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Abstract

OLAP defines a set of data warehousing query
tools characterized by providing a multidimen-
sional view of data. Information can be shown at
different aggregation levels (often called granular-
ities) for each dimension. In this paper, we try to
outline the benefits of understanding the relation-
ships between those aggregation levels as Part-
Whole relationships, and how it helps to address
some semantic problems. Moreover, we propose
the usage of other Object-Oriented constructs to
keep as much semantics as possible in analysis di-
mensions.

Key Words: Multidimensional modeling, Analy-
sis dimensions, Mereology, Object-Oriented mod-
eling, On-Line Analytical Processing

1 Introduction

Nowadays, there is a wide interest in information systems
that help companies in their decision making processes.
At the core of such systems we find theData Warehouse,
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where we keep all data that could be useful for that pur-
pose. However, storing that data is not enough, we also
need query tools. Probably, the most popular of these tools
are On-Line Analytical Processing(OLAP) applications,
firstly identified in [CCS93]. The main characteristic of
OLAP tools, besides being fast and easy to use, is that they
offer a multidimensional view of the subject of analysis.

Offering a multidimensional view means conceiving
the subject of analysis as amultidimensional space(also
known ascubeor hypercube) containing the measures of
the facts we want to analyze. The dimensions of that space
are the different points of view we are going to use to ana-
lyze it. For instance, if we want to analyze company sales,
we could do it attending to four dimensions, i.e Time (when
something was sold), Store (where it was sold), Product
(what was sold), and Customer (whom it was sold). Bene-
fits of a multidimensional conception are twofold. On the
first hand, it helps users to understand data. On the other
hand, it helps computers to “understand”, in advance, what
users want to do, allowing to improve performance.

1.1 Related work

In the last years, lots of efforts have been devoted to multi-
dimensional modeling. Those efforts have been clearly re-
flected in literature. [ASS01a] contains a survey of some
representative multidimensional data models. Here, we
emphasize some of them.

Previous to multidimensional models, and even to the
definition of OLAP tools, [SR91] presents a statistical
model (resembling those multidimensional). The first for-
mal approach to present a multidimensional data model
was that in [AGS97]; it proposes a minimal, closed set of
operations on thehypercube. [Kim96], in a logical phase of
design, represents thehypercubeby means of a relational
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Figure 1: Example ofstar schema
star schema(like that depicted in figure 1), having one cen-
tral Fact Table(containing measures) surrounded by multi-
pleDimension Tables(containing descriptive attributes).
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Figure 2: Example ofsnowflake schema
Some authors argue that it is also important to normalize

schemas (also known as “snowflaking”). As a side effect,
it shows aggregation hierarchies in the dimensions, as can
be seen in figure 2. [HS97] presents a description logics
model, which describes aggregation hierarchies as partially
ordered sets withPart-Wholerelationship being its strict
order. In [TBC99], a multidimensional model, which al-
lows the usage of specialization, aggregation, and member-
ship relationships, is proposed. It is said that dimensions
are usually governed by associations of type membership
forming hierarchies that specify granularities. [TPG00]
also used Object-Oriented (O-O) concepts to model dimen-
sions. Specifically, associations (in UML - Unified Model-
ing Language - sense) define a directed acyclic graph be-
tween aggregation levels, and generalization represents cat-
egorization of aggregation levels, allowing to define addi-
tional features of the subtypes. There are also some papers
specifically related to aggregation hierarchies in analysis
dimensions, like [JLS99], and [PR99].

1.2 Aim of this paper

This work is devoted to investigate problems at represent-
ing analysis dimensions, and their aggregation hierarchies
at conceptual level. The stress is on how to solve those

problems by showing aggregation semantics and naviga-
tion paths along the dimensions. The importance of se-
mantically rich relationships and their usage in conceptual
modeling is outlined in [Sto93]. A first approach to how
multidimensional modeling could benefit from O-O seman-
tics was already shown in [ASS01b].

Most of those models mentioned in section 1.1 provide
some way to represent aggregation hierarchies. Neverthe-
less, we argue that those papers treat semantics of con-
ceptual modeling constructs rather superficially, often just
pointing to a general idea.

