
Architectural Decision Models as Micro-Methodology
for Service-Oriented Analysis and Design

Olaf Zimmermann1 Jana Koehler1 Frank Leymann2

1 IBM Research GmbH
Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{olz,koe}@zurich.ibm.com
2 Universität Stuttgart, Institute of Architecture of Application Systems

Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

Abstract. During the construction of service-oriented architectures, service
modelers concern themselves with the characteristics of good services and how
such services can be designed. For instance, they look for advice regarding
interface granularity and criteria to assess whether existing software assets are
fit for reuse in service-oriented environments. There are no straightforward an-
swers to such questions – service identification, specification and realization
techniques are required. Service identification and specification are well cove-
red by existing methodologies; for service realization, architectural decision
models can be leveraged. At present, the construction of architectural decision
models is an education- and labor-intensive undertaking; if such models exist at
all, they often are isolated from other artifacts. In this paper, we propose a new
engineering approach to service modeling that leverages reusable architectural
decision models as its central service realization concept. We outline a mul-
ti-level decision tree and position it as a prescriptive service realization
methodology for three engagement types observed in practice. The benefits of
service engineering with reusable architectural decision models are semi-
automatic decision identification in analysis models, improved decision making
quality, and better decision enforcement and risk mitigation capabilities.

Keywords: Architectural decisions, methodology, MDA, service design, SOA

1 Introduction

During the early stages of the evolution of Service-Oriented Architecture (SOA) as an
architectural style, Grady Booch stated that “the fundamentals of engineering like
good abstractions, good separation of concerns never go out of style”, but he also
pointed out that “there are real opportunities to raise the level of abstraction again”
[6]. When designing large-scale enterprise applications, this raise of abstraction level
concerns the business domains a company deals with, as well as already existing
Information Technology (IT) assets. Business-aligned software services organized
into an enterprise-scale SOA reside on this increased level of abstraction. However,
implemented software services still have to meet domain-specific Non-Functional

Requirements (NFRs) and standard software quality criteria [11]; old and new design
challenges arise, e.g., designing services for multiple invocation contexts.

Therefore, there is more to constructing service abstractions of quality and style
than identifying abstract software services, specifying them with technical interface
contracts such as Web Service Description Language (WSDL) port types, and then
applying WSDL-to-code transformation wizards. No single SOA fits all purposes;
many architecture design issues and tradeoffs arise. There are no straightforward
answers to the service modeling questions that arise – service identification,
specification, and realization techniques are required.

For service identification and specification, several techniques such as Service-
Oriented Modeling and Architecture (SOMA) [2] and others [9][24] exist; for service
realization, architectural decisions [26] are a promising complementary abstraction.
In [34], we defined architectural decisions as “conscious design decisions concerning
a software system as a whole, or one or more of its core components. These decisions
determine the non-functional characteristics and quality factors of the system”.
Architectural decision modeling is an emerging field in software architecture research
[18]. Unlike other approaches to document software, architectural decision models fo-
cus on the expert knowledge motivating certain designs rather than the resulting de-
signs themselves. Model elements present architecture alternatives with pros and
cons, as well as known uses, and they also capture the rationale behind and the
justification for many different types of decisions.

In SOA construction, service realization decisions include strategic concerns such
as technology and product selections (e.g., composition technology, workflow
engine). Finer-grained modeling tasks such as finding the right service interface gra-
nularity (operation-to-service grouping, message signature shaping) form a second
decision category. Numerous decisions deal with non-functional aspects such as
operation transactionality (business-level compensation, system transactions). For
instance, imagine a scenario in which a situational data warehouse application on a
Personal Computer, an e-commerce software package on a Linux workstation and a
custom developed inventory management solution on a central mainframe computer
have to be integrated. Such systems typically differ in the way they manage human
user access, balance load, synchronize concurrent requests, persist data, protect
themselves against security threats, and so forth – their software architectures are
different. When being integrated in an SOA, these systems provide services to each
other. Even if the service interfaces can be specified in an abstract, business-driven
and technology-independent way, the mapping of the abstract interfaces to
implementation components during service realization differs substantially in the
three outlined environments. As a consequence, the service realization decisions for
the three systems differ. For example, using a workflow engine might not be possible
for the situational application, the software package might impose interface
granularity constraints, and the mainframe might realize its own transaction monitor.

In this paper, we propose an engineering approach to service modeling. We treat
service realization decisions as first-class entities that guide the service modeler
through the design process. We capture these decisions in machine-readable models.
This SOA knowledge is organized in a reusable multi-level SOA decision tree,
including a conceptual, a technology, and an asset level. The tree organization follows
Model-Driven Architecture (MDA) principles, separating rapidly changing platform-

specific concerns from longer-lasting platform-independent decisions. Architecture
alternatives in the conceptual level are expressed as SOA patterns. An underlying
meta model facilitates automation of service realization decision identification,
making, and enforcement: Meta model instances (models) can be created from re-
quirements models and reference architectures, and shared across project boundaries.
The meta model also enables decision dependency modeling and tree pruning –
making one decision has an impact on many other decisions. For example, a
workflow engine is only required if process-enabled service composition has been de-
cided for. In the resulting process-enabled SOA [15], transaction management settings
must be defined consistently for various architecture elements such as process invoke
activities, service operations and database drivers.

