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ABSTRACT
The Semantic Web relies heavily on the formal ontologies
that structure underlying data for the purpose of compre-

hensive and transportable machine understanding. There-
fore, the success of the Semantic Web depends strongly on
the proliferation of ontologies, which requires fast and easy
engineering of ontologies and avoidance of a knowledge ac-
quisition bottleneck.
Ontology Learning greatly facilitates the construction of

ontologies by the ontology engineer. The vision of ontology
learning that we propose here includes a number of comple-
mentary disciplines that feed on di�erent types of unstruc-
tured, semi-structured and fully structured data in order to
support a semi-automatic, cooperative ontology engineering
process. Our ontology learning framework proceeds through

ontology import, extraction, pruning, re�nement, and eval-
uation giving the ontology engineer a wealth of coordinated
tools for ontology modeling. Besides of the general frame-
work and architecture, we show in this paper some exem-
plary techniques in the ontology learning cycle that we have

implemented in our ontology learning environment, Text-
To-Onto, such as ontology learning from free text, from dic-
tionaries, or from legacy ontologies, and refer to some others
that need to complement the complete architecture, such as
reverse engineering of ontologies from database schemata or
learning from XML documents.

1. ONTOLOGIES FOR THE SEMANTIC WEB
Conceptual structures that de�ne an underlying ontology

are germane to the idea of machine processable data on the
Semantic Web. Ontologies are (meta)data schemas, provid-

ing a controlled vocabulary of concepts, each with an explic-
itly de�ned and machine processable semantics. By de�ning
shared and common domain theories, ontologies help both
people and machines to communicate concisely, supporting
the exchange of semantics and not only syntax. Hence, the
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cheap and fast construction of domain-speci�c ontologies is
crucial for the success and the proliferation of the Semantic
Web.
Though ontology engineering tools have become mature

over the last decade (cf. [9]), the manual acquisition of on-
tologies still remains a tedious, cumbersome task resulting
easily in a knowledge acquisition bottleneck. Having devel-
oped our ontology engineering workbench, OntoEdit, we had
to face exactly this issue, in particular we were given ques-
tions like

� Can you develop an ontology fast? (time)

� Is it diÆcult to build an ontology? (diÆculty)

� How do you know that you've got the ontology right?
(con�dence)

In fact, these problems on time, diÆculty and con�dence
that we ended up with were similar to what knowledge en-
gineers had dealt with over the last two decades when they
elaborated on methodologies for knowledge acquisition or
workbenches for de�ning knowledge bases. A method that

proved extremely bene�cial for the knowledge acquisition
task was the integration of knowledge acquisition with ma-
chine learning techniques [33]. The drawback of these ap-
proaches, e.g. the work described in [21], however, was their
rather strong focus on structured knowledge or data bases,
from which they induced their rules.

In contrast, in the Web environment that we encounter
when building Web ontologies, the structured knowledge or
data base is rather the exception than the norm. Hence, in-
telligent means for an ontology engineer takes on a di�erent
meaning than the | very seminal | integration architec-

tures for more conventional knowledge acquisition [7].
Our notion of Ontology Learning aims at the integration of

a multitude of disciplines in order to facilitate the construc-
tion of ontologies, in particular machine learning. Because
the fully automatic acquisition of knowledge by machines
remains in the distant future, we consider the process of

ontology learning as semi-automatic with human interven-
tion, adopting the paradigm of balanced cooperative modeling
[20] for the construction of ontologies for the Semantic Web.
This objective in mind, we have built an architecture that
combines knowledge acquisition with machine learning, feed-
ing on the resources that we nowadays �nd on the syntactic

Web, viz. free text, semi-structured text, schema de�nitions



(DTDs), etc. Thereby, modules in our framework serve dif-

ferent steps in the engineering cycle, which here consists of
the following �ve steps (cf. Figure 1):
First, existing ontologies are imported and reused by

merging existing structures or de�ning mapping rules be-
tween existing structures and the ontology to be established.
For instance, [26] describe how ontological structures con-

tained in Cyc are used in order to facilitate the construc-
tion of a domain-speci�c ontology. Second, in the ontol-
ogy extraction phase major parts of the target ontology
are modeled with learning support feeding from web doc-
uments. Third, this rough outline of the target ontology
needs to be pruned in order to better adjust the ontology

to its prime purpose. Fourth, ontology re�nement pro�ts
from the given domain ontology, but completes the ontology
at a �ne granularity (also in contrast to extraction). Fifth,
the prime target application serves as a measure for vali-
dating the resulting ontology [31]. Finally, one may revolve
again in this cycle, e.g. for including new domains into the

constructed ontology or for maintaining and updating its
scope.