We want to dig into the usage of certain modeling ab-
stractions to solve some well identified semantic prob-
lems enumerated in section 2. They are addressed from
an O-O point of view in section 3. Specifically, the us-
age of Part-Whole, Simple-Aggregation, and Specializa-
tion/Generalizationrelationships will be studied. Other
concepts from the O-O paradigm that could also be used
(for instance attaching methods to aggregation levels defi-
nitions) have been left out of the scope of this paper. Con-
clusions are found in section 5, followed by acknowledge-
ments and bibliography.

2 Semantic problems in present multidimen-
sional modeling

This section outlines some problems found in existing mul-
tidimensional models. Some of them were already identi-
fied in [SR91], [Leh98] and [PJ99]. Even though [SR91]
can be found out of place, most of the problems it iden-
tifies in statistical modeling are also applicable in multi-
dimensional context. The problems, related to modeling
dimensions, are grouped into five sections.

2.1 Aggregation levels graph

At first glance, one could think that aggregation levels
graphs are quite simple. Data about Stores is aggregated
attending to the City they belong to, data about Cities is
aggregated attending to the State they belong to, and so on.
It looks linear and simple. However, we just need to look
at the ColoredProduct dimension to find that products can
be aggregated either by Color or Kind. We can see other
examples of multiple aggregation paths in [Tho97].

Some OLAP tools just impose the constraint that an ag-
gregation graph must be connected and show parent-child
relationships between attributes. [LAW98] imposes the ex-
istence of a common top aggregation level (calledAll),
defining a lattice of aggregation levels for every analysis
dimension; and identifies relationships between levels as
functional dependencies. [PJ99] also identifies multiple ag-
gregation paths in the same dimension, and presents the dif-
ferent aggregation levels forming a lattice, being related by
greater thanrelationships (meaninglogical containmentof
the elements at one level into those at the other). It could
also be the case that our information sources feeding the
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Data Warehousecollect data at Month, and Week level, but
not at Day level. Therefore, we could define a common
aggregation top, but not a common bottom for both aggre-
gation paths.

To the best of our knowledge, there is no justification
in literature of the structure of aggregation levels into a di-
mension and the relationships among them being a lattice,
semi-lattice, or just a directed graph. It is necessary to find
a wide accepted definition of analysis dimensions. This is
the first step to state its structure and properties.

2.2 Relationship cardinalities

Due to one reason or another, almost everybody argues that
aggregation hierarchies are formed by “to-one” relation-
ships. It means that an element at a given level is related
to exactly one element of the next level in the hierarchy.
A Store corresponds to exactly one City; it, in turn, to ex-
actly one State; and so on. As pointed out in [LAW98], this
provides nice aggregability properties.

However, we can find examples where hierarchies are
not defined by “to-one” relationships in [SR91], [Kim96],
and [Tho97]. [PJ99] also presents examples where the
dimension hierarchies, besides possibly being “to-many”,
can be non-covering. In general, the most common (and
computationally comfortable) cardinalities are 1..N-1..1
and 1..1-1..1 (meaning minimum..maximum cardinalities
at lower-higher aggregation levels).

A difficulty slightly related to this is that of having dif-
ferent path lengths between instances at two aggregation
levels in the dimension hierarchy. An instancea at levelL1

is part ofb at levelL2, which in turn is part ofc at level
L3. However, there is another instancee at levelL1 that is
directly part ofd at levelL3. This is identified by [PJ99] as
non-onto hierarchies.

In general, we could find sixteen different cardinalities
between two levels (i.e. two - 0 or 1 forminimum, and 1 or
N for maximum - raised to the power of four), most of them
presenting summarizability problems. Thus, it is needed to
clearly identify meaningless cardinalities to avoid misun-
derstandings on designing, as well as the meaningful ones
to strive to solve problems they generate.

2.3 Heterogeneous aggregation levels

[SR91] detects a problem referred as “non-homogeneous
statistical objects”. This means having objects at the same
aggregation level that have different attributes.

