
Towards Structural Criteria for Ontology
Modularization

Anne Schlicht, Heiner Stuckenschmidt

University of Mannheim, Germany
{anne,heiner}@informatik.uni-mannheim.de

Abstract. Recently, the benefits of modular representations of ontolo-
gies has been recognized by the semantic web community. Existing meth-
ods for splitting up models into modules either optimize for complete-
ness of local or for the efficiency of distributed reasoning. In our work on
semantics-based P2P systems, we are also concerned with the additional
criteria of robustness or reasoning in cases where peers are unavailable
and with ease of maintenance. We define a number of structural criteria
for modularized ontologies and argue why these criteria are suitable for
estimating efficiency, robustness and maintainability. We apply the crite-
ria to a number of modularization approaches and discuss the trade-offs
made. Based on the discussion we propose a general quality measure for
modular representations in the context of our use case.

1 Motivation

The problem of modularizing ontologies in the sense of splitting up an exist-
ing ontology into smaller, interconnected parts has recently been discussed by a
number of researchers (see for example [10, 1, 9]). These approaches differ signif-
icantly in terms of the concrete goal of the modularization and consequently in
terms of the criteria used to determine a good modularization. In our work we are
concerned with the automatic modularization of ontologies to support a distri-
bution of knowledge in a P2P network in such a way that following requirements
are fulfilled:

Efficiency Reasoning in the distributed system should be efficient. This also
requires that communication costs, which are known to be a major bottleneck
in distributed systems are minimized.

Robustness In a P2P network, single peers can be temporarily or permanently
unreachable. The impact of such failures on the completeness of reasoning
should be minimized.

Maintainability Ontologies evolve over time and the corresponding changes
need to be propagated through the network. The number of changes and the
required costs for computing necessary changes should be minimized.

It is obvious that these are conflicting requirements that need to be balanced
in order to determine an optimal strategy for modularization. Similar problems

have been addressed in the area of deductive databases [8, 3] where authors are
concerned with an optimal distribution of datalog rules in a network. Similar
work has also been done in the area of theorem proving [6] where approaches for
an optimal partitioning of propositional knowledge bases have been proposed.
In both cases, the only criterion was the efficiency of reasoning. As mentioned
above, we are also concerned with robustness and maintainability. This means
that existing approach do not find the best solution for our problem. Solving
the corresponding optimization problem optimally is impractical for a number
of reasons. First of all, there is no reasoning infrastructure available that could
be used to check the criteria mentioned above. Second, an optimal solution can
only be computed with respect to statistics about the use of the system which
are currently not available. Finally, even if we had a reasoning infrastructure
and usage statistics it is easy to see that computing an optimal solution is
computational infeasible as it involves reasoning about ontologies which itself is
intractable and also spans a combinatorial search space which adds complexity
to the approach.

Our solution to this problem is the following: instead of directly checking the
criteria mentioned above, we propose a number of structural criteria that can
be checked by looking at the modularized ontology without actually performing
reasoning. These structural criteria that are the main contribution of this paper
are based on general knowledge about factors that contribute to computational
complexity, robustness and ease of maintenance. In particular, we propose the
following structural criteria that are discussed in more detail in the following
section:

Connectedness of Modules The efficiency of distributed computation is
known to be heavily influenced by the amount of communication necessary.
This effort can be estimated by looking at the degree of interconnectedness
of the generated modules. The connectedness also has an influence on the
robustness as the number of connections that are potentially cut when a peer
in unavailable.

Size and Number of Modules The size and number of modules created has
a strong influence on the robustness. If most of the information is in a small
number of large modules, the unavailability of one of these modules will have
a big impact on the completeness of the system. If the information is more
or less equally distributed across modules, this impact will be much smaller.
On the other hand, a modularization that produces a very high number of
very small modules on the other hand will lead to efficiency problems.

Redundancy of Representation A common way of improving efficiency and
to improve robustness is to use redundant representations. In an extreme
case the complete ontology could be put in each module. This redundant
information increases the maintenance effort and should be avoided. Further
it has been shown in [4] that reasoning on non-redundant representations of
parts of the complete model can lead to performance improvements.