2. THE ONTOLOGY LEARNING KILLER
APPLICATION

Though ontologies and their underlying data in the Se-
mantic Web are envisioned to be reusable for a wide range of
possibly unforeseen applications1, a particular target appli-
cation remains the touchstone for a given ontology. In our
case, we have been dealing with ontology-based knowledge
portals that structure Web content and that allow for struc-

tured provisioning and accessing of data [29, 30]. Knowledge
portals are information intermediaries for knowledge access-
ing and sharing on the Web. The development of a knowl-
edge portal consists of the tasks of structuring the knowl-
edge, establishing means for providing new knowledge and

accessing the knowledge contained in the portal.
A considerable part of development and maintenance of

the portal lies in integrating legacy information as well as
in constructing and maintaining the ontology in vast, of-
ten unknown, terrain. For instance, a knowledge portal
may focus on the electronics sector, integrating compar-

ative shopping in conjunction with manuals, reports and
opinions about current electronic products. The creation of
the background ontology for this knowledge portal involves
tremendous e�orts for engineering the conceptual structures
that underly existing warehouse databases, product cata-
logues, user manuals, test reports and newsgroup discus-

sions. Correspondingly, ontology structures must be con-
structed from database schemata, a given product thesaurus
(like BMEcat), XML documents and document type de�ni-
tions (DTDs), and free texts. Still worse, signi�cant parts of
these (meta-)data change extremely fast and, hence, require
a regular update of the corresponding ontology parts.

Thus, very di�erent types of (meta-)data might be use-
ful input for the construction of the ontology. However, in
practice one needs comprehensive support2 in order to deal

1Just like Tim Berners-Lee did not forsee online auctions
being a common business model of the Web of 2000.
2Comprehensive support with ontology learning need not
necessarily imply the top-notch learning algorithms, but
may rely more heavily on appropriate tool support and
methodology.

with this wealth. Hence, there comes the need for a range of

di�erent techniques: Structured data and meta data require
reverse engineering approaches, free text may contribute to
ontology learning directly or through information extraction
approaches.3 Semi-structured data may �nally require and
pro�t from both.
In the following we elaborate on our ontology learning

framework. Thereby we approach di�erent techniques for
di�erent types of data, showing parts of our architecture, its
current status, and parts that may complement our current
Text-To-Onto environment.
A general overview of ontology learning techniques as well

as corresponding references may be found in Section 9.

3. AN ARCHITECTURE FOR ONTOLOGY
LEARNING

Given the task of constructing and maintaining an ontol-

ogy for a Semantic Web application, e.g. for an ontology-
based knowledge portal that we have been dealing with (cf.
[29]), we have produced a wish list of what kind of support
we would fancy.

3.1 Ontology Engineering WorkbenchOntoEdit

As core to our approach we have built a graphical user in-

terface to support the ontology engineering process manually
performed by the ontology engineer. Here, we o�er sophisti-
cated graphical means for manual modeling and re�ning the
�nal ontology. Di�erent views are o�ered to the user target-
ing the epistemological level rather than a particular rep-
resentation language. However, the ontological structures

built there may be exported to standard Semantic Web rep-
resentation languages, such as OIL and DAML-ONT, as well
as our own F-Logic based extensions of RDF(S). In addition,
executable representations for constraint checking and ap-
plication debugging can be generated and then accessed via
SilRi4, our F-Logic inference engine, that is directly con-

nected with OntoEdit.
The sophisticated ontology engineering tools we knew, e.g.