Explicit dependency modeling has another key advantage: the decision tree can
serve as a micro-methodology during service design, operating on a more detailed le-
vel of abstraction than general purpose methods such as the Rational Unified Process
(RUP) [16] and the service modeling approaches described in the literature [2][9][24].
Our approach is complementary to these assets; e.g., the decisions can be organized
along the RUP phases such as inception, elaboration and construction.

The remainder of this paper is organized in the following way: Section 2 derives
the problem statement motivating our work from state of the art and the practice. Sec-
tion 3 then presents structure and content of our SOA decision tree. Section 4 explains
how this SOA decision tree can be used as a micro-methodology for SOA. Section 5
presents related work; Section 6 discusses the benefits of our approach and how we
applied it in practice. Section 7 concludes and gives an outlook to future work.

2 The Service Modeling Problem

Methods like SOMA define the tasks within the service modeling process, SOA
patterns present proven solution designs. However, the detailed technical design steps
between business-level service identification and pattern instantiation on implementa-
tion and runtime platforms still are covered rudimentarily only. Detailed modeling
guidance leading to a prescriptive modeling algorithm is desired that helps answering
the following question:

How to design and develop “good”, business-aligned service abstractions from
analysis-level business process models and technical requirements?

As a corollary, the question arises how good services can be characterized. For
example, what does business alignment mean from a technical standpoint, and what is
the appropriate service granularity in a certain domain context? When trying to
answer these questions, development projects start from vaguely articulated
requirements, documented as high-level business process and/or use case models
created by business analysts. In many cases, these models are defined informally or
semi-formally only. However, eventually formal service descriptions have to be
defined so that the realized services can be deployed to some IT infrastructure such as
an application server or transaction monitor. We jointly refer to these issues as service
modeling or Service-Oriented Analysis and Design (SOAD) [35]. Currently, these

issues are among the most frequently discussed topics in the industry and academia;
we have not participated in a single SOA effort yet in which such service modeling
aspects have not been a major concern.

Elements from several existing service modeling methodologies and techniques
served us well when dealing with these issues. For example, SOMA covers top-down
service identification in business process models and other business analysis artifacts.
Service specification typically is also addressed well [13]. However, we noticed a gap
between these two steps and detailed technical service realization aspects encountered
on SOA construction projects. Existing patterns and general purpose method exten-
sions are informative and educational, but often too coarse grained and incomplete.
For example, advice regarding service-enablement of existing legacy systems ty-
pically is weak, and transaction management is not covered in detail. Technology and
vendor recommendations (often called “best practices”) are not integrated
sufficiently, often causing quality problems and unnecessary duplication of efforts.

3 An Architectural Decision Model for SOA Construction

The actors involved in SOA construction are business analysts, service architects, and
service developers. When Model-Driven Architecture (MDA) concepts are applied,
these actors create a Platform-Independent Model (PIM) of the design based on a
Computing-Independent Model (CIM) of requirements analysis results. They trans-
form the PIM into one or more Platform-Specific Models (PSMs) and eventually into
code. Therefore, it is natural to organize the architectural decision models according
to MDA principles as well, applying principles such as layering and separation of
concerns. Therefore, we propose three levels of decision model refinement, the con-
ceptual, the technology, and the asset level. In addition, we see a need for an over-
arching executive level, comprising of decisions of strategic relevance. Executive de-
cisions impact the project as a whole [18]. They influence all other decisions.

To harvest already gained knowledge, we synthesized an initial SOA decision tree
from our own project experience [33][36] and the literature [10][15]. Each decision
node describes a single, concrete design issue. We describe the decision nodes
according to the following informal representation of an underlying meta model [26]:

• Decision name and unique identifier.
• Problem statement, either in question form or a single paragraph.
• Scope of the decision, linking the decision model to design model elements.
• Decision drivers, a list of key NFRs and software quality factors driving the

design; the pattern community use the term forces synonymously.
• Architecture alternatives listing the available design options with their pros,

cons, and known uses. On the conceptual level, these are architectural pat-
terns. On the technology level, they represent technical choices such as pro-
tocol and design pattern selections; the asset level is concerned with open
source and commercial product selection and configuration.