In the remainder of this paper, we first discuss the concrete structural criteria
proposed in more details. We then report from some experiments in which we
compared different existing partitioning approaches using the structural criteria.
In particular, we used our own approach described in [10] and the approach of
Cuenca-Grau [1] which is implemented in the SWOOP ontology editor. Based
on the results of the comparison, we draw some conclusions about the trade-
offs made by the different approaches and propose a unified quality measure for
modularizations based on the structural criteria that seems to be suited for our
specific use case.

2 Structural Criteria

For the sake of simplicity, we consider an ontology to be a set of axioms
{A1, · · · , An}. These axioms can for instance be rules, concepts definitions in
description logics or axioms in any other logical language. We consider the
number of axioms n to be the size of the ontology. The task of partitioning
an ontology O can now be described as the process of splitting up the set of
axioms into a set of modules {M1, · · · ,Mk} such that

– each Mi is an ontology

–
k⋃

i=1

Mi = O

This definition leaves room for a large variety of different modularizations,
regardless whether they are suited for the distribution scenario described in
the preceding section. In order to judge whether a given modularization is a
good one with respect to the goals of the distribution, we define a number of
structural quality criteria that indicate whether a given modularization is likely
to meet the goals of the distribution.

2.1 Size

The first set of criteria is concerned with the size of the modules created.
Analysing the influencing factors for defect density in software engineering it
was discovered that there is a strong correlation to the size of the software mod-
ules [5, 2] Since ontologies are mainly handmade by ontology engineers, a process
that is very similar to programming, the defect density of ontologies is deter-
mined by similar human capabilities. The optimal size of software modules is
quoted to be about 200-300 logical lines of code. The closest correspondent to
logical lines in ontologies are descriptions, the basic building blocks of class ax-
ioms depicted in the W3C Web Ontology Language Reference [7].
In order to have a good distribution over the network, we want the sizes of the
modules clustered around the optimal size. Normally, we would measure this

using the standard deviation. In this particular case, however, we want to take
into account the possibility for improving the distribution of axioms after the
initial modularization step. In particular, we do not want to punish the creation
of modules that can easily be merged with others to form modules of wanted
size. Consider the example of a partitioning consisting of three large modules
and many modules that contain only one or two axioms. The standard deviation
would be very high although this partitioning can easily be optimized by merg-
ing the small modules into the big ones. For obtaining a criterion that measures
the main algorithm independent of optimization we define the size indicator in
terms of the fraction of axioms contained in modules of appropriate size.

Definition 1 (Appropriateness of module size). According to the correla-
tion to defect density we define a function appropriate that maps module sizes
ni = |Mi| to values in [0, 1]. The shape of this function reflects the defect den-
sity, at the size limits the value is zero and the value of the optimal size is one.
Furthermore the derivative is zero at the size limits to avoid discontinuity. A
function that meets these requirements is depicted in figure 1.

Fig. 1. The appropriate function.

The formal definition of this function is

appropriate(x) =
1
2
− 1

2
cos(x · π

250
)

Based on the appropriateness of the individual module sizes we obtain a global
indicator for partitionings by averaging over the contained axioms:

size =

k∑
i=1

ni · appropriate(ni)

k∑
i=1

ni

size is required to be greater than zero to ensure existence of at least one
acceptable module.

2.2 Redundancy

Apart from the size of individual modules we rate the blow up of the ontology
due to duplication of axioms. As mentioned above, redundant representations
can be used to improve efficiency but increase the effort needed to maintain the
distributed model. We therefore use the degree of redundancy in terms of the
fraction of duplicated axioms with respect to n.

Definition 2 (Redundancy). The number of duplicated axioms should be lim-
ited.

redundancy =
(

k∑
i=1

ni)− n

k∑
i=1

ni

The requirements regarding the sizes of modules are rather weak due to the fact
that partitioning algorithms commonly produce partitionings that fail anyway.

2.3 Connectedness

Another set of criterion is concerned with the interaction of the axioms in the
different modules. In order to be able to make assertions about this interaction,
we use the notion of a axiom graph. The axiom graph of an ontology is a labeled
graph 〈N,E, s, t〉 where the set of nodes N is the set of axioms of the ontology.