the Prot�eg�e modeling environment for knowledge-based sys-
tems [9], would o�er capabilities roughly comparable to On-
toEdit. However, given the task of constructing a knowledge
portal, we found that there was this large conceptual bridge

between the ontology engineering tool and the input (of-
ten legacy data), such as Web documents, Web document
schemata, databases on the Web, and Web ontologies, which
ultimately determined the target ontology. Into this void we
have positioned new components of our ontology learning ar-

chitecture (cf. Figure 2). The new components support the
ontology engineer in importing existing ontology primitives,
extracting new ones, pruning given ones, or re�ning with
additional ontology primitives. In our case, the ontology
primitives comprise:

� a set of strings that describe lexical entries L for con-
cepts and relations;

3In fact, ontology learning for free text serves a double pur-
pose. On the one hand it yields a readily exploitable on-
tology for Semantic Web purposes, on the other hand it
often returns improved information extraction and natural
language understanding means adjusted to the learned on-
tology, cf. [10].
4
http://www.ontoprise.com/ | then download area.
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Figure 1: Ontology Learning process steps

� a set of concepts5 | C;

� a taxonomy of concepts with multiple inheritance (het-
erarchy) HC ;

� a set of non-taxonomic relations | R | described by
their domain and range restrictions;

� a heterarchy of relations, i.e. a set of taxonomic rela-
tions HR;

� relations F and G that relate concepts and relations
with their lexical entries, respectively; and, �nally,

� a set of axioms A that describe additional constraints
on the ontology and allow to make implicit facts ex-
plicit [29].

This structure corresponds closely to RDFS, the one ex-
ception is the explicit consideration of lexical entries. The
separation of concept reference and concept denotation, which
may be easily expressed in RDF, allows to provide very
domain-speci�c ontologies without incurring an instanta-

neous conict when merging ontologies | a standard re-
quest in the Semantic Web. For instance, the lexical entry
\school" in one ontology may refer to a building in ontol-
ogy A, but to an organization in ontology B, or to both in
ontology C. Also in ontology A the concept refered to in
English by \school" and \school building" may be referred

to in German by \Schule" and \Schulgeb�aude".

5Concepts in our framework are roughly akin to synsets in
WordNet [19].

Ontology learning relies on ontology structures given along
these lines and on input data as described above in order to
propose new knowledge about reasonably interesting con-
cepts, relations, lexical entries, or about links between these
entities | proposing the addition, the deletion, or the merg-
ing of some of them. The results of the ontology learning

process are presented to the ontology engineer by the graph-
ical result set representation (cf. Figure 4 for an example of
how extracted properties may be presented). The ontology
engineer may then browse the results and decide to follow,
delete, or modify the proposals in accordance to the purpose
of her task.

4. COMPONENTS FOR LEARNING
ONTOLOGIES

Integrating the considerations from above into a coherent
generic architecture for extracting and maintaining ontolo-
gies from data on the Web we have identi�ed several core
components. There are, (i), a generic management compo-

nent dealing with delegation of tasks and constituting the
infrastructure backbone, (ii), a resource processing compo-
nent working on input data from the Web including, in par-
ticular, a natural language processing system, (iii), an algo-
rithm library working on the output of the resource process-
ing component as well as the ontology structures sketched

above and returning result sets also mentioned above and,
(iv), the graphical user interface for ontology engineering,
OntoEdit.
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Figure 2: Architecture for Learning Ontologies for the Semantic Web

4.1 Management component
The ontology engineer uses the management component

to select input data, i.e. relevant resources such as HTML &
XML documents, document type de�nitions, databases, or

existing ontologies that are exploited in the further discovery
process. Secondly, using the management component, the
ontology engineer also chooses among a set of resource pro-
cessing methods available at the resource processing com-
ponent and among a set of algorithms available in the algo-
rithm library.

Furthermore, the management component even supports
the ontology engineer in discovering task-relevant legacy data,
e.g. an ontology-based crawler gathers HTML documents
that are relevant to a given core ontology and an RDF
crawler follows URIs (i.e., unique identi�ers in XML/RDF)

that are also URLs in order to cover parts of the so far tiny,
but growing Semantic Web.

4.2 Resource processing component
Resource processing strategies di�er depending on the type

of input data made available:

� HTML documents may be indexed and reduced to free
text.

� Semi-structured documents, like dictionaries, may be

transformed into a prede�ned relational structure.