• References linking in literature such as short overviews, in depth tutorials.
• Recommendation, depending on the decision type either a simple “do/do not”

rule of thumb, a weighted mapping of forces to alternatives, or a pointer to

more complex analysis process to be performed outside of the decision mo-
del. An example for a simple rule of thumb is a commonly agreed best prac-
tice: for example, WS-I recommends document/literal as SOAP communica-
tion style and bans rpc/encoded [29]. For the design of transaction manage-
ment boundaries on the other hand, no simple recommendation can be given;
a more sophisticated algorithm capturing decision making heuristics and pro-
ven alternatives as patterns is required. Decision drivers include business
semantics, fault handling and resource protection needs, and NFRs.

• Lifecycle management information such as decision owner, project phase,
validity timestamp, modification log, and decision enforcement.

• Outcome and justification of made decisions per decision instance.
We have captured 130 such SOA decisions so far. Table 1 lists selected ones from

all four levels of abstraction introduced above, including their scope attribute and
some of the alternatives available. The decision naming indicates dependencies, e.g.,
between the various decisions dealing with transactions.

Table 1. Excerpt from initial SOA decision tree

 Tree level Decision node (scope) Alternatives
Executive Platform/language/tool preferences (global) e.g. J2EE or LAMP
Conceptual Service composition technology (process) Workflow vs. custom code
(PIM) Transaction management strategy (process) System transaction vs.

business transaction
 Transaction management pattern (process) None vs. single transaction

vs. several transactions
 Transaction attribute (operation) None vs. new vs. join [31]
 Message exchange pattern (operation) Request-reply vs. one way
 In and out message breadth (operation) Single vs. multiple parts
 In and out message depth (operation) Flat vs. nested payload
Technology
(PIM/PSM)

Workflow language (process) Business Process Execution
Language (BPEL) vs. other

 Service container (service) SCA vs. J2EE vs. CORBA
vs. .NET vs. other

 Java service provider type (service) EJB vs. plain Java object
 SCA transaction qualifiers (operation) See SCE specifications [21]
 EJB transaction attribute (operation) Defined in EJB specification
 Message exchange style and format (operation) WS-*/SOAP vs.

REST/JSON vs. other
 Transport protocol binding (operation) HTTP vs. reliable messaging
 SOAP communication style (operation) Document/literal vs.

rpc/literal vs. rpc/encoded
Asset (PSM) Workflow engine (process) Vendor or open source (IBM

WebSphere Process Server,
ActiveBPEL, etc.)

 SOAP message exchange engine (service) e.g. Apache Axis, Codehaus
XFire, vendor engines such
as IBM WebSphere engine

 Service provider sourcing (service) Buy, build, adapt

The generic service granularity discussion leads to several decisions dealing with
in and out message signature design, e.g. single vs. multiple message parts and flat vs.
deeply nested payload (e.g., XML documents). On the technology level, there is a
transport protocol binding decision with service operation scope – SOAP/HTTP or
reliable messaging are the alternatives. About 40 other service operation realization
decisions exist. One of about 20 process realization decisions is the choice of work-
flow language, e.g. Business Process Execution Language (BPEL) [20]. The service
container decision is closely related; BPEL can only be used if supported by the
selected container, for example Service Component Architecture (SCA) [21].

Other decisions not shown in the table deal with security: cryptographic algorithms
as means of integrity preservation are available on the transport and on the messaging
layer. Message-level XML and Web services security or transport-level HTTPS/SSL
are two of the available candidate assets.

4 The SOA Decision Tree as SOA Micro-Methodology

Once the various SOA decisions have been captured in the tree, and the decision
dependencies have been modeled explicitly, the decision model can guide the
practitioner through the design process. This is a SOA domain-specific method
engineering approach, which aims to provide finer grained guidance than traditional
artifact- and activity workflow-centric methodologies. The individual SOA decision is
the central metaphor. Figure 1 shows selected decision topics and atomic decisions on
five levels of abstraction, and illustrates the guiding role of the SOA decision tree.1

Asset Decisions (PSM)

Technology Design Decisions (PIM/PSM)

Conceptual Design Decisions (PIM)

Business Analysis Decisions (CIM)

Executive Decisions

<Service Modeling Method?> <Platform/Language?>

<Architectural Style?>

<Reference Architecture?>

<BPM Notation?> <BPM Tooling?>

<Technical Annotations?><Control Flow Design?>

<BPM Principles?> <Reference Model?>

<Data Flow Design?>

<Design Notation?>

<SOAP Runtime?>

{Process Realization Decisions?} {Service Realization Decisions?}

<CIM-to-PIM Mapping?>

<Buy, Build, Adapt?>

<Provider Type?><Service Container?><Workflow Language?>

<Service Registry?>

<Workflow Engine?>
{Infrastructure Decisions?}

<Go/No Go?>

{Governance Decisions?}

<Atomic Decision?>

{Decision Topic?}

Fig. 1. SOA decision tree in guiding role (micro-methodology)

1 In line with the design decision literature, we refer to the SOA knowledge structure as a tree;

if in the formal sense it actually is a directed, not necessarily acyclic, graph.