The first type of a connection is defined in terms of shared symbols. Two
nodes are connected by an edge if they share a non-logical symbol (i.e. a
predicate name). Note that axioms that share more than one non-logical symbol
are connected by one edge per shared symbol. Each node is labeled with the
axiom it represents, each edge is labeled with a symbol shared by the connected
nodes. In the axiom graph, we distinguish intra-module and inter-module edges.
An edge e with s(e) ∈ Mi, t(e) ∈ Mj is an inter-module edge if i 6= j and an
intra-module edge if i = j. We denote the number of all inter-module edges as
EX . Based on this notion of a axiom graph, we can now define the following
criteria.

Definition 3 (Connectedness). The number of symbols shared between ax-
ioms in different modules should be as small as possible. For comparing different
partitioning algorithms we consider the fraction of inter-module edges with re-
spect to the total number of edges:

connected∪̇ =
|EX |
|E|

Since communication cost increases with the number of extern edges a low
connected value implies that the modules are sparsely connected and therefore
indicates a good partitioning.

This criterion of small shared language was mentioned in some approaches to
partitioning knowledge bases [6]. It is a appropriate indicator for communication
cost as long as the modules are disjunct or rarely intersecting. With a large
amount of axioms shared by two or more modules this type of edges fails to
reflect module connection. Consider the following example:

Partitioning 1 Partitioning 2

A1,1 : C v D u E A1,1 : C v D u E
A1,2 : E

.= A uB A1,2 : E
.= A uB

A2,3 : H
.= G u ∃r.E A2,3 : H

.= G u ∃r.E
A2,2 : E

.= A uB

The axiom A2 is duplicated in the partitioning on the right to reduce
communication cost. Since modules 1 and 2 in partitioning 2 do not need
to communicate about A2 the connected-indicator should decrease when
duplicating the axiom. The axiom graph does not support distinguishing this
type of extern edge because it does not contain them.

For defining a connectedness indicator for partitionings with intersecting
modules we first define the partition graph 〈NM , EM , s, t〉 where the set of
nodes is the set of axioms {Ai,l ∈ O | Al ∈ Mi} with duplicates identi-
fied by the modules containing them and the set of edges is EM ⊆ {e |
s(e) = Ai,l, t(e) = Aj,m, i 6= j}. Apart from the intra-axiom extern edges
there is another inaccuracy in the first connectedness indicator when used
for intersecting modules. For example two axioms that are contained in ev-
ery module of a partitioning induce 2k edges although they do not cause any
communication cost. Formally we attempt to consider only the extern edges
EMX = {e | s(e) = Ai,l, t(e) = Aj,m, Al /∈ Mi, Am /∈ Mj} and denote the set of
edges as EM = {e | s(e) = Ai,l, t(e) = Aj,m, i 6= j, l = m∨(Al /∈ Mi, Am /∈ Mj)}.
Note that in general it is not defined whether an edge e of the axiom graph is
an extern edge because it depends on the modules connected by this edge not
only on the axioms. For illustrating consider two axioms A1 and A2 both of
them contained in two modules but only one contained in a third module. With
respect to modules one and two the edge would be discarded but w.r.t. modules
one and three it is a proper extern edge.

Definition 4 (Connectedness of intersecting modules). For comparing
different partitioning algorithms that generate intersecting modules we compare
the number of extern edges to the number of edges in the partition graph:

connected∪ =
|EMX |
|EM |

In case of disjunctive modules this coincides with the definition of connected∪̇

2.4 Relative Distance

The above indicator depicts the number of direct dependencies between modules.
For characterizing the communication effort caused by separation of the ontology
into modules we compare the average path length of the partition graph to the
average path length of the axiom graph. The average path length (apl) of a graph
is the distance between two nodes averaged over all pairs of nodes in the graph.
Since we can not guarantee reachability and are only interested in the relation
of the two average path lengths we elide shortest paths with dist(a, b) = ∞.

apl<∞(〈N,E, s, t〉) =
1

|N |(|N | − 1)

∑
a,b∈N

dist(a,b)<∞

dist(a, b)

For comparison of these paths a formal definition of the distance between axioms
in the partition graph is required. dist(Al, Am) is the length of the shortest
directed path in the axiom graph from axiom Al to axiom Am.

