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Abstract. This rather informal paper surveys a personal selection of
research projects which addressed new problems related to Databases,
and whose solution was both inspired by ideas from the field of Knowl-
edge Representation and Reasoning, and at the same time ended up
contributing new ideas to that field. The problems include natural lan-
guage access to databases, Information System (environment) design,
permitting exceptions to integrity constraints, configuration databases,
and goal-oriented schema design.

1 Introduction

It is possible to view KR&DB research from multiple viewpoints. First, it can
be considered as applying database notions to knowledge representation sys-
tems. The typical concerns of database research are taken to be persistence and
scale, which require special data storage techniques and possibly optimization of
queries. Less frequently considered outside the DB field, but just as important,
are notions such as concurrency control and recovery in case of failures. Thus for
any KR&R system equipped with a Tell/Ask interface (e.g., a rule-based system,
description logic reasoner), there have been investigations on how to add (some
of) the above “database properties”. For example, Chaudri et al. [7] considered
the issue of concurrency control for knowledge bases.

In the opposite direction, one can view KR&DB research as applying KR
ideas to traditional database problems. For example, normally the standard first
step in database schema design is drawing an Entity-Relationship diagram. It
turns out that one can check the self-consistency of ER diagrams, or of single
entity sets in them, by translating them into a description logic, and then using
a standard DL reasoner, as done by the i.Com tool [9].

I will focus instead on the mutually supportive research at the meet of these
two areas. Invoking the privilege of an invited speaker, I will concentrate exclu-
sively on work that I have personally witnessed or been involved in1.
1 I have had the great fortune to collaborate on much of this work with John My-

lopoulos and Ron Brachman, who are not just outstanding scientists but, even more
importantly to me, the nicest, most easy-going and supportive people one could hope
to meet. It gives me great pleasure to acknowledge their invaluable help.



To give some shape to my presentation I will use a list of topics that have
been the focus of considerable research in the KR&R field:

1. semantic networks
2. objects/classes with instanceOf and IsA
3. First Order Logic
4. Description Logics
5. goals

and discuss how attempting to solve new database-related problems led to solu-
tions inspired by these notions, and frequently new results of interest to KR&R
itself. Given the nature of the audience, I will also try to point occasionally to
interesting connections to topics such as Description Logics and the Semantic
Web.

2 Semantic Networks

In 1974/75 John Mylopoulos was flooded by a large group of new students inter-
ested in AI research (including James Allen, Phil Cohen, Hector Levesque, John
Tsotsos and yours truly). He proposed to work on the problem of natural lan-
guage access to databases - the Torus project. (Other significant AI research
in NLP was being driven by the same problem, including William Woods’ LU-
NAR project, and William A. Martin’s EQS/OWL projects.) To solve the NLP
problem, one needs, of course, a representation of the semantics of sentences,
and this being the mid 1970’s, the answer was semantic networks: labeled di-
rected graphs, which in our case had an open-ended label set for nodes, but only
employ a fixed pre-determined set of possible edge labels.

Fig.1 is based on [14], and illustrates part of a semantic network graph de-
scribing the process of writing, sending and receiving recommendation letters.

What makes this interesting from a KR&DB point of view is that in order to
answer questions such as “Did we receive any letters for Jimbo?”, the semantic
representation needs to be connected to the database. Supposing that there is a
database table

RecLetterTable(Name,Source,Address,Text,DateReceived)
this is accomplished by connecting every column to a node in the graph (e.g.,
Name to Applicant, Source to Recommender, . . . ). The result is that the seman-
tic network acts as a semantic data model for the database — one providing, in
fact, considerably richer semantics than standard ER diagrams. What was miss-
ing of course, as elsewhere in AI, is precise semantics for semantic networks.

KR&R Resonances

The following quotes from the IJCAI’75 papers on Torus resonate interestingly
with later topics in the field of DL:

– “Due to the properties of the sub/superset hierarchy, there is a unique posi-
tion in the semantic net for each semantic graph we wish to integrate”. For
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Fig. 1. Part of a Torus Semantic Network

example, as illustrated in Fig.1, “recommender writing a recommendation
letter” is a specialization of “writing”. Thus Torus’ (graph) classification re-
sembles concept classification in DLs, but without a clear idea of what is a
definition vs primitive, or what is the semantics of subsumption.

– The term “definitional axis” is mentioned in [15], but with no further expla-
nation.