Atomic decisions such as <ReferenceArchitecture?> appear in paired lower/greater-
than signs. Decisions can be grouped into decision topics, which are embedded in
curly braces. For example, topic area {Process Realization Decisions?} contains the pro-
cess-scoped decisions that Table 1 assigned to the conceptual level. The selection of a
<ServiceCompositionTechnology?> is an example.

Section 3 introduced the global executive decisions. In Figure 1, we also added
business analysis decisions as another level of our micro-methodology. This level
deals with decisions about the various Business Process Modeling (BPM) notations,
tools, and techniques. While our main focus is technical service realization, we show
this layer here to illustrate that our micro-methodology can work with different busi-
ness modeling approaches, accepting the output of them as analysis input to the tech-
nical design.

The vertical arrow does not imply that our micro-methodology is a strict top-down
waterfall process; the ability to backtrack and revisit higher-level decisions because of
feedback from the lower layers is a key concept in our approach. For example, a
certain asset might not support a pattern selected on the conceptual level.

A topic area on the asset decisions level is {Infrastructure Decisions?}: Once the logi-
cal design has reached a reasonable level of detail, the physical layout of the solution
can be designed, including service deployment onto hardware, and network topology
layout. Naturally, the detailed decisions in this group depend on many decisions on
higher levels. For example, if stateful services exist, a session handover concept is
required, at least in clustered environments.

Navigating through the tree. We provide a single point of entry into our SOA deci-
sion tree, a global project <Go/No Go?> decision. Having passed this entry point,
executive decisions like selection of <Architectural Style?>, <Service Modeling Method?>
and <Engagement Type?> are the next decisions that have to be made. The outcome of
these decisions defines the detailed path through the tree. So far, we have predefined
the three ways through the tree for three engagement types, which are roughly equiva-
lent to the maturity levels in the Service Integration Maturity Model (SIMM) in [3]
and the stages in [15].

Web services enablement of a single component to achieve cross-platform inter-
operability is a simple engagement type with many known uses, but limited strategic
importance. Therefore, many executive decisions, e.g. regarding governance and ser-
vice lifecycle management, are not required and can be removed from the tree. About
40 technical decisions remain to be taken per service.

A second, emerging engagement type is the introduction of a service choreography
layer implementing an end-to-end business process. Such engagements address
increased pressure from business in the areas of operational efficiency. For example,
a process might have to complete within 24 hours. Enforcing such a business rule re-
quires active process instance tracking, which can be achieved by workflow technolo-
gy. This engagement type is a superset of the Web service enablement; decisions
about BPEL usage also have to be made in this engagement type. The scenario from
Section 1 is an example; traversing all process and service realization decisions inclu-
ding those in Table 1 comprises a single iteration through our micro-methodology.

Enterprise-wide SOA enablement requires a full traversal of all tree levels. All de-
cision nodes are applicable, and extensions are likely to be required. For example, an
enterprise-wide <Service Registry?> must be selected; many governance decisions and
more executive decisions have to be made.

MDA positioning. If MDA principles are followed, architectural decisions drive
model transformations between the levels. Our conceptual level is a PIM, the techno-
logy level has both PIM and PSM characteristics (depending on the viewpoint), and
the asset level is a PSM. In a MDA transformation chain for SOA, decision models
can be created and transformed just like design models. Figure 2 shows the resulting
three-step MDA transformation chain:

To-Be Business
Analysis Decision Model

(CIM)

As-Is Design Model
(PSM)

To-Be Decision Model
(Assets, PSM)

Use Case (UC) 1-2:
Service Architect

Use Case (UC) 1a: CIM->PIM
(Top Down)

UC 1b: PSM->PIM
(Bottom Up)

To-Be Decision Model
(Conceptual, PIM)

As-Is Decision Model
(Conceptual, Technology, Assets)

To-Be Decision Model
(Technology, PIM/PSM)

UC 2:
PIMxPIM->PIM/PSM

UC 3:
PIM/PSM->PSM

UC 3:
Service Developer

CIM – Computing Independent Model
PIM – Platform Independent Model
PSM – Platform Specific Model
(OMG MDA Terminology)

Reference Architecture
(incl. Reusable Decision Templates)

To-Be Design Model, Code
(PIM, PIM/PSM, PSM)

Fig. 2. Architectural decision models in three-step model transformation chain for SOA

Step 1 consists of two transformations: Step 1a transforms to-be requirements
business analysis decision models into an initial conceptual design decision model;
Step 1b is a reverse transformation from as-is design models describing existing
assets to a full instance of the SOA decision tree. Steps 2 and 3 correspond to the
conceptual to technology and technology to asset level transitions in Figure 1. One
pass through these steps comprises a single iteration in the micro-methodology.