In [Leh98], it is solved by defining the attributes at in-
stance level. However, as pointed out by some authors
(see [BSHD98]), explicit separation of cube structure and
its contents is a desirable model feature. In this sense, at-
taching specific attributes to every instance, does not seem
a good solution. [LAW98] also tackles the problem, and
proposes to solve it by means of attributes with “null”
values (showing that a given attribute is non applicable),

and restricting the usage of these attributes to selection
of instances (forbidding grouping by them). Solution in
[BHL00] is much more elegant. It proposes to define dif-
ferent relations for every set of instances sharing the same
attributes.

It is not enough to solve this at logical level (by means of
relations). Modeling the concepts so that more semantics
are captured is also important.

2.4 Reuse of dimensions

Multidimensional cubes are conceived in an isolated man-
ner. However, when we use them, we want to navigate
from one cube to another one (known asdrill-across). This
means we are analyzing data in a cube from a given point of
view, and want to view data in another cube from the same
point of view. Thus, cubes need to have equivalent points
of view (dimensions). Moreover, we can also find the same
dimension playing different roles in a cube. For instance,
in a sale, people dimension plays two different roles (i.e.
Clerk and Customer).

Most multidimensional models ignoredrill-across. If it
is considered, like in [Kim96], this operation is restricted
to the case that both cubes have common dimension tables.
As exemplified in [SBHD99], two cubes could also use the
same dimension at different aggregation levels, still allow-
ing drill-across.

Multidimensional analysis and research use to be re-
stricted to one cube. Representing inter-dimension rela-
tionships would allow more powerful analysis by relating
data in different cubes. The more semantically rich these
relationships are, the better for the analyst.

2.5 Correlated dimensions

In general, analysis dimensions use to be independent.
Thus, the point of view chosen at one of them does not
restrict those possible values available at others. However,
we can find some cases where there exist meaningless com-
binations of dimension values (they are correlated). For
instance, it may be that all products are not on sale every-
where. Depending on the product characteristics, it is sold
in a store or not. Some other examples of this situation can
be found in [Kim96], referring the problem as “many-to-
many relationships”. If values in two dimensions are corre-
lated, we could choose to keep both in the same dimension
table.

To the best of our knowledge, there is no multidimen-
sional conceptual model able to capture this kind of rela-
tionship. However, we think that it is needed to capture,
at conceptual level, the possibility of combining different
dimensions to give rise to a new one. Representing both
dimensions together, at logical or physical level, would de-
pend on the number of meaningful combinations with re-
gard to the number of elements of the correlated dimen-
sions.
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3 How to solve them

We argue that relationships between aggregation levels
should be interpreted asPart-Whole(also known as com-
position) relationships. This allows us to use “Classical Ex-
tensional Mereology” (CEM) axioms and other concepts in
[GP95] to address problems stated in previous section.
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r r r r r

P P P P P
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COLLECTION

ELEMENTS

r1 r2 r3 r4 r5
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P

Figure 3: Types of wholes
As depicted in figure 3, we find three different, domain-

independent, kinds ofPart-Wholerelations induced by the
compositional structure of the whole (i.e. Mass, Collec-
tion, or Complex). If there is no compositional structure,
the whole is considered homogeneous (ex. an amount of
rice). If we take into consideration different elements, it
is understood as a collection having a uniform composi-
tional structure (ex. a convoy of trucks). If we see different
parts playing different roles, we have a complex with an
heterogeneous compositional structure (ex. the pieces in
an engine). Mass, Collection, and Complex represent ex-
treme cases on a scale leading from a total lack of composi-
tional structure to wholes with complex internal organiza-
tion. Different people could conceive a composed element
at different points of that scale.

The main objective of defining relationships between
different instances in an analysis dimension is to show how
to apply aggregation functions (i.e. sum, min, max, avg,
etc.). Since these functions consider instances as equals
(playing the same role in the aggregation), we maintain
that those relationships should be conceived as collections.
From here on, we will refer to Part-Whole relationships be-
tween aggregation levels in an analysis dimension assum-
ing they form collections.

