOKMARK
REPOSITORY

"OOKMARK

REPOSITORY

/RGNIZATION
MODIFICATION

"OOKMARK
%XCHANGE

Fig. 1. The COWING system architecture involving three users: A, B and C.

The system is composed of a central COWING agent and a WING agent per registered
user. The COWING agent acts as WING agents registry. It provides WINGS with each
other addresses. In addition it provides WINGS with a description of the users
organisation hierarchy (see section 2.3). Each user manages her/his own hierarchy of
bookmarks just as in single-user settings. However, users are required to set access
rules that define which personal bookmarks to share with whom. An easy to use role-
based access control service is provided for that purpose (see section 2.3). A WING

agent observes the associated user behaviour in order to learn how the user organises
her/his bookmarks. In this goal, each WING agent implements a hybrid incremental
supervised Neural/CBR (Case-based Reasoning) classifier [18] (see section 2.4). The
used classifier learns user’s organisation policy from both positive and negative
examples. For each user u, the set of positive examples is composed of the bookmarks
explicitly added by the user to a given folder or bookmarks recommended by the
system and accepted by the user. Negative examples are bookmarks that are deleted,
moved from one folder to another or rejected by the user after being recommended by
the system.

Roughly, bookmark recommendations are computed as follows. Each WING agent
asks peer agents to feed him with new bookmarks. When a WING B receives a request
from a WING A, the former computes the view A has on its own repository. An agent
view is composed of the set of bookmark folders and bookmarks for which the agent
has the read access right. The agent B sends back to A bookmark folders that
constitute A's view on B's repository. For each received folder f, A uses its classifier,
switched to the classification mode, in order to classify bookmarks contained in f. If
the majority of these bookmarks are classified in a same local folder fl then A
recommends to add all bookmarks contained in f into fl. When the user consult the
bookmark folder fl S/he can confirm or reject the agent proposition. Depending on the

E Yu
87

user decision (i.e. confirm or reject) recommended bookmarks will be treated either as
positive or as negative examples.

Next, we introduce some notations that will be used in describing the functioning of
the COWING System. Then we detail each of the three main services implemented in
COWING: the access control service, the bookmark classifier and the bookmark
recommendation mechanism.

2.2 Notations and work hypothesis

A bookmark bi described as a vector bi = < Ai, Ci, Li> where:
•� Ai is the address (i.e. URL) of the document indexed by the bookmark. We

choose to model an address by a couple Ai = <SAi, FPi> where SAi is the
server address on which the indexed document is located. FPi is the file path
of that document on the server machine. Notice that we only consider here
static HTML documents.

•� Ci is a vector composed of the k most significant words describing the content
of the document indexed by the bookmark. k is a system parameter.

•� Li is the list of hyperlinks embedded in the document indexed by the
bookmark. We note Li ={lj}. Each link lj is described by a couple lj=<ancj,
destj> where ancj is the link anchor and destj is the address of the destination
document of that link.

Bookmarks are organised in hierarchy of folders. Each folder may contain a set of
bookmarks and a set of sub-folders. A bookmark bi can belong to only one folder at
one time (aliases and copies are not considered). This hypothesis is a restrictive one
but it simplifies the implementation of the classifier system (section 2.3)

We note fu
k the kth bookmark folder defined by user u. A bookmark folder fu

k is
defined as a couple fu

k = <Bk, f
u
kf> where Bk is the set of bookmarks contained in the

folder fu
k, and fu

kf is the identifier of the super folder of fu
k. Information about

bookmark and bookmark folders are obtained by continuously monitoring the user’s
bookmark file similarly to the procedure described in [4].

Bookmarks similarity. Given two bokmarks bi and bj. the function Sim(bi, bj)
measures the similarity between bi, bj.. This function takes as arguments the
description of both bookmarks and returns a numeric value between 0 and 1. 1 for
describing maximum similarity (i.e. identity) and 0 for denoting extreme dissimilarity.
This similarity function is an aggregation of basic similarity functions defined on each
of the bookmark attributes. Next we give similarity functions defined over the three
bookmark attributes.