Definition 5 (Relative Distance). Let dist(Ai,l, Ai,m) be the minimal num-
ber of extern edges on a path from Ai,l to Ai,m. The inter-module communication
needed to access connected axioms should be minimal. In particular the average
path length of the partition graph should be short compared to the average path
length of the axiom graph.

effort =
apl<∞(〈NM , EM , s, t〉)

apl<∞(〈N,E, s, t〉)

=

1
|NM |(|NM |−1)

∑
l,m≤n

∑
i,j

dist(Ai,l,Ai,m)<∞

dist(Ai,l, Ai,m)

1
n(n−1)

∑
l,m

dist(Al,Am)<∞

dist(Al, Am)

The definitions made above provide us with the possibility to compare
different modularization approaches in terms of the values for the indicators
size, redundancy, connected and effort that can be determined experimentally
for different approaches. They also serve as a basis for developing a param-
eterized partitioning algorithm that optimizes the results according to these
requirements.

3 Experiments

As mentioned in the introduction, the structural criteria introduced in the pre-
vious sections contradict each other and force modularization methods to make
certain trade-offs. We started analyzing these trade-offs in a number of exper-
iments one of which we report in the following. The goal of this experiment
was to analyze how existing algorithms trade-off size and connectedness. It is
obvious that minimizing connectedness will normally lead to a small number of
large modules. The size criterion on the other hand favors modularizations that
consist of a number of equally large modules. As the basis for the experiment we
chose two real world ontologies from the medical domain. The DICE ontology
has been developed at the Amsterdam Medical Center to describe concepts of
clinical medicine. The statistics of the DICE and GALEN ontologies are given
below:

Ontology: DICE
Language: ALC(D)
Classes: 2543
Properties: 50
SubClass Statements: 3919
Max. Depth of Class Tree: 9
Min. Depth of Class Tree: 1
Avg. Depth of Class Tree: 5.06
Max. Branching Factor: 259
Min. Branching Factor: 1
Avg. Branching Factor: 6.49

Ontology: GALEN
Language: SHF
Classes: 2749
Properties: 413
SubClass Statements: 1978
Max. Depth of Class Tree: 13
Min. Depth of Class Tree: 1
Avg. Depth of Class Tree: 5.35
Max. Branching Factor: 766
Min. Branching Factor: 1
Avg. Branching Factor: 5.69

In the experiments we automatically slit up the DICE ontology using two
existing modularization tools: the modularization method implemented in the
SWOOP ontology editor and the PATO tool for ontology partitioning devel-
oped at the Vrije Univeristeit Amsterdam. We applied the modularization meth-
ods and compared the values for size and connectedness. Since SWOOP and
PATO partition symbols (concept and property names) instead of descriptions
we adapted the appropriate function to this domain. The ratio descriptions to
symbols is about five descriptions per symbol so we applied appropriate with an
optimal size of 50 symbols instead of 250 descriptions.

3.1 SWOOP

In a recent paper Cuenca-Grau and others propose a modularization method
that aims at producing modules that are self contained in the sense that all
inferences about the signature contained in a module can be made solely on the
basis of local reasoning [1]. The method consists of three basic steps:

Safety Check The above mentioned guarantees for completeness of local rea-
soning can only be given if the ontology satisfies certain safety conditions
(for details see [1]. These conditions are checked in the first step. The DICE
ontology that we used in our experiments satisfies these conditions.

Partitioning In the second step, the definitions in the ontology are partitioned
into disjoint sets. The algorithm starts with a single partition. In a partition-
ing step it non-deterministically creates new partitions and checks whether
parts of the definitions can be moved to that new partition without violat-
ing the completeness condition. The later is checked using the structure of
the concept definitions and the relation to concepts already placed in other
partitions.

Module Generation In the third step, the partitioning created in the second
are used to determine the actual models. This is done by merging parti-
tions into overlapping modules. At this stage, redundancy can potentially
be introduced into the ontology.