In case of having collections, [GP95] considers that the
axiomatic system of CEM (as stated in figure 4, that is also
explained in [AFGP96]) seems to be ideally suited, except
for axiom 6. In our case, axiom 6 also perfectly suits, since
a user can always be interested in considering a given set
of elements as a whole, in order to apply an aggregation
function. Semantically, axiom 5 is not true, since the same
collection of elements could compose different wholes (i.e.
two clubs, at a given point in time, can have the same set
of members). However, in order to apply aggregation func-
tions both collections would give the same result. Thus, we
would not be talking about clubs, but just sets of members
which would be the same individual.

1. EXISTS. If A is part of B, both A and B exist

2. ANTISYMMETRY. If A is part of B, B is not part of A

3. TRANSITIVITY. If A is part of B and B is part of C,
then A is part of C

4. SUPPLEMENTATION. If A is a proper-part-of B, then
another individual C exists which is the missing part
from B

5. EXTENSIONALITY. A and B have the same parts, if
and only if A and B are the same individual

6. SUM. There always exists the individual composed by
any two individuals of the theory

Figure 4: Classical Extensional Mereology axioms
[GP95] also explains that there might be more than one

way to decompose the same whole, i.e some objects could
be understood as collection of different kinds of elements
(for instance, a year being a collection of either trimesters
or four-month periods).

3.1 Relationships inside an analysis dimension

Some models, like [CT98], and [GMR98], already stated
that dimensions contain different levels which represent do-
mains at different granularities. Those granularities show
how elements are grouped to apply aggregation functions.
Thus, relationships are defined among elements at different
levels standing for composition.

We understand by Simple-Aggregation those aggrega-
tions that do not give rise to a new instance. Those ag-
gregation relationships that do not reflect composition, are
Simple-Aggregations. In this kind of relationship, an in-
stance is related to another just to show a property of the
second one. Every instance in an analysis dimension will
be related to some instances because of those being its
parts, and to other instances because of those simply show-
ing its properties.

We contend that it is essential to distinguish both kinds
of aggregation in a multidimensional model, since they will
allow to understand what was intended on defining a given
schema. Part-Whole relationships will show how differ-
ent elements are grouped together in a dimension, while
Simple-Aggregation will indicate which are the different
characteristics available to select instances. Thus,roll-up
and drill-down operations will be performed along Part-
Whole relationships, while selection (known asslice-dice)
will be performed by means of Simple-Aggregation rela-
tionships.

In this section, we assume a minimum definition that ev-
erybody could agree in roder to deduce some controversial
properties of an analysis dimension using CEM axiomatic
system. Firstly, on referring to aggregation levels in multi-
dimensional analysis, there is a misuse of language on say-
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ing, for instance, “A City decomposes into Stores”. The
real meaning is easily inferred, but it is important having
in mind that it should be said “A set of Stores in a City
decomposes into Stores”.

We define an analysis dimension as follows:

Definition 1 An analysis dimensionis a connected, di-
rected graph. Every vertex in the graph corresponds to
an aggregation level containing instances, and an edge re-
flects that every instance at target level can be decomposed
as a collection of elements at source level (i.e. edges reflect
Part-Whole relationships between instances in aggregation
levels in the dimension).

Color

Kind FamilyProduct
Colored

Colored products

Figure 5: Example of analysis dimension
In O-O terminology, aggregation levels would be

classes, and their instances would be objects. Figure 5
shows an example of analysis dimension. It contains a
graph with four aggregation levels (i.e. Product, Color,
Kind, and Family), and three edges showing that families
of products can be decomposed into different kinds of prod-
ucts, and these into colored products which can be grouped
by color.

From definition 1 and CEM axioms, some properties can
be deduced with regard to analysis dimensions:

Property 1 A dimension does not contain cycles.

Proof 1 Let us suppose that a cycle in the dimension graph
exists. By successively considering axiom 3 on any instance
A of a level forming the cycle, we would obtain that exists
another instance B of another level forming the cycle so
that A is part of B and B is part of A. This contradicts axiom
2, then a cycle can not exist in the graph of a dimension.