Address similarity. Given two addresses a and b, we define an address similarity
function SimAdr as follows:

•� SimAdr (a,b) = 0 if a.SA ¡ b.SA /* two different web sites */

E Yu
88

•� Otherwise: SimAdr(a,b) = 1- h(a.FP, MSCA(a.FP,b.FP) +
h(b.FP,MSCA(a.FP,b.FP) /h(a.FP,root) +h(b.FP,root)

Where the function h() returns the number of links between two nodes in the
documents tree and MSCA() returns the most specific common ancestor of two nodes
in a tree. This similarity measure is based on the hypothesis that two documents that
are placed in the same directory on the same server are similar to each other. More the
directory is deep in the server hierarchy more the documents are related to each other.

Content similarity. Given two keyword vectors u and v we define a content
similarity function SimCont as follows: SimCont(u,v) = Card(u ¯ v) / Card (u ° v)I
where card() is the cardinality function. A similar function is applied to measure
embedded links similarity.

2.3 Access control service

Although privacy protection is a central issue in collaborative information systems
[14], few existing systems provide an adequate protection model. For instance,
existing collaborative bookmarking systems either do not provide a protection system,
either implement a primitive protection policy where user’s can distinguish between
private and public data. These simple protection schemes mismatch collaboration
requirements [6,10,12,20]. In real world settings users need to express fine grained
access control rules. A user ui may wish to share a bookmark folder with some user uj

but not with user uk. Moreover a user ui may wish to share with user uj a given
bookmark folder f but not some specific bookmarks that are saved in f. Role-based
access control models has been proposed in order to allow fine-grained, easy to use
access control specifications [24]. In COWING, we implement a modified version of
the role-based access control model described in [10, 11]. The implemented model is
described here after.

A role Ri is an object that contains of a set of access rules. An access rule ARi is
defined as a triple ARi = < [+|-], o, a>. The leading sign determines whether the right
a granted over object o is positive or negative. Negative rights are introduced in order
to ease access right specification [27]. The object o can be a single bookmark b or a
bookmark folder f. An access right a can be one of the following rights: read, and
modify. The modification right implies the read one.

Two types of role objects can be distinguished:
•� Organisational role: These are roles that describe abstract positions in the user's

community. For example, in a academic research group we can define the
following abstract roles: researcher, student, Ph.D. candidate, Administrative
assistant, Web master, librarian, etc.

•� User roles: each user has her/his own user role. This describes access rules
granted to the user.

E Yu
89

The set of organisational roles form what we call the organisation model. A
hierarchical structure is defined over the organisation model. This gives the
organisation model a structure of a direct acyclic graph (DAG). The set of user’s roles
has a flat structure. Each user role object is linked to one or more organisational roles.
Figure 2.a illustrates an example of the relations between user roles and the
organisation model. We call the whole set of roles (organisational and user roles) the
extended organisation model.

!,,

3TUDENT 4EACHER

0H�$��3TUDENT -ASTER�3TUDENT !UXILIARY -AIN

#LASS� 8

/RGNIZATION�MODEL

-ARIA 2USHED /LIVIA

�A	

!,,
-ARIA

0H�$��3TUDENT 3TUDENT

!UXILIARY 4EACHER

Fig. 2. The access control model components

The organisation model is defined and administrated by the application administrator.
Each Wing agent holds a copy of the extended organisation model. All WING agents
share the same structure however, access rules associated with each role (user or
organisational one) differ from one WING to another. When agent B needs to compute
agent A view on its local repository, it constructs what we call A’s access right DAG
(noted AC/DAG). This graph is constructed by climbing up links that relate the user
role A to the organisation model. Figure 2.b illustrates the AC/DAG of the WING agent
associated with the user named Maria. All folders in B’s repository for which A has at
least the read right are added to the computed view. The general idea of the evaluation
algorithm is to evaluate A’s read right in terms of access rules contained in A’s
AC/DAG. Starting by A’s user role, if no explicit answer, rejection of confirmation, is
obtained then the evaluation function consider rules contained in next role in the
AC/DAG graph. The graph is explored in a depth first way. This exploration rule is
necessary to avoid ambiguity in evaluating the access rule. More details about the
access control model can be found in [10].