Dependency management and tree pruning. Dependency propagation relationships
exist between and within the levels. For instance, the decision to introduce a work-
flow engine leads to the need for a user management subsystem, because the engine
has to manage the status and progress of the process instance execution. This includes
assigning activities to users. Users can be systems, if parts of the business process are
automated and Web services technology is used to connect an automated client to a
process instance. Transaction management is a second example. It can be discussed as

an abstract pattern, which has to be mapped to technology-specific attributes, e.g.,
SCA qualifiers [21] and Enterprise JavaBean (EJB) deployment descriptor elements.

The number of decision nodes is a major challenge for a broad applicability of our
approach; usability and scalability are key concerns. Regarding volume metrics,
consider a mid-size SOA construction project automating five business processes with
20 atomic activities each. Let us assume realistic figures: 20 global executive
decisions, 25 decisions per process and 40 per activity might have to be taken. If this
is the case, already close to 1000 decisions have to be made.

Decisions support systems can provide solutions to such problems. We can leve-
rage the explicit dependency management to actively remove unnecessary nodes as
soon as possible. Several opportunities for doing so exist; one of them is to disable
decisions and alternatives based on previous decisions. For instance, .NET details are
no longer relevant if Java is the language of choice. If SOAP/HTTP has been chosen
for the first ten activity services in a process, the next 15 probably will probably use it
as well. Developing a more general tree pruning strategy is ongoing and future
research work – in the now completed first project phase, our main focus was on
structuring and populating the tree.

5 Related Work

In this section, we position our work relative to service modeling, patterns and pattern
languages, Object-Oriented Analysis and Design (OOAD), software engineering
methodologies, and design decision rationale research.

Service modeling. Service modeling methodologies are subject to current research
[2][9][24]. These methodologies cover all phases of service-oriented analysis and
design; they are particularly strong in early such as business modeling and service
identification. Typically, they reside on higher levels of abstraction than our SOA
decision tree; therefore they provide less detailed technical advice than we do. The
relationship between these methodologies and our approach is complementary and
synergetic; e.g., a candidate service model created with SOMA can service as a
starting point for the detailed technical decision making based on our approach.

Patterns and pattern languages. The patterns movement has been highly successful
in the past decade [14]. Architecture and design patterns go a long way in supporting
practitioners during design and development of enterprise applications. SOA as an
architectural style refines many abstract patterns such as Proxy and Broker [8]. In
enterprise application architecture literature, we find service layer patterns and gene-
ral coverage of transaction management issues, but no specific coverage of SOA. The
“Putting it all together” chapter in [10] has inspired parts of our overall SOA design
space structure. SOA patterns have emerged over recent years. For example, Zdun
[32] defines a pattern language for process-driven SOA.

Practitioners often report difficulties in seeing the big picture when looking at indi-
vidual patterns and pattern catalogs. Pattern catalogs do not discuss how the various
patterns are connected. Pattern languages address this concern, describing an entire

domain as a consistent and comprehensive set of related patterns, and providing
orientation within the solution space via intent, context, and forces discussions. How-
ever, most pattern languages have a technology-centric nature; the transition from
business-level requirement and NFR analysis to pattern application is described infor-
mally if at all. Cross-domain relationships between patterns are discussed rarely.

Patterns have educational character. By definition, patterns reside on a conceptual
and/or technical level; none of the existing SOA pattern languages map the patterns to
an asset level. For example, transactional workflow patterns [5] do not provide BPEL
or SCA mappings, even if these technologies appear as known uses. We believe that
such mappings are required. In practice, many architectural decisions have to be taken
on the asset level because vendor-specific extensions and limitations exist.

In summary, patterns and pattern languages do not cover service modeling issues
such as service granularity or transactionality design aspects with enough detail.
Advice from the referenced sources still provides valuable background information in
our approach; patterns appear as architectural alternatives on the conceptual level.

OOAD. During our early adoption SOA projects, we employed many OOAD tech-
niques, which inspired the design of our SOAD framework [35]. For example, we
often used a combination of system context, use case, and collaboration diagrams
during early project scoping workshops. Design-by-contract [23] and responsibility-
driven design [30] are two principles that apply to services just as well as to objects.
The Classes, Responsibilities and Collaborations (CRC) cards technique [4] is not
limited to specifying classes; services and service components can be conceptualized
similarly. However, it is key to take service design specific principles into account.
For instance, services are invoked via messages, should not have any identity, and
preserve as little conversational state as possible. We further discuss the OOAD usage
for SOA construction in [37].

Software engineering methodologies. RUP [16] provides a business modeling
discipline, which uses UML activity diagrams for process modeling both on analysis
and design level. There is a RUP SOA plugin [13], which defines a Service Model
artifact. SOA-specific design advice is given informally in technique papers and
method extensions. The given advice is helpful, but in our opinion also not detailed
and prescriptive enough. For instance, process guidance in RUP workflows stops at
Design Software Architecture and Design Service Model level of granularity. There is
some integration of design patterns via recipes; however, detailed architectural
decisions to be made are not captured and modeled systematically. Service interface
design, communication protocol selection, and transactional runtime configuration
issues are examples for such decisions that are typically not covered detailed enough.