� Semi-structured and structured schema data (like DTD's,
structured database schemata, and existing ontologies)

are handeled following di�erent strategies for import
as described later in this paper.

� For processing free natural text our system accesses the
natural language processing system SMES (Saarbr�ucken
Message Extraction System), a shallow text processor
for German (cf. [24]). SMES comprises a tokenizer
based on regular expressions, a lexical analysis compo-
nent including various word lexicons, a morphological
analysis module, a named entity recognizer, a part-of-
speech tagger and a chunk parser.

After �rst preprocessing according to one of these or simi-
lar strategies, the resource processing module transforms the
data into an algorithm-speci�c relational representation.

4.3 Algorithm Library
As described above an ontology may be described by a

number of sets of concepts, relations, lexical entries, and
links between these entities. An existing ontology de�nition
(including L; C;HC;R;HR;A;F ; G) may be acquired using
various algorithms working on this de�nition and the pre-
processed input data. While speci�c algorithms may greatly
vary from one type of input to the next, there is also con-

siderable overlap concerning underlying learning approaches



like association rules, formal concept analysis, or clustering.

Hence, we may reuse algorithms from the library for acquir-
ing di�erent parts of the ontology de�nition.
Subsequently, we introduce some of these algorithms avail-

able in our implementation. In general, we use a multi-
strategy learning and result combination approach, i.e. each
algorithm that is plugged into the library generates normal-

ized results that adhere to the ontology structures sketched
above and that may be combined into a coherent ontology
de�nition.

5. IMPORT & REUSE
Given our experiences in medicine, telecommunication,

and insurance, we expect that for almost any commercially
signi�cant domain there are some kind of domain conceptu-
alizations available. Thus, we need mechanisms and strate-
gies to import & reuse domain conceptualizations from ex-

isting (schema) structures. Thereby, the conceptualizations
may be recovered, e.g., from legacy database schemata, document-
type de�nitions (DTDs), or from existing ontologies that
conceptualize some relevant part of the target ontology.
In the �rst part of the import & reuse step, the schema

structures are identi�ed and their general content need to

be discussed with domain experts. Each of these knowl-
edge sources must be imported separately. Import may be
performed manually | which may include the manual def-
inition of transformation rules. Alternatively, reverse engi-
neering tools, such as exist for recovering extended entity-

relationship diagrams from the SQL description of a given
database (cf. reference [32, 14] in survey, Table 1), may
facilitate the recovery of conceptual structures.
In the second part of the import & reuse step, imported

conceptual structures need to be merged or aligned in or-
der to constitute a single common ground from which to

take-o� into the subsequent ontology learning phases of ex-
tracting, pruning and re�ning. While the general research
issue concerning merging and aligning is still an open prob-
lem, recent proposals (e.g., [25]) have shown how to improve
the manual process of merging/aligning. Existing methods
for merging/aligning mostly rely on matching heuristics for

proposing the merge of concepts and similar knowledge-base
operations. Our current research also integrates mechanisms
that use a application data oriented, bottom-up approach.
For instance, formal concept analysis allows to discover pat-
terns between application data on the one hand and the
usage of concepts and relations and the semantics given by

their heterarchies on the other hand in a formally concise
way (cf. reference [8] in survey, Table 1, on formal concept
analysis).
Overall, the import and reuse step in ontology learning

seems to be the one that is the hardest to generalize. The

task may remind vaguely of the general problems with data
warehousing adding, however, challenging problems of its
own.

6. EXTRACTING ONTOLOGIES
In the ontology extraction phase of the ontology learn-

ing process, major parts, i.e. the complete ontology or large
chunks reecting a new subdomain of the ontology, are mod-
eled with learning support exploiting various types of (Web)
sources. Thereby, ontology learning techniques partially rely

on given ontology parts. Thus, we here encounter an iter-

ative model where previous revisions through the ontology

learning cycle may propel subsequent ones and more sophis-
ticated algorithms may work on structures proposed by more
straightforward ones before.
Describing this phase, we sketch some of the techniques

and algorithms that have been embedded in our framework
and implemented in our ontology learning environmentText-
To-Onto (cf. Figure 3). Doing so, we cover a very substantial
part of the overall ontology learning task in the extraction
phase. Text-To-Onto proposes many di�erent ontology com-
ponents, which we have described above (i.e. L; C;R; : : : ),
to the ontology engineer feeding on several types of input.