– Torus represents properties, such as hasColor, using so-called “characteris-
tics”:

PHYS_OBJECT <--ch-- COLOR --val--> COLOR_VALUE

/ /

/ /

eltOf eltOf

/ /

PapaSmurf <--ch-- COLOR --val--> Blue

which resembles the representation suggested in the recent Dolce ontology
[10], based on the notion of qualia.

– Some concepts, like ADRESS_VALUE, have an associated “recognition func-
tion” to recognize instantiations, such as ‘65 st george street, toronto’.
This prefigured the test-defined concepts of the Classic description logic [5]
(and of Taxis [16]): these are concepts that have associated procedures for
recognizing instances, so that they support instance classification, but are
treated as primitive “blackbox” concepts as far as concept classification.



3 Inheritance and Meta-classes Everywhere

In 1977, Mylopoulos and Wong, with the assistance of Phil Bernstein, embarked
on the Taxis project [16], whose goal was to develop a language for design-
ing/implementing Information Systems at a conceptual, rather than “log-
ical”/“physical” level. Taxis provided a conceptual modeling language not just
for objects but also for procedures, exceptions, exception handlers, and even-
tually workflows. So, for example, after specifying Students, Courses, and how
to Enroll students into courses, one could describe Part Time Students, Gradu-
ate Courses, and additional details concerning the procedure to enroll for these
specialized arguments. My participation in the project concerned the formal se-
mantics of Taxis, especially procedures, workflows (“scripts”), and the overall
methodology of programming by specialization.

KR&R Resonances

– IsA hierarchies of procedures were also a new idea in KR&R — see [2].
– Taxis scripts [1] which prefigured workflows, were also organized in inheri-

tance hierarchies. This echoes somewhat the application of DLs to workflow
fragment management [11].

While Taxis pushed to the limits the use of inheritance, meta-classes become
essential when moving to the creation of an IS software development envi-
ronments. The result was the language Telos [17], which allowed one to define
(conceptual) models, and to state meta-data constraints. For example, consider
the use of a property category like “initial condition” in

PERSON
initial condition

age : {0}

This allowed what were essentially assertions in a complex temporal logic to
be abbreviated so the time aspects did not appear in formulas. By thinking of
properties, such as age, as classes (instantiated potentially for each individual
of their domain class), property categories, like initial condition, become
meta-classes, like INITIAL_PROP_CLASS: classes with classes as instances. So,
given that property classes p have associated p.Class, p.Name, and p.Range, in
our example we would have

p0.Class=PERSON, p0.Name = age , p0.Range = {0}
and p0 would be made an instance of property meta-class INITIAL_PROP_CLASS,
which would be defined to have an (obscure) invariant constraint

∀p ∈ INIT IAL PROP CLASS.∀t ∈ TIME.∀x.
(x ∈ p.Class@t ∧ x �∈ p.Class@(t− 1))⇒ x.(p.Name)@t ∈ p.Range

describing the temporal semantics.
Incidentally, according to its formalization, a Telos KB consists of a set

of “units”, each with 4 associated fields: [[source, identifier, destination, time-
interval]]. For example,



p1 with [[Jimbo,instanceOf,PERSON,2/feb/1992 - 31/dec/2067]]

p2 with [[PERSON,age,{0},all_time]]

p3 with [[p2,instanceOf,INITIAL_PROP_CLASS,all_time]]

Jimbo with [[Jimbo,Jimbo,Jimbo, 2/feb/1992 - 31/dec/2067]]

As the last line above indicates, even objects were units with 4 fields.

KR&R Resonances

– RDF(S) anyone? Telos’ treatment of properties as objects that link a source
to a destination via a name echo RDF’s <subject, predicate, object> triples,
especially the fact that properties can have properties themselves. The main
difference is Telos’ addition of a temporal interval.

– While Telos was a theoretical language, it was made into a practical system,
ConceptBase [12], by adding deductive rules to it. The considerable success
of ConceptBase (downloaded at over 500 sites) lies at least in part in its
uniform treatment of everything as an object that can have properties, which
allows meta-statements to be easily recorded.