E Yu
90

2.4 Learning to classify

Each WING agent uses a hybrid neural/ case-based reasoning (CBR) classifier in order
to learn the user’s bookmark classification strategy [18]. CBR is a problem solving
methodology that is based on reusing past experiences in solving problems in order to
solve new problems. A case is classically composed of two parts the problem part and
the solution part. To solve a new problem the system retrieves from its memory
(called also the case base) all cases that the problem part is similar to the problem to
solve. Solutions proposed by retrieved cases can be adapted to propose a solution to
the new problem. In our application, the problem part of a case is composed of set of
the attributes of a bookmark (see section 2.2), the solution part is the folder identifier
in which the bookmark is filed by the user.

The used classifier memory model, called PROBIS, is based on the integration of a
prototype-based neural network and a flat memory devised into many groups, each of
them is represented by a prototype. PROBIS contains two memory levels (see figure 3),
the first level contains prototypes and the second one contains examples. The first
memory level is composed of the hidden layer of the prototype-based neural network.
A prototype is characterised by :

1.�The prototype’s co-ordinates in the m-dimensional space (each dimension
corresponding to one parameter), these co-ordinates are the centre of the
prototype.

2.�The prototype’s influence region, which is determined, by the region of the
space containing all the examples represented by this prototype.

3.�The class to which belongs the prototype (i.e. a bookmark folder)

The second memory level is a simple flat memory in which examples are organised
into different zones of similar examples. These two levels are linked together, so that
a memory zone is associated with each prototype. The memory zone contains all
examples belonging to this prototype. A special memory zone is reserved for atypical
examples. These are examples that do not belong to any prototype.

The classifier system operates either in learning mode or in classification mode. The
system can switch from one mode to another at any moment. Before the first learning
phase, the system contains neither prototypes nor zones of examples. Examples for
training are placed initially in the atypical zone. Prototypes and associated zones are
then automatically constructed. An incremental prototype-based neural network is
used to construct the upper memory level. Particular and isolated examples are kept in
the atypical zone whereas typical examples are transferred to the relevant typical
zones. This memory organisation helps to accelerate the classification task as well as
to increase the system’s generalisation capabilities. In addition adding a new example
is a simple task, the example is added in the appropriate memory zone and the
associated prototype is modified.
�

E Yu
91

�

!TYPICAL�ZONE

0ROTOTYPE�LEVEL -EMORY

LEVEL

Fig. 3. The memory is composed of two levels: prototypes and stored examples

The learning procedure is the following:

1.�If the new example does not belong to any of the existing prototypes, a new
prototype is created (this operation is called assimilation). This operation is
accomplished by adding a new hidden unit to the neural network. The co-ordinates
of this prototype and the radius of the influence region is initialised to a maximal
value (this is a system parameter). A new memory zone is also created and linked
to the prototype. The new example is added to the new memory zone.

2.�If the new example belongs to a prototype whose class value is the same as the
example, the example is added to the associated zone of the second level memory.
The prototype co-ordinates are modified according to the Grossberg learning law
|10] to fit better the new example (this operation is called accommodation). The
vector representing the prototype co-ordinates and memorised in the weights of the
links going from the input layer to this prototype is modified according:
Wpro(t+1)= Wpro(t)+g(t)*Sim (bi- Wpro(t)) where bi is the vector representing the
bookmark to classify, g(t) is a decreasing series which tends to 0, and Sim is the
bookmark similarity function.

3.�If the new example belongs to a prototype whose class value is not the same as the
example, the radius of this prototypes is decreased in order to exclude the new
example of this prototype (this operation is called differentiation). The new
example is introduced again to the neural network and the most similar prototype
(if there is any) is activated again and one of the three previous conditions is right.

Build prototypes approximate the folders in the bookmark repository. Atypical
examples correspond to bookmarks that can be classified in more than one folde.

2.5 Learning to recommend

The bookmark recommendation computation is performed as follows. Each WING

agent maintains locally two data structures: an agenda and a folder correlation matrix
(FCM).