6.1 Lexical Entry & Concept Extraction
This technique is one of the baseline methods applied in

our framework for acquiring lexical entries with correspond-
ing concepts. In Text-To-Onto, web documents are morpho-
logically processed, including the treatment of multi-word
terms such as \database reverse engineering" by N-grams,
a simple statistics means. Based on this text preprocessing,

term extraction techniques, which are based on (weighted)
statistical frequencies, are applied in order to propose new
lexical entries for L.
Often, the ontology engineer follows the proposal by the

lexical entry & concept extraction mechanism and includes

a new lexical entry in the ontology. Because the new lexical
entry comes without an associated concept, the ontology
engineer must then decide (possibly with help from further
processing) whether to introduce a new concept or link the
new lexical entry to an existing concept.

6.2 Hierarchical Concept Clustering
Given a lexicon and a set of concepts, one major next

step is the taxonomic classi�cation of concepts. One gen-
erally applicable method with to this regard is hierarchical
clustering. Hierarchical clustering exploits the similarity of
items in order to propose a hierarchy of item categories. The
similarity measure is de�ned on the properties of items.

Given the task of extracting a hierarchy from natural lan-
guage text, adjacency of terms or syntactical relationships
between terms are two properties that yield considerable de-
scriptive power to induce the semantic hierarchy of concepts
related to these terms.
A sophisticated example for hierarchical clustering is given

by Faure & Nedellec (cf. reference [6] in survey, Table 1):
They present a cooperative machine learning system, ASIUM,
which acquires taxonomic relations and subcategorization
frames of verbs based on syntactic input. The ASIUM sys-
tem hierarchically clusters nouns based on the verbs that
they are syntactically related with and vice versa. Thus,

they cooperatively extend the lexicon, the set of concepts,
and the concept heterarchy (L; C;HC).

6.3 Dictionary Parsing
Machine-readable dictionaries (MRD) are frequently avail-

able for many domains. Though their internal structure is

free text to a large extent, there are comparatively few pat-
terns that are used to give text de�nitions. Hence, MRDs
exhibit a large degree of regularity that may be exploited
for extracting a domain conceptualization and proposing it
to the ontology engineer.
Text-To-Onto has been used to generate a taxonomy of

concepts from a machine-readable dictionary of an insurance



Figure 3: Screenshot of our Ontology Learning Workbench Text-To-Onto

company (cf. reference [15] in survey, Table 1). Likewise to
term extraction from free text morphological processing is
applied, this time however complementing several pattern-
matching heuristics. For example the dictionary contained
the following entry:

Automatic Debit Transfer: Electronic service arising
from a debit authorization of the Yellow Account holder
for a recipient to debit bills that fall due direct from the
account..

Several heuristics were applied to the morphologically an-
alyzed de�nitions. For instance, one simple heuristic relates
the de�nition term, here \automatic debit transfer", with
the �rst noun phrase occurring in the de�nition, here \elec-
tronic service". Their corresponding concepts are linked in
the heterarchy HC:

HC(automatic debit transfer, electronic service).
Applying this heuristic iteratively, one may propose large

parts of the target ontology, more precisely L; C and HC to
the ontology engineer. In fact, because verbs tend to be
modeled as relations, R (and the linkage between R and L)
may be extended by this way, too.

6.4 Association Rules
Association rule learning algorithms are typically used for

prototypical applications of data mining, like �nding associ-
ations that occur between items, e.g. supermarket products,
in a set of transactions, e.g. customers' purchases. The gen-
eralized association rule learning algorithm extends its base-

line by aiming at descriptions at the appropriate level of the

taxonomy, e.g. \snacks are purchased together with drinks"
rather than \chips are purchased with beer" and \peanuts
are purchased with soda".
In Text-To-Onto (cf. reference [17] in survey, Table 1) we

use a modi�cation of the generalized association rule learn-
ing algorithm for discovering properties between classes. A

given class hierarchy HC serves as background knowledge.
Pairs of syntactically related classes (e.g. pair(festival,island)
describing the head-modi�er relationship contained in the
sentence \The festival on Usedom6 attracts tourists from all
over the world.") are given as input to the algorithm. The
algorithm generates association rules comparing the rele-