4 First Order Logic

Integrity Constraints are intended to detect inconsistencies after database up-
dates. But, when dealing with the natural world, these constraints are almost
always over-generalizations. Hence, one desires to allow the coexistence of
general constraints such as

IC : ∀e. e ∈ EMP⇒(e.salary > 1000)∧ (e.salary < e.manager.salary)

and occasional exceptions such as

calvin.salary=20000
calvin.manager = hobbes
hobbes.salary=15000

where the problem might be blamed on the fact that hobbes is only temporarily
assigned to be calvin’s manager. But this leads to a difficulty: once even one
exception is allowed to persist, this IC will always evaluate to false, and can no
longer detect errors in future updates (e.g., when judy’s salary is changed to
900), which is “a new reason for it to be false”. Therefore we want to modify
the constraint to restore its error detection role. In [3], I propose that one first
rewrite IC in FOL without function symbols:

∀e.(e ∈ EMP ∧ sal(e, se))⇒ (se > 1000)∧
∀me, sm.(mgr(e, me) ∧ sal(me, sm))⇒se < me)

Then, rather than going for the obvious

∀e.(e �= hobbes ∧ e ∈ EMP ∧ sal(e, se))⇒(se > 1000)∧
∀me, sm.(mgr(e, me) ∧ sal(me, sm))⇒se < me)



(which is not good enough because in this IC there are two conditions that are
being checked at the same time), we propose to use the the more subtle

∀e.(e ∈ EMP ∧ sal(e, se))⇒(se > 1000)∧
([mgr(e, me) ∧ ¬(e = calvin ∧ me = hobbes)] ∧ sal(me, sm))⇒se < me)

Interestingly, this corresponds to a model theoretic specification: minimally muti-
late all models of the original IC, so that the exceptional fact (manager(calvin, hobbes))
is counter-factual. The nice property of this is that (i) there is a syntactic trans-
formation corresponding to it, and (ii) the actual syntactic form of the ICs does
not matter. (I owe Ray Reiter a debt for helping me see the above.)

KR&R Resonances

My student, Mukesh Dalal used this idea of minimal mutilation of models to
obtain a propositional knowledge-base revision operator update(kb, u) [8] — (al-
most) the first one that was insensitive to the syntactic form of the theory kb
or the update u. (To get the models of update(kb, u), it iteratively mutilated
single atoms of kb models till at least one model consistent with u was found.)
Interestingly, through the advice of David Israel, this seems to also have been
the first AI paper to mention the Alchourrón - Gärdenfors - Makinson belief
revision axioms.

5 The Classic Description Logic

Classic [5] was probably the most widely used second-generation description logic
system: one with precise semantics, polynomial time subsumption checking, and
complete algorithm (when one-of and fills were used with individuals that
themselves had no properties, such as numbers, enumerations, etc.).

More significantly, Classic was used in real, industrial applications dealing
with configuration management, as well as (attempted) support for data explo-
ration/mining carried out by humans.

Not only was Classic first published in the SIGMOD database conference
(rather than an AI conference), but special strengths of description logics
became apparent when viewing DLs as languages used for interacting
with a database-like system. Specifically, one can adopt a Levesque- and
SQL-inspired view of a knowledge base management system as a black box with

– create operator to declare new identifiers, with possible definitions
– constrain operator to express integrity constraints on valid states of the KB
– update operator to manage facts about a specific world (A-box)
– inquire operator to ask about the state of the world (A-box)

Now, each of the first three operators x above involves a language Lx, while
inquire involves two languages: one for stating questions, Lquery, and one for
expressing answers, Lanswer. By considering what happens when each of these
languages is a DL such as Classic, one gets the following insights:



– Lcreate: DLs provide the (well-known) opportunity to add not just primitive
but also defined concepts (“views”), and to automatically organize these in
subsumption hierarchies.

– Lconstrain: DLs allow necessary conditions to be stated on primitive concepts,
which are like Integrity Constraints. (These are the first key ingredient in
configuration management applications.)

– Lupdate: By asserting a description such as ∀friends.(∀gender.FEMALE)
about DonJuan, one is able to say things about an indefinite number of
objects – the current and any yet to be specified friends of Don Juan. This
is the source of considerable expressive power for DL-based knowledge/data
management, in contrast to null values in relational databases, and the sec-
ond key to the success of Classic in configuration management. Note that
this benefit of dealing with incomplete information accrues even when the
language does not support disjunction, and has polynomial time reasoning.

– Lquery : Of course, DL concepts are well suited to retrieve sets of values —
their instances; a benefit here is that queries can themselves be organized in
subsumption hierarchies, which facilitates re-use and query refinement. (On
the down side, DL concepts cannot express even some very simple conjunc-
tive queries [4] — the bread and butter of database research.)

– Lanswer: When using DL concepts as part of answers, one gets the benefit of
descriptive, rather than just enumerated, answers. For example, in response
to the query “Who is female?” one might get not just Eve, but also “the
friends of Don Juan”.