E Yu
92

The agenda is a dictionary structure where keys represent identifiers of peer WING

agents to contact and values are next contact dates. Hence Agenda[i] gives the next
contact date with agent i.

The FCM is a mXn matrix where m is the number of folders in the local repository
and n the number of peer agents known to the local agent. An entry FCM[i, j] is a
couple <f jk ,corij> where f jk is a folder identifier maintained by user uj and corij is the
correlation degree between the folder f jk and the folder f ik maintained by local agent.

Correlation between two folders f1 and f2 is given by the number of bookmarks
contained in folder f2 that are classified in folder f1 divided by the total number of
bookmarks in f2. In the FCM matrix, an entry FCM[i,j]= <f j

k ,corij> is computed by
taking the folder fk from the agent j repository that have the maximum correlation
value with folder i belonging to the local repository.

Given a WING agent A, the bookmark recommendation process is made by executing
the following algorithm:

1 For each B agent in Agenda do
2 If Agenda[B] is over then ; it is time to contact
3 send B a bookmark request ; the B agent
4 receive from B: V and ND ; V is A’s view on B repository
5 Agenda[B]= ND; ; ND the next contact date
6 For each f in V ; f folders in view V
7 <i,c>=computeCorrelation(f) ; i is the local folder with
8 If FCM[i,B].cor < c then ; highest correlation with f
9 FCM[i,B]= <f,c> ; c is correlation of i and f.
10 If FCM[i,B].cor > δ then

 recommend to add bookmarks
 in f to the local folder i

; δ is a minimum correlation
; threshold

Figure 4 illustrates the interaction protocol between two Wing agents. The function
computeCorrelation (line 7 in above algorithm) finds the folder i in the local
repository that have the highest correlation value with a folder f as defined above.
The function proceeds as follows. For each bookmark bi in f the local neural/CBR
classifier is applied. For each bookmark, the classifier responds by the identifier of a
local folder. The folder that has been selected the most will be the returned folder.
Notice that the correlation relation is not symmetric since correlation is computed by
using local classifiers (the classifier is different from one agent to another) and by
using information contained in the local agent view on the repository of the other
agent.

E Yu
93

7ING�! 7ING�"

"OOKMARK�REQUEST

#OMPUTES�!�S�6IEW
ON�THE�LOCAL�BOOKMARK�REPOSITORY"�S�BOOKMARKS�

ACCESSIBLE�BY�!

���RECOMENDATION�COMPUTATION
���5PDATE�THE�LOCAL�AGENDA
���5PDATE�THE�FOLDER�CORELATION�
MATRIX

Fig. 4. Interaction protocol between WING agents

2.6 Experimental results

In order to validate our approach we have applied the following experimentation
protocol. We start by forming a synthetic collection of bookmarks. The total number
of bookmarks is 300. These bookmarks are grouped in 3à folders. The mean number
of bookmarks per folder is 10. Starting from this bookmark collection we randomly
generated ten other collections by modifying each by up to 35%. Two types of
operations are possible in order to modify a folder:

1.� delete a bookmark from the entire collection,
2.� move a bookmark to another folder.

Notice that we assume that a bookmark may not belongs to two different folders at
the same time. The generated bookmark collections verify, by construction, this
property. The modification percentage (i.e. 35%) ensures a suitable overlapping
between the different collections of bookmarks. The system performances are
evaluated by two criteria:

•� The learning ratio that measures for each classifier the precision of good
classifications of examples belonging to the learning set (i.e. local
bookmarks used to build the classifier)

•� The generalisation ratio that measures the precision of recommending a
bookmark o the right folder. The right folder of a bookmark is the
original folder where the bookmark was in the initial collection.

 A set of ten different experiences has been conducted. The average obtained
learning ratio is 93,3% and the average generalisation ratio 86,2%. While these
figures are encouraging, we should admit that these will not be the same is real world
settings where overlapping ration among bookmark folders is far below the artificial
overlapping threshold we have imposed in our experimental work.