Design decision rationale, architectural decision research. Architectural decision
capturing [18] is an emerging field in software architecture research, which emerged
from work in design decision rationale research [19]. We use several techniques from
both fields as part of our SOAD micro-methodology, filling gaps where needed. One
popular form of knowledge capturing are Questions, Options, Criteria (QOC)
diagrams [22]. QOC Diagrams raise a design question which points to the available

options for it; decision criteria are associated with the options. Option selection can
lead to follow-on questions. QOC triples are similar to our decisions, alternatives, and
decision drivers. Existing work typically focuses on documenting already made deci-
sions, an additional, time consuming obligation even with tool support.2 With such an
approach, the decision viewpoint remains isolated and disconnected from the 4+1
logical, process, development, physical and scenario views on software architecture
defined in [17]. In the industry, templates for architectural decision capturing exist
[7]. There are cases where predefined decision documents are part of reference
architectures, for example in the IBM e-business reference architecture [26]. These
assets mainly have documentation character; they do not provide active guidance as
our micro-methodology does. Copy-and-paste of static documents is the only way to
customize and reuse the assets on SOA construction projects.

6 Discussion

As the examples in this paper have shown, successful service modeling is as not as
easy as it might appear at first glance. Much more than simple drill-down from
business-level process flow to IT realization is required; many SOA-specific architec-
tural decisions have to be made. Almost all but the most trivial cases require a meet-
in-the-middle modeling approach as opposed to a top-down process; existing system
reality and software packages constrain the modeling choices. With our multi-level
SOA decision modeling approach, we capture the corresponding design advice.

We use the architectural decision metaphor in a more dynamic fashion than exi-
sting work. In our approach, architectural decisions do no not just have passive
reference character, but serve as a micro-methodology. Decisions are identified from
business requirement models, legacy system descriptions and earlier decisions. Be-
cause SOA is specified and standardized openly, it is possible to leverage domain-
specific knowledge captured in SOA reference architectures, principles, and patterns.
Standardization and openness have another welcome side effect: service modelers
speak the same language – it becomes possible to share architectural knowledge
between projects, thus helping to develop economies of scale.

Unlike any other modeling approach or methodology we are aware of, we push a
detailed initial technical to-do list including available alternatives, pros and cons,
known uses, and literature references to the responsible service modeler, bringing in
experience from previous projects. This is a significant advantage of our approach;
state-of-the-art so far has been that the service modeler had to pull the required
decision points and possible designs from the literature, personal experience, and per-
sonal networks. Some of the required information is available in method browsers
nowadays; however, practitioners still have to perform a pull operation.

Our SOA decision tree also serves as a communication vehicle between the actors;
feedback regarding practicability and enforcement of decisions can be exchanged this
way. Another benefit of this approach is that it facilitates the knowledge exchange
across project boundaries. The SOA decision tree also can serve as an analysis tool

2 Tool support for capturing design decision rationale has been a research topic in the 1990s,

but has failed to accomplish industry adoption so far. There is no SOA specific support yet.

during bottom-up service modeling if it captures the architectural decisions once
made for a legacy asset that is currently being service enabled. By helping to assess
whether an available service operation is suited to implement a certain process
activity, a decision model provides buy vs. build decision support. The decision
catalog can also serve as governance and risk mitigation instrument; compliance with
industry and company guidelines can be ensured. Additional usage scenarios for the
decision tree are quality assurance reviews and best practices benchmarks.

While the presented approach is generic enough to be applicable to many architec-
tural styles, it is particularly useful, or even required, in SOA. Decision modeling and
SOA share many design goals such as applicability in heterogeneous, complex
domains. NFRs of shared services usually are more challenging than those of
standalone applications. Services have to handle multiple usage contexts, and clients
compete for shared resources. A software service is not just a reusable code fragment,
but an enterprise asset, much like a product; service lifecycle management is required
on enterprise-wide SOA initiatives, which is simplified by capturing and preserving
the rationale behind the original service design in a SOA decision tree.

Project results and action plan. This paper presents both results of our work and an
action plan to further enhance the presented concepts and ensure practical applicabi-
lity. So far, we have validated the presented approach in the following ways:

• We applied the micro-methodology retrospectively to two of our own pro-
jects [33][36]. The results of that step led to one of several refactoring ite-
rations, in which we added the lifecycle management attributes to the
meta model, as well as explicit support for capturing decision drivers.

• We have implemented tool support for the presented concepts in an
Eclipse-based Architect’s Workbench [1], as well as a Web 2.0 front end
[25]. At the time of writing, two industry projects work with the tool.

• The content of the SOA decision tree could be reused successfully on
these projects. In one case 13 of 15 required decisions could be anticipa-
ted, in the other 45 of 50.