KR&R Resonances

It may be worth recording that essential to the practical success of Classic was
the ability to extend its expressive power as needed (through test functions). I
believe that OWL has not yet met the hard-nosed challenge of real applications,
where customers may walk away if their needs are not served. I do not see any
reasons why OWL cannot be made extensible at least to the point of allowing
arbitrary “concrete domains”, and then maintaining libraries of such extensions,
just like we will maintain libraries of concepts (ontologies).

A more interesting reverberation was our application of Classic-like ideas to
the specification of Corba services [6], which is exactly like the use of DLs for
specifying services on the Semantic Web.

6 Goals

In the past decades, research in Requirements Engineering for software has un-
dergone a revolution, whereby the standard functional specification stage is now
preceded by a new phase of early requirements, dealing with the intentions of
the agents and organizations in the environment where the software is to be
used. Because of its focus on goals, and how they are to be achieved, this is



known as Goal-Oriented Requirements Engineering (GORE). One of the impor-
tant aspects of GORE is dealing with so-called non-functional (soft) goals, such
as efficiency, accuracy, etc. — goals that do not have clear criteria of success.

The field of database specification, on the other hand, has remained pretty-
well unchanged since the mid-70’s: one still starts by constructing a concep-
tual schema as an ER or maybe UML diagram. In recent joint work with
Jiang, Topaloglou and Mylopoulos [13], we have started to look at a goal-
oriented approach to database design. As in GORE, we start with vari-
ous stakeholders, and their general hard and soft goals; decompose these into
subgoals using AND/OR graphs; then apply means/ends analysis to find tasks
that achieve them. See Fig. 2 for a small example, which uses the i∗ nota-
tion [19]. In diagrams, we use contribution edges labeled with + or − (or
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Fig. 2. A Goal Model in i*

even ++ and −−) to indicate how goals influence each other. Thus, in Fig.2,
the softgoal (peanut-shape) of evaluating students accurately contributes posi-
tively towards the “Do a good job” softgoal, but performing the task of giving
a single exam (hexagon) contributes negatively towards accurate evaluation.
One important advantage of goal-oriented approaches is that they provide con-
sideration of design alternatives, and traceability for decisions based on such
contribution dependencies. So, for example, we might choose between schemas
StudentTable1(studentId,examGrade)and StudentTable1(studentId,exam1,
exame2,averageGrade)) based on which goals are more important.



Continuing with our goal-based schema design, our methodology suggests
analyzing the textual description of goals, and the participants in the tasks, to
obtain a list of “relevant concepts”, which is then organized into a domain model
(expressed in some conceptual modeling language); its purpose is to provide a
shared understanding of the domain for database designers and end-users. The
conceptual schema of the database is then derived from this by addressing a
list of questions concerning issues such as persistence, time, data quality, etc.
For each such category, we have a number of alternative schema manipulation
operators which can be applied to derive the final conceptual schema from the
domain model.

KR&R Resonances

Of course, one of the earliest KR&R proposals in Artificial Intelligence was
Simon and Newell’s GPS, which was also concerned with means-ends analysis
to achieve goals. And, in a separate context, it was Simon who introduced the
important notion of “satisficing”, which is applicable for such goals.

Although it is clear how to formalize AND/OR goal decomposition even in
Horn propositional logic, notions like softgoals, their satisficing, and contribution
edges would seem to be inherently “soft” — hard to reason with. Sebastiani et
al [18] however show how to formalize even this aspect: Since there could be con-
flicting evidence concerning any goal g, the secret is to replace proposition g by
propositions fully satisfied g, partially satisfied g, partially denied g, and fully denied g.
An edge g

−−→ h then introduces axiom

partially satisfied g⇒partially denied h

while edge g
−−−→ h also adds axiom

fully satisfied g⇒fully denied h

By using a suitable extension of this set of axioms, and a min-sat solver, it
is then possible to find minimal sets of “input/bottom” goals that guarantee
desired top-level goals.

7 Conclusions

I have briefly reviewed a sample of database-inspired projects which had con-
nections to KR&R topics: natural language access to databases ↔ semantic
networks; information system design ↔ inheritance & metaclasses; exceptions
to database integrity constraints ↔ First Order Logic and minimal mutilations;
querying and verifying consistency of incomplete databases ↔ description logics;
goal-based database design ↔ goal analysis and satisfaction/satisficing. In each
case, I tried to give an impression of the benefits each field, DB and KR&R,
derived from the other, as a result of the research carried out. Of course, the
above survey was highly skewed towards my own experiences — there are many
more such examples, both extant and to come.
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