Property 2 For every dimension, there exists a unique ag-
gregation levelAtomicwhich contains elementary (i.e. that
can not be broken down) instances. Notice that elementary
instances could be unknown in a given database.

Proof 2 By property 1, there is at least a level whose in-
stances do not have parts. If there is more than one of those
Atomic levels, since a dimension is connected and axiom 3,
there will exist an instance E conceived as composition of
elementary instances at each one of theAtomic levels. By
axiom 5, all those collections of elementary instances com-
posing E must be the same collection of elements. There-
fore, there exists only oneAtomic level.

Property 3 For every dimension, there might exist a level
All containing instances composed by all elementary in-
stances in the dimension. If this level exist, a) Its instances

are not collected by instances at any other aggregation
level; b) This aggregation level has exactly one instance;
and c) It is unique in the dimension.

Proof 3 By successively considering axiom 6 we can con-
struct an instance E composed by all elementary instances
in the dimension. a) If E would be a proper-part-of an E0,
by axiom 4 there would be an elementary instance that is
not in E. Therefore, E is at a level whose instances are
not part of any other instance in the dimension. b) If this
level would contain two instances, both containing all ele-
mentary instances, by axiom 5 they would be the same in-
stance. c) This level is unique, since if there were another
level whose instances collect all elementary instances, they
would be the same instance we already have inAll level
(by axiom 5).

Property 4 Those levels whose instances are not collected
by instances of any level (i.e. they are not source of edges
in the dimension graph) can be connected with an edge to
levelAll .

Proof 4 The instance of levelAll can be decomposed into
instances at any level coveringAtomic level. If there is a
level not coveringAtomic level, a collection can be added
to it, by axiom 6, collecting every elementary instance miss-
ing.

Property 5 Every instance in an aggregation level, that is
notAtomic, has at least a part.

Proof 5 An instance without parts is elementary, and all
elementary instances are atAtomic level, by property 2.

Property 6 Every instance in an aggregation level that is
notAtomic might have more than one part.

Proof 6 If the part-of relationship between two instances is
a proper-part-of, by axiom 4 the collection will have more
than one part.

Ferrero Rocher

Rubik’s cube

Kinder Surprise

Product

Toys

Candies

Kind

Gifts

Family

Figure 6: Example of overlapping classifications

Property 7 An element might be part of several collections
at the same time.

Proof 7 There is no mereological axiom forbidding the
sharing of elements among several collections, in spite of
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it is a necessary condition to ensure summarizability (as
shown in [LS97]). We argue that allowing this case is not a
conceptual, but a computational problem (addressed as so
in [PJ99]). If, as depicted in figure 6, a given product (at
level Product) is allowed to belong to two different kinds of
products at the same level Kind, some derived attributes of
instances of level Family (which are composed by elements
at level Kind) must be calculated from elements at level
Product (ex: card(Gi f ts) 6= card(Candies)+card(Toys)).

Property 8 If levelAll exists in the dimension, the graph is
a lattice, and collections in each level are disjoint; then for
every level S, every instance in it is part of a collection at
each and every other level T being target of edges leaving
level S.

Proof 8 A lattice withAll level at top, by axiom 3, implies
that every elementary instance is collected in at least one
instance of any other level. By imposing that collections in
a level are disjoint, we obtain that every element in S must
be collected exactly in a collection in T . If elements were
not disjoint, there could be an instance of S overlapping
several collections in T, so that it would not be completely
contained into any of them.

With regard to problems stated in section 2.1, from def-
inition 1 and properties 1 and 2 we ensure that, in general,
those aggregation levels in a dimension form a semi-lattice.
Moreover, properties 3 and 4 show thatAll level can al-
ways be defined in order to obtain a lattice. Those prob-
lems about relationships cardinalities, in section 2.2, are
explained by the other properties. Properties 5 and 6 im-
ply that the relationships between two levels will involve
1..N parts for every whole. Property 7 explains that a part
could participate in more than one whole or not. Property
8 shows that if we have a lattice with levelAll, and parts do
not participate in more than one whole; there is a whole for
every part (i.e. we have cardinality 1..N-1..1). If the same
part can participate in more than one whole at the same
level we can not guarantee that there is a whole for every
part (even ifAll exists in the dimension, we have cardinal-
ity 1..N-0..N). In any case, axiom 6 shows that the needed
instances could be obtained to have 1..N wholes for every
part (so that we have 1..N-1..N).