• We have applied the micro-methodology to areas in which we do not have
deep subject matter expertise. For example, we coached two information
integration architects so that they could capture their expertise in decision
tree form. The study succeeded.

• We are in the process of studying the design decisions and drivers in
transactional workflows in SOA in more detail. A draft version of that
content is currently under evaluation in our target community.

During these activities and workshops with more than 100 practicing software
architects and service modelers, several benefits of the outlined micro-methodology
have already become apparent. The approach serves well as an education and know-
ledge exchange vehicle; subject matter expertise becomes available to less expe-
rienced architects. It also increases productivity during the initial project setup
activities such as team orientation and candidate asset screening. Numerous SOA case
studies exist; therefore, the decision tree can be populated from experience. The MDA
positioning and dependency modeling concepts provide traceability between analysis

and design, as well as between design and code. The feedback loops between the le-
vels improve team communication.

For a broader adoption, several challenges have to be overcome. The complexity of
the enterprise computing domain leads to a rather large decision tree structure. There
are many business domains to be supported, and on the technology and asset levels,
thousands of architecture alternatives exist. The change dynamics of the solution
space are another challenge: new architecture alternatives arise almost daily. At least
the asset level of our decision tree has to be updated whenever a vendor releases a
new product version with enhanced features or different non-functional characteri-
stics. Due to these challenges, usability and scalability are key success factors for our
micro-methodology. Tree organization and tools under development take these chal-
lenges into account. Further validation work is required to assess whether these
challenges can be addressed in such a way that a broader practitioner community can
employ our micro-methodology successfully on complex SOA construction projects.

7 Conclusion and Outlook

In this paper, we have positioned reusable architectural decision models as a micro-
methodology for model-driven service realization. The enterprise computing domain
is complex; no SOA fits all purposes. Therefore, service modeling activities always
have to be customized for particular project environments; combining elements from
several methodologies is a valid option. Methodologies such as SOMA and SOA
patterns can and should be leveraged during SOA construction, but must be further
enhanced to ensure repeatability, and support quality assurance and reuse strategies.

Architectural decisions provide an additional view on software architecture
complementary to the traditional 4+1 logical, process, development, physical and
scenario views defined by Kruchten [17]. Decision models for this sixth view on
software architecture can be organized according to MDA principles, separating exe-
cutive, business analysis, conceptual, technology and asset design concerns.

According to our experience, such structured hierarchical decision models can
serve as a service realization micro-methodology. In such as micro-methodology,
genuine modeling and meta modeling support for SOA decision identification,
making, and enforcement are required, as well as dependency and constraint mana-
gement; many SOA decisions influence each other. In this paper, we introduced such
concepts and pre-configured SOA decision trees for three engagement types, simple
Web services enablement, process-driven SOA solution, and enterprise-wide SOA.
We applied the presented micro-methodology retrospectively to our own SOA
projects, and are in the process of validating our concepts together with solution
architects and service modelers engaged in industry projects. Web 2.0 and Eclipse-
based tool support is available.

Future work includes continuing to harden our SOA decision tree, to further extend
the meta model and to develop a decision model population, dependency management
and tree pruning tool. We also plan to investigate several advanced usage scenarios
for our SOA decision tree, for example project management assistance, software
package evaluation and software configuration.

Acknowledgments. We would like to appreciate the input and constructive feedback
from numerous members of IBM practitioner and research communities, including
David Janson, Bob Johnson, Petra Kopp, Jochen Küster, Christoph Miksovic, Sven
Milinski, Frank Müller, Cesare Pautasso, Nelly Schuster, and Jussi Vanhatalo.

References

[1] Abrams S. et al, Architectural thinking and modeling with the Architects' Workbench,
IBM Systems Journal Vol. 45, 3/2006

[2] Arsanjani, A.: Service-Oriented Modeling and Architecture (SOMA), IBM developer-
Works 2004, http://www.ibm.com/developerworks/webservices/library/ws-soa-design

[3] Arsanjani A., Holley K., Increase flexibility with the Service Integration Maturity Model
(SIMM), http://www-128.ibm.com/developerworks/webservices/library/ws-soa-simm/

[4] Beck K., Cunningham W., A Laboratory For Teaching Object-Oriented Thinking,
OOPSLA'89 Conference Proceedings, October 1-6, 1989, New Orleans, Louisiana

[5] Bhiri S., Gaaloul K., Perrin O., and Godart C., Overview of Transactional Patterns:
Combining Workflow Flexibility and Transactional Reliability for Composite Web
Services, in: van der Aalst W.M.P. et al. (Eds.): BPM 2005, LNCS 3649, pp. 440–445

[6] Booch, G.: InfoWorld interview 2004,
http://www.infoworld.com/article/04/02/02/HNboochint_3.html

[7] Bredemeyer Consulting, Key Architecture Decisions Template, available from
http://www.bredemeyer.com/papers.htm