E Yu
94

3. Related Work

Few systems are proposed in the literature to cope with the problem of collaborative
bookmark management. Almost all-commercial systems are based on implementing a
central shared URL repository that allows users to store and retrieve URLs. Some
shared URL repositories, such as MyLynx.com allow user to define a private section
and a public section.

Examples of shared bookmark systems are the GAB system [25], KnowledgePump
[7], Pharos [3]. The GAB system offers a service that allows merging different user
bookmark repository in a virtual centralized bookmark. However no recommendation
mechanism is implemented. It is up to the users to navigate in the merged repository
to find bookmarks they are interested in. A comparable approach is also implemented
in the PowerBookmarks systems [15]. Both KnoweldgePump and Pharos provide
users with the possibility to share a centralised bookmark repository. The repository
hierarchy is defined by a system administrator. Both systems provide also
customisation service in order to recommend users with bookmarks that are more
interesting for them in given folder. Recommendation computation is made by
applying a collaborative filtering mechanism that is base on matching the
characteristics of bookmarks added and accessed by each user.

Most similar to our work is the RAAP system [5]. In RAAP the system also learns by
using a classical classifier how users classify bookmarks and use this information to
recommend people with new bookmarks. However, RAAP has the disadvantage of
being built on a centralised repository. It provides a poor access control model.

Related also to our work is the Yenta system [6]. Yenta is presented by its authors as a
matchmaking system. It aims at discovering matchmaking between people based on
comparing shared interests. The principal of Yenta could be easily applied to built a
collaborative bookmark system. The accent is put on distributing the computation of
the matchmaking function.

4.�Conclusion

In this paper we have presented CoWing: a multi-agent collaborative bookmark
management system. The COWING system addresses mainly the resources discovery
problem. It provides a mean that allow users to share their bookmarks, in a
personalised way without asking users to do extra task except for defining others
access control on their own repositories. Each user is assisted by a personal agent, the
CoWing agent that uses a hybrid neural/CBR classifier that learns the user strategy in
classifying bookmarks. The learned classification strategy is used to construct
associations between bookmark folders belonging to other users.

Experiments made on synthetic data show that our approach is valid. However, we
believe that some enhancements should in order to make the system operational in

E Yu
95

real work settings. One important issue concerns the cold start problem [11, 25]. The
applied recommendation computation approach makes the hypothesis that users have
organised their bookmarks in a hierarchy of folders. Each folder has some semantic
sense. While lot of users do use hierarchical bookmark structures, some still using flat
organisation structures [2]. Another related problem is the witnessed low overlapping
between different user bookmark repositories [4]. We are working on proposing
solutions to these two problems. Future work concerns also the extension of the
system to handle the two other problems of bookmark maintenance and organisation.

References

1.� D. Abrams, R. Baecker, and M. Chignell. (1998). Information Archiving with Bookmarks:
Personal Web space Construction and Organization. In Proceedings of ACM Conference
on Human Computer Interactions (CHI’98), Los Anglos, 18-23 April pp. 41-48.

2.� Abrams, D. (1997) Human Factors of Personal Web Information Spaces. MS Thesis,
Department of Computer Sciences, University of Toronto, 1997, Also available at
http://www.dgp.torento.edu/~abrams

3.� Bouthors V., and Dedieu O. (1999). Pharos, a Collaborative Infrastructure for Web
Knowledge Sharing. In Proceedings of the third European Conference On Research and
Advanced Technology for Digital Libraries (ECDL’99) Abiteboul S., and Vercoustre A.
Eds), LNCS No 1696, Paris September, 1999, pp. 215-233

4.� A. Cockburn, B. McKenzie. What Do Web Users Do? An Empirical Analysis of Web Use.
In International Journal on Human-Computer Studies, 2000.

5.� J. Delgado, N. Ishii and T. Ura. Intelligent Collaborative Information Retrieval. In
proceedings of Progress in Artificial Intelligence, IBERAMIA’98, LNAI 1484, pp. 170-
182.

6.� Foner, L.N. (1999) Political Artifacts and Personal Privacy: The Yenta Multi-Agent
Distributed Matchmaking System, Ph.D. Thesis, Massachusetts Institute of Technology,
June 1999.