3.2 Relationships between dimensions

It is not enough showing relationships inside a dimension
or aggregation level. It is also important to analyze rela-
tionships between elements analysis dimensions in differ-
ent cubes or even in the same one. In this section we are
going to consider two kinds of relationship i.e. Specializa-
tion, and Aggregation.

Specialization

The usage of specialization relationships between aggrega-
tion levels is proposed in [TBC99], and [TPG00]. We com-

pletely agree that specialization is an essential relationship
to be shown in multidimensional schemas. Nevertheless,
we argue that isolated aggregation levels can not be spe-
cialized. They must be considered inside a dimension.

Property 9 In general, a level and its specialization can
not belong to the same analysis dimension.

Proof 9 Let us assume that both a level L and its special-
ization LS are in the same dimension. In order to define
a lattice with levelAll , since in this case LS must cover
Atomic level, we could be forced to have some instances
in LS. Those instances we are forced to have in LS, could
not fulfill specialization criterion. Therefore, it is not al-
ways possible to have both aggregation levels in the same
dimension.

Clerk

Person

AgeGroup

All

All

SaleRole

Clerks

People

Figure 7: Example of dimension specialization

Figure 7 shows an example where People dimension is
specialized at SaleRole level (solid arrow) to have a Clerks
dimension. This specialization contains a level with all
people acting as clerk, and another one with only one ele-
ment representing the set of all clerks. Dashed arrows show
that a level is specialization of another one. AgeGroups ag-
gregation level is not of interest in Clerks dimension. No-
tice that if it would, it would not be specialization of the
same level in People dimension since its instances would
be different (they would collect less people).

Definition 2 If DS is the specialized dimension of D at
level L, DS contains at least the aggregation level LS (spe-
cialization of L), and a specialization of every level in D
containing parts of instances of LS. These specialized lev-
els contain exactly those instances of the corresponding
level of D being part of any collection in LS. Besides those
mandatory levels in DS, it is also possible that DS contain
other levels (that are not specialization of any level in D)
with elements not in D.

All instances of an aggregation level will have common
properties, since it represents a given class of objects able
to play the same role in a collection. By specializing an
analysis dimension, we will be able to show attributes com-
mon only to a subset of instances, besides their specific
Part-Whole relationships, which solves problems stated in
section 2.3. Simple-Aggregations, as well as Part-Whole
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relationships are inherited along specializations. There-
fore, it also addresses problems stated in section 2.4. It
is not only possible todrill-acrossfrom acube C1 to acube
C2 when both share dimensions, but also when the dimen-
sions ofC1 are specialization of those inC2.

Aggregation

Another interesting relationship to be shown is that of el-
ementary instances in a dimension being aggregated in el-
ementary instances in another dimension. This means ex-
pressing aggregation relationships between dimensions.

Property 10 If elementary instances in a dimension D are
part of elementary instances in dimension DA, the graph of
D will be a subgraph of DA. Notice that instances in D will
not be those in DA, but part of them.

Proof 10 Elementary instances in DA can be grouped so
that the same elementary instance in D is part of every
element in each collection. By axiom 6, these collections
can become instances in DA. Then, instances in DA can be
grouped by the same criteria used on grouping elements in
D.

AllFamilyProduct
Kind

Colored
Products

Product
Kind

Color

Family

Range
All

AllRangeColor

Product kinds

Colored products

Colors

Figure 8: Example of dimension aggregation

Besides having Sales by ColoredProduct, we could ob-
tain data in another star by Color, or ProductKind. In-
stances in these dimensions would be aggregated to show
the kind of product sold, and the color of that product. As
depicted in figure 8, the composed dimension would con-
tain, at least, the graph of each one of the parts, joiningAll
levels, plus a commonAtomic.