Applying the Method to the DICE ontology resulted in 146 modules most
of which (122) only contained a single concept definition. The majority of the
definitions (2373 out of 2543) ended up in a single module. The results for the
GALEN ontology where even more extreme. It was partitioned in two modules
with one of them containing only a single definition. This clearly reflects the
extreme strategy implemented in SWOOP to always prefer local reasoning over
a good distribution of module sizes. This strategy is also reflected in a very
good value for connectedness and a very bad one for size.

DICE
size connected

0.0007822223 0,0443

GALEN
size connected
∼ 0 0

It should be mentioned that partitionings produced by SWOOP are not al-
ways this extreme. Another selection is reported in [1].

3.2 Pato

PATO is a tool for automatically partitioning ontologies into disjoint sets of
concepts based on structural criteria [10]. The method underlying PATO consists
of the following steps:

Step 1: Create Dependency Graph: In the first step a dependency graph
is extracted from an ontology source file. The idea is that elements of the
ontology (concepts, relations, instances) are represented by nodes in the
graph. Links are introduced between nodes if the corresponding elements
are related in the ontology, e.g. because they appear in the same definition.

Step 2: Determine strength of Dependencies: In the second step the
strength of the dependencies between the concepts has to be determined.
This actually consists of two parts: First of all, we can use algorithms from
network analysis to compute degrees of relatedness between concepts based
on the structure of the graph. Second, we can use weights to determine the
importance of different types of dependencies, e.g. subclass relations have a
higher impact than domain relations.

Step 3: Determine Modules The proportional strength network provides us
with a foundation for detecting sets of strongly related concepts. This is
done using a graph algorithm that detects minimal cuts in the network and
uses them to split the overall graph in sets of nodes that are less strongly
connected to nodes outside the set than to nodes inside.

Step 4/5: Improving the Partitioning In the last steps the created parti-
tioning is optimized. In these steps nodes leftover nodes from the previous
steps are assigned to the module they have the strongest connection to.
Further, we merge smaller modules into larger ones to get a less scattered
partitioning. Candidates for this merging process are determined using a
measure of coherence.

The PATO method can be tuned to a given problem using a number of
different parameters. First of all, the user can select which kind of syntactic
features are used to create the links in the dependency graph in step 1. Further,
the user can chose the maximal size of islands created in step 3. Finally, a
threshold value can be selected that determines which modules are merged in
step 5. The lower the threshold, the more modules are merged.

In an experiment, we computed the values for size and relatedness of the
modularization generated by PATO using different settings. Since the modules
generated by Pato do not intersect redundancy is always zero. The table below
shows the result based on a dependency graph created from subclass links and
the occurrence of relation names in concept definitions for different threshold
values.

DICE
thres. size connected

0.1 0.0000 0.3720
0.2 0.1122 0.5410
0.3 0.2747 0.5724
0.4 0.3068 0.6003
0.6 0.2940 0.6092
1.0 0.2940 0.6092
1.1 0.2319 0.7010

GALEN
thres. size connected

0.1 0.0796 0.4695
0.2 0.1393 0.4860
0.3 0.2740 0.4900
0.4 0.2823 0.4941
0.6 0.2903 0.4955
1.0 0.2903 0.4955
1.1 0.3073 0.5663

We can see that setting the threshold parameter generally trades size quality
for connectedness of the resulting partitioning1. But choosing a threshold of 1.0
is favorable over not merging at all (thres.=1.1).

4 Discussion

Our experiments showed that using the structural criteria proposed in this
paper, it is possible to analyze the strategies of different modularization algo-
rithms. we could see that algorithms that generate sparsely connected modules
often fail completely with regard to their size. Evidently partitioning algorithms
trade communication cost for feasibility of module sizes. While one value is
highly optimized, the other degrade and make the partitioning less useful for
our purpose. The partitioning method in SWOOP is an example of a method
that focusses on the reduction of communication costs. In particular, it was
designed to ensure that no communication is necessary at all to answer queries
about the content of a module. The above criteria inspire the development of
an algorithm with balanced indicator values. For algorithms with very low size
value the idea is weakening the requirements for module autonomy to enable
feasible sizes. Another approach to moderate indicator values is by means of
a parameterized partitioning algorithm. For example in PATO we identified
the favorable configuration of links and the best value for the threshold by
the resulting values for size and connected. In the DICE experiments, this
optimal trade-off could be observed at a threshold value of 0.4 (compare figure 2).