vance of di�erent rules while climbing up and/or down the
taxonomy. The appearingly most relevant binary rules are
proposed to the ontology engineer for modeling relations into
the ontology, thus extending R.
As the number of generated rules is typically high, we

o�er various modes of interaction. For example, it is possi-

ble to restrict the number of suggested relations by de�ning
so-called restriction classes that have to participate in the
relations that are extracted. Another way of focusing is the
exible enabling / disabling of the use of taxonomic knowl-
edge for extracting relations.
Results are presented o�ering various views onto the re-

sults as depicted in Figure 4. A generalized relation that
may be induced by the partially given example data above
may be the property(event,area), which may be named by

6Usedom is an island located in north-east of Germany in
the Baltic Sea.



the ontology engineer as locatedIn, viz. events are located
in an area (thus extending L and F ). The user may add the
extracted relations to the ontology by drag-and-drop. To ex-
plore and determine the right aggregation level of adding a
relation to the ontology, the user may browse the hierarchy
view on extracted properties as given in the left part of Fig-
ure 4. This view may also support the ontology engineer

in de�ning appropriate subPropertyOf relations between
properties, such as subPropertyOf(hasDoubleRoom,hasRoom)
(thereby extending HR).

7. PRUNING THE ONTOLOGY
A common theme of modeling in various disciplines is the

balance between completeness and scarcity of the domain
model. It is a widely held belief that targeting completeness
for the domain model on the one hand appears to be prac-
tically inmanagable and computationally intractable, and

targeting the scarcest model on the other hand is overly lim-
iting with regard to expressiveness. Hence, what we strive
for is the balance between these two, which is really working.
We aim at a model that captures a rich conceptualization
of the target domain, but that excludes parts that are out
of its focus. The import & reuse of ontologies as well as the

extraction of ontologies considerably pull the lever of the
scale into the imbalance where out-of-focus concepts reign.
Therefore, we pursue the appropriate diminishing of the on-
tology in the pruning phase.
There are at least two dimensions to look at the prob-

lem of pruning. First, one needs to clarify how the pruning
of particular parts of the ontology (e.g., the removal of a
concept or a relation) a�ects the rest. For instance, Peter-
son et. al. [26] have described strategies that leave the user
with a coherent ontology (i.e. no dangling or broken links).
Second, one may consider strategies for proposing ontology

items that should be either kept or pruned. We have inves-
tigated several mechanisms for generating proposals from
application data. Given a set of application-speci�c docu-
ments there are several strategies for pruning the ontology.
They are based on absolute or relative counts of frequency
of terms (cf. reference [15] in survey, Table 1).

8. REFINING THE ONTOLOGY
Re�ning plays a similar role as extracting. Their di�erence

exists rather on a sliding scale than by a clear-cut distinc-

tion. While extracting serves mostly for cooperative mod-
eling of the overall ontology (or at least of very signi�cant
chunks of it), the re�nement phase is about �ne tuning the
target ontology and the support of its evolving nature. The
re�nement phase may use data that comes from the con-

crete Semantic Web application, e.g. log �les of user queries
or generic user data. Adapting and re�ning the ontology
with respect to user requirements plays a major role for the
acceptance of the application and its further development.
In principle, the same algorithms may be used for extrac-

tion as for re�nement. However, during re�nement one must

consider in detail the existing ontology and the existing con-
nections into the ontology, while extraction works more often
than not practically from scratch.
A prototypical approach for re�nement (though not for

extraction!) has been presented by Hahn & Schnattinger
(cf. reference [11] in survey, Table 1). They have introduced

a methodology for automating the maintenance of domain-

speci�c taxonomies. An ontology is incrementally updated

as new concepts are acquired from text. The acquisition pro-
cess is centered around the linguistic and conceptual \qual-
ity" of various forms of evidence underlying the generation
and re�nement of concept hypothesis. In particular they
consider semantic conicts and analogous semantic struc-
tures from the knowledge base into the ontology in order to

determine the quality of a particular proposal. Thus, they
extend an existing ontology with new lexical entries for L,
new concepts for C and new relations for HC.