By means of aggregation relationships between analysis
dimensions, we address the problem found in section 2.5.
Two dimensions aggregated to generate a new one mean
that there is a relationship between them that should be con-
sidered, at design and query time.

4 Discussion

[Kim96], as well as other authors (like [Gio00]), argue that
normalizing dimension tables is a serious mistake, but in

a reduced set of specific cases. From their point of view,
even though it saves some (negligible) storage space, it in-
timidates users by unnecessarily complicating the schema,
and slow down most forms of browsing among dimensional
attributes (joins are slower and less intuitive than selec-
tions). The point is that normalization explicits aggregation
hierarchies, which show how measures can be summarized
(known asroll-up) or decomposed (known asdrill-down).
Nevertheless, they argue that hierarchies are necessary nei-
ther toroll-up, nor todrill-down, since they are implicit in
attribute values.

However, some people disagree with those ideas (see
[PJ99] or [LAW98], for instance), and contend that aggre-
gation hierarchies should be explicit; since they provide ba-
sis for defining aggregate data, and show navigation paths
in analysis tasks.

From our point of view, the context makes the differ-
ence. If we are at a logical or physical design phase, as
in [Kim96], it is possible to obtain better performance or
understandability by denormalizing some tables. However,
at a conceptual level, we must represent aggregation paths
besides their different semantics. If this puts obstacles in
the way of non-expert users understanding schemas, the
user interface can hide as much information as necessary
to make it understandable to a given user. Performance
problems of the system will be addressed at further design
phases (i.e. logical and physical).

As already stated in literature, it is important to separate
conceptual and physical components. Logical or physical
models are semantically poorer than conceptual ones. That
is why conceptual models are so important. They give to
the user much more information about the modeled reality,
and are closer to his/her way of thinking. This is specially
necessary in analysis tasks, because of the unpredictable
nature of user queries in these environments. This kind
of users can not be restricted to a small set of predefined
queries. Indeed, they need to generate their own queries,
most of times based on metadata. Thus, it is essential for a
conceptual model to provide means to show aggregation hi-
erarchies, and as much semantics as possible. For instance,
showing that two analysis dimensions are specialization of
another one, means that their instances (i.e. customers and
clerks) can be compared.

Semantics are not only useful for users, but they can also
improve query performance. In our example, Clerks and
Customers are specialization of the same class, i.e. People.
Comparing instances in those dimensions if the specializa-
tion is disjoint means they will always be different. Just
knowing whether it is covering or not, would allow to ob-
tain thresholds of aggregation results. The specialization
being covering and disjoint also suggest parallel comput-
ing.
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5 Conclusions

There is some controversy about whether aggregation hier-
archies must be implicit or explicit. In this paper we argue
that, at conceptual level, it is essential to explicit aggrega-
tion hierarchies, and as much information as possible about
analysis dimensions. That information will ease the user
to understand data, and pose ad-hoc queries. Users could
classify and group data sets in an appropriate manner.

We identified some problems on explicitly modeling ag-
gregation hierarchies. We contend that those problems
can be addresses by providing Part-Whole semantics to
relationships between aggregation levels, and considering
mereology axioms. Thus, we defined an analysis dimen-
sion as a connected, directed graph of aggregation levels,
and for each one of the problems, some mereological prop-
erties were inferred to solve it. To the best of our knowl-
edge, this is the first work deducing properties of analysis
dimensions instead of just imposing them.

Not only Part-Whole, but other kinds of relationship
were found interesting for analysis dimensions (i.e. Spe-
cialization/Generalization, and Simple-Aggregation). It
was also shown how different dimension can be related and
the consequences that relationships have in aggregation hi-
erarchies.

It is important to notice that, as can be read in
[AFGP96], Part-Whole and Simple-Aggregation relation-
ships are closely related. Namely, there are some properties
that the whole inherits from its parts (ex. being defective),
others that the parts inherit from the whole they are part
of (ex. location), and some properties in the parts which
are systematically related to properties of the whole (ex.
weight of parts being less than weight of the whole). This
has implications on the aggregability of measures, as well
as the inheritance of properties between parts and wholes.
However, this was left out of the scope of this paper, and
will be tackled as future work.
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