
Metamodel-based definition of interaction with visual
environments ∗

Paolo Bottoni
University “La Sapienza”
Dep. Computer Science

Rome, Italy

bottoni@di.uniroma1.it

Esther Guerra
Universidad Carlos III

Dep. Computer Science
Madrid, Spain

eguerra@inf.uc3m.es

Juan de Lara
Universidad Autónoma

Dep. Computer Science
Madrid, Spain

jdelara@uam.es

ABSTRACT
Metamodel approaches to building visual environments are
becoming common in the field of domain specific visual lan-
guages, mainly focusing on the definition of visual editors
and of simulation environments. Recent efforts tackle the
generation of complex interaction management both in the
editing and in the executing phases. We present an ap-
proach to interaction specification which takes into account
metamodel information both on the objects that can be ma-
nipulated and on the spatial relations among them. Interac-
tion dynamics are defined through a visual, declarative and
formal notation based on graph grammars.

Categories and Subject Descriptors