A drawback of the current implementation of PATO is the fact, that the
optimal parameters have to be determined by hand beforehand. A straightfor-
ward idea is to automatically determine the optimal parameters on the basis
of the criteria described in this paper. This can be done in terms of solving an
optimization problem that tries to optimize the overall quality of the modular-
ization. What we need for this is an overall quality value based on the individual
criteria. Such an overall measure can be achieved using the following definition
of quality.

Definition 6 (Quality). The combined indicator for partitioning quality.

1 note that for size large and for connectedness small values are preferred

Fig. 2. Size vs. Connectedness

quality =
1
4
(size + 3− redundancy − connected− effort)

The importance of the different factors depends on the application which can be
taken into account by additional weights. For example if the application requires
a particularly low connectedness we would change the equation to quality =
1
6 (size+5−redundancy−3·connected−effort). For our experiments we put zero
weight on redundancy and effort by applying quality = 1

3 (2·size+1−connected).

For comparing different partitioning algorithms the separate values of
size, redundancy, connected and effort are more significant whereas automatic
optimization is facilitated by an integrated indicator. Detecting the pareto-
optimal configurations is another possibility if adequate weights can not be as-
signed to the quality indicators. Applying this method we identify automatically
the set of configurations, that would be optimal with weights set accordingly.
The final configuration is then selected from this set manually.

Currently, PATO does not partition axioms but symbols (concept and prop-
erty names) that appear in the given set of axioms. For conversion to partitioning
axioms a allocation routine is required that determines the partitioning of ax-
ioms depending on a given partitioning of concept and role names. There are
multiple options for this allocation routine. Combining PATO with an allocation
routine we obtain a parameterized partitioning algorithm that can be applied by
means of the quality indicator and a common greedy procedure for parameter
assignment. As the results show, however, the current algorithms are far from
being optimal for the task at hand. Therefore, future work will include modifica-
tions to the existing partitioning method in PATO to better fit the requirements
of ontology modularization for P2P systems.

Acknowledgement

This work was partially supported by the German Science Foundation in the
Emmy-Noether Program under contract Stu 266/3-1.

References

1. Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Modu-
larity and web ontologies. In Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR2006), 2006.

2. Les Hatton. Reexamining the fault density-component size connection. IEEE
Software, 14(2):89–97, 1997.

3. Seung Jin Lim and Yiu-Kai Ng. Vertical fragmentation and allocation in dis-
tributed deductive database systems. Information Systems, 22(1):1–24, 1997.

4. Bill MacCartney, Sheila McIlraith, Eyal Amir, and Tomas Uribe. Practical
partition-based theorem proving for large knowledge bases. In Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03),
2003.

5. Yashwant K. Malaiya and Jason Denton. Module size distribution and defect
density. issre, 00:62, 2000.

6. S. McIlraith and E. Amir. Theorem proving with structured theories. In B. Nebel,
editor, Proceedings of IJCAI’01, pages 624–634, San Mateo, August 2001. Morgan
Kaufmann.

7. Guus Schreiber Mike Dean. Owl web ontology language reference.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

8. Mukesh K. Mohania and Nandlal L. Sarda. Rule allocation in distributed deductive
database systems. Data Knowledge Engineering, 14(2):117–141, 1994.

9. Julian Seidenberg and Alan Rector. Web ontology segmentation: Analysis, classi-
fication and use. In Proceedings of the 15th international World Wide Web Con-
ference, Edinburgh, Scotland, 2006.

10. H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept
hierarchies. In D. Plexousakis, S. McIllraith, and F. van Harmelen, editors, Pro-
ceedings of the 3rd International Semantic Web Conference ISWC, Lecture Notes
in Computer Science, 2004.