9. RELATED WORK
Until recently ontology learning per se, i.e. for comprehen-

sive construction of ontologies, has not existed. We here give
the reader a comprehensive overview over existing work that
has actually researched and practiced techniques for solving

parts of the overall problem of ontology learning.
There are only a few approaches that described the de-

velopment of frameworks and workbenches for extracting
ontologies from data: Faure & Nedellec [6] present a co-
operative machine learning system, ASIUM, which acquires
taxonomic relations and subcategorization frames of verbs

based on syntactic input. The ASIUM system hierarchically
clusters nouns based on the verbs that they are syntactically
related with and vice versa. Thus, they cooperatively extend
the lexicon, the set of concepts, and the concept heterarchy
(L; C;HC).

Hahn and Schnattinger [11] introduced a methodology for
the maintenance of domain-speci�c taxonomies. An ontol-
ogy is incrementally updated as new concepts are acquired
from real-world texts. The acquisition process is centered
around linguistic and conceptual \quality" of various forms
of evidence underlying the generation and re�nement of con-

cept hypotheses. Their ontology learning approach is em-
bedded in a framework for natural language understanding,
named Syndicate [10].
Mikheev & Finch [18] have presented their KAWB Work-

bench for \Acquisition of Domain Knowledge form Natural
Language". The workbench compromises a set of compu-

tational tools for uncovering internal structure in natural
language texts. The main idea behind the workbench is
the independence of the text representation and text anal-
ysis phases. At the representation phase the text is con-
verted from a sequence of characters to features of interest
by means of the annotation tools. At the analysis phase

those features are used by statistics gathering and infer-
ence tools for �nding signi�cant correlations in the texts.
The analysis tools are independent of particular assumptions
about the nature of the feature-set and work on the abstract
level of feature elements represented as SGML items.

Much work in a number of disciplines | computational
linguistics, information retrieval, machine learning, databases,
software engineering | has actually researched and prac-
ticed techniques for solving part of the overall problem.
Hence, techniques and methods relevant for ontology learn-
ing may be found under terms like the acquisition of selec-

tional restrictions (cf. Resnik [27] and Basili et al. [2]), word
sense disambiguation and learning of word senses (cf. Hast-
ings [34]), the computation of concept lattices from formal
contexts (cf. Ganter & Wille [8]) and Reverse Engineering
in software engineering (cf. Mueller et al. [23]).
Ontology Learning puts a number of research activities,

which focus on di�erent types of inputs, but share their tar-
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get of a common domain conceptualization, into one per-
spective. One may recognize that these activities are spread
between very many communities incurring references from
20 completely di�erent events / journals.

10. CHALLENGES
Ontology Learning may add signi�cant leverage to the

Semantic Web, because it propels the construction of do-
main ontologies, which are needed fastly and cheaply for
the Semantic Web to succeed. We have presented a compre-

hensive framework for Ontology Learning that crosses the
boundaries of single disciplines, touching on a number of
challenges. Table 1 gives a survey of what types of tech-
niques should be included in a full-edged ontology learning
and engineering environment. The good news however is
that one does not need perfect or optimal support for co-

operative modeling of ontologies. At least according to our
experience \cheap" methods in an integrated environment
may yield tremendous help for the ontology engineer.
While a number of problems remain with the single disci-

plines, some more challenges come up regarding the partic-
ular problem of Ontology Learning for the Semantic Web.

First, with the XML-based namespace mechanisms the no-
tion of an ontology with well-de�ned boundaries, e.g. only
de�nitions that are in one �le, will disappear. Rather, the
Semantic Web may yield an \amoeba-like" structure regard-
ing ontology boundaries, because ontologies refer to each
other and import each other (cf. e.g. the DAML-ONT prim-

itive import). However, it is not yet clear how the semantics
of these structures will look like. In light of these facts the
importance of methods like ontology pruning and crawling of
ontologies will drastically increase still. Second, we have so
far restricted our attention in ontology learning to the con-

ceptual structures that are (almost) contained in RDF(S)
proper. Additional semantic layers on top of RDF (e.g. fu-
ture OIL or DAML-ONT with axioms, A) will require new
means for improved ontology engineering with axioms, too!
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