7.� Glance, N., Arregui, D., and Dardenne M. (1999) Making Recommender Systems Work
for Organizations. In Proceedings of PAAM’99, London April 1999.

8.� S. Grossberg, Competitive learning: From interaction activation to adaptive resonance,
Cognitive Science, n°1, 1987, pp. 23-63.

9.� Grudin, J. (1994) Groupware and Social Dynamics: Eight challenges for developers.
Communication of the ACM 37,1 (January 1994), pp. 92-105.

10.� R. Kanawati. Groupware: Control and Architectural issues. Ph.D. Thesis, Institut National
Polytechnique de Grenoble, November 1997. 172 pages (In French).

11.� Kanawati, R. (1998) COLT: Yet Another Integrated Collaborative Environment. In
Proceedings of the third International Conference on the Design of Cooperative Systems
(Dareses, F., and Zaraté, P. Eds) Volume II Cannes 26-29 May 1998, pp. 99-102

12.� R. Kanawati, M. Malek. Informing the design of shared bookmark systems. In proceedings
of RIAO’2000, Paris, 2000.

13.� R. M. Keller, S. R. Wolf; J. R. Chen, J. L. Rabinowitz and N. Mathe. A Bookmaking
Service for Organizing and Sharing URLs. In proceedings of the 6th International
Conference on the World Wide Web, Santa Clara, CA, April 1997.

14.� T. Lau, O. Etzioni D.S. Weld. Privacy Interfaces for Information Management.
Communications of the ACM 42(10), April 1999. pp. 88-94

15.� W.S. Li, Q. Vu, D. Agrawal, Y. Hara and H. Takano. PowerBookmarks: A system for
Personalizable Web Information Organization, Sharing and Management. In proceedings

E Yu
96

of the 8th International World Wide Web Conference (WWW’8), Toronto, Canada. May
1999.

16.� Lim, J-G., (1994) Using Cool-lists to Index HTML Documents in the Web, In
Proceedings of the 2nd International Conference on the World Wide Web (WWW’2)
Chicago, IL, 1994 pp. 831-938.

17.� Maarek, Y.S., Ben Shaul, I.Z. (1996), Automatically Organizing Bookmarks per Contents.
In Proceedings of the 5th International World Wide Web Conference, Paris, 6-8 May.

18.� M. Malek. Hybrid approaches Integrating Neural Networks and case based reasoning:
from Loosely Coupled to Tightly Coupled Models. In K.P. Sankar, S. D. Tharam and S. Y.
Daniel (Eds) Soft Computing in Case-based Reasoning. Spinger, 2000 pp.73-94

19.� Mathe, N. and Chen, J. R. (1998); Organizing and Sharing Information on the World-
Wide Web using a Multi-agent System; In proceedings of ED-MEDIA’98 Conference on
Educational Multimedia and Hypermedia, Freiburg, Germany, June 1998.

20.� Markus, M. L., and Connolly, T. (1990) Why CSCW Applications Fail: Problems in the
Adoption of Interdependent Work Tools. In Proceedings of the International Conference
on Computer Supported Collaborative Work (CSCW’90), New York 1990.

21.� Resnick P.(1997) Recommender Systems, Communications of the ACM 40(3), 1997
22.� Rucker J., and Marcos J. P., (1997) Siteseer: Personalized Navigation for the Web.

Communications of the ACM 40(3), pp. 73-75. 1997
23.� R. Sandhu, E. Coyne, H. Feinstein, C.Youman. Role-Based Access Control Models. IEEE

Computer; 20(2), 1996 pp 38—47,
URL: http://citeseer.nj.nec.com/sandhu96rolebased.html

24.� H. Shen, P. Dewan. Access Control for Collaborative Environments. In proceedings of the
ACM Conference on Computer-Supported Cooperative Work (J.Turner and R. Kraut eds)
(CSCW’92), Torento, Canada, 1992. pp 51-58

25.� Wittenburg, K., Das, D., Hill W., and Stead L. (1997) Group Asynchronous browsing on
the World Wide Web. In proceedings of the 6th International Conference on the World
Wide Web (WWW’6), 1997

E Yu
97