[8] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M., Pattern-Oriented
Software Architecture – a System of Patterns. Wiley, 1996

[9] Dijkman R., Dumas M., Service-Oriented Design: A Multi-Viewpoint Approach,
International Journal of Cooperative Information Systems Vol. 13, No. 4 (2004), 337-368

[10] Fowler M., Patterns of Enterprise Application Architecture, Addison Wesley 2003
[11] International Standards Organization (ISO), ISO/IEC 9126-1:2001, Software Quality

Attributes, Software engineering – Product quality, Part 1: Quality model, 2001
[12] Jansen A., Bosch, J., Software Architecture as a Set of Architectural Design Decisions,

Proceedings of the 5th Working IEE/IFP Conference on Software Architecture, WICSA’05
[13] Johnston, S., RUP Plug-In for SOA V1.0,

http://www.ibm.com/developerworks/rational/library/05/510_soaplug
[14] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995
[15] Krafzig D., Banke K., Slama D., Enterprise SOA, Prentice Hall, 2005
[16] Kruchten P., The Rational Unified Process: An Introduction, Addison-Wesley, 2003
[17] Kruchten P., The 4+1 View Model of Architecture, IEEE Software, vol. 12, no. 6, pp. 42-

50, Nov., 1995
[18] Kruchten P., Lago P., van Vliet H, Building up and reasoning about architectural

knowledge. In C. Hofmeister (Ed.), QoSA 2006 (Vol. LNCS 4214, pp. 43-58), 2006
[19] Lee J., Lai, K, What's in Design Rationale?, Human-Computer Interaction, 6(3&4), 251-

280,1991.
[20] OASIS. Web Services Business Process Execution Language (WSBPEL), Version 1.1,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel, May 2003
[21] Open SOA Alliance. Service Component Architecture.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
[22] MacLean A., Young R., Bellotti V., and Moran T., Questions, Options, and Criteria:

Elements of Design Space Analysis, Human-Computer Interaction, 6 (3&4), 1991.
[23] Meyer, B., Object-oriented software construction, Prentice Hall, 2 edition, 2000

[24] Papazoglou M., van den Heuvel W. J., Service-Oriented Design and Development
Methodology, International Journal of Web Engineering and Technology (IJWET), 2006

[25] Schuster N., Zimmermann O., Pautasso C., ADkwik: Web 2.0 Collaboration System for
Architectural Decision Engineering, Proceedings of the Nineteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE’2007)

[26] Tyree, J., Akerman, A., Architecture Decisions: Demystifying Architecture. IEEE
Software, 22 (2005) 19-27

[27] W3C. SOAP Version 1.2, W3C Recommendation 24 June 2003, published online at
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/, June 2003

[28] W3C. Web Services Description Language (WSDL) 1.1. Published online at
http://www.w3.org/TR/wsdl, March 2001

[29] Web Services Interoperability. WS-I Basic Profile 1.1,
http://www.ws-i.org/Profiles/BasicProfile-1.1.html, April 2006.

[30] Wirfs-Brock R., Object Design: Roles, Responsibilities, and Collaborations, Addison-
Wesley 2002

[31] Witthawaskul W., Johnson R., Transaction Support Using Unit of Work Modeling in the
Context of MDA,, Proceedings of the 2005 Ninth IEEE International EDOC Enterprise
Computing Conference (EDOC’05

[32] Zdun, U., Dustdar, S., Model-Driven and Pattern-Based Integration of Process-Driven
SOA Models, http://drops.dagstuhl.de/opus/volltexte/2006/820

[33] Zimmermann, O.; Doubrovski, V.; Grundler, J.; Hogg, K.: Service-Oriented Architecture
and Business Process Choreography in an Order Management Scenario, OOPSLA
Conference Companion, 2005

[34] Zimmermann O., Koehler J., Leymann F., The Role of Architectural Decisions in Model-
Driven Service-Oriented Architecture Construction. In: Skar, L.A., Bjerkestrand A.A.
(eds.), Best Practices and Methodologies in Service-Oriented Architectures, OOPSLA
2006 workshop proceedings

[35] Zimmermann, O.; Krogdahl, P.; Gee, C.: Elements of Service-Oriented Analysis and
Design, IBM developerWorks 2004,
http://www.ibm.com/developerworks/webservices/library/ws-soad1/index.html

[36] Zimmermann O., Milinski M., Craes M., Oellermann F., Second Generation Web
Services-Oriented Architecture in Production in the Finance Industry, OOPSLA
Conference Companion, 2004

[37] Zimmermann O., Schlimm N., Waller G. and Pestel M., Analysis and Design Techniques
for Service-Oriented Development and Integration, pages 606-611 in INFORMATIK 2005
– Informatik LIVE! Band 2, Beiträge der 35. Jahrestagung der Gesellschaft für Informatik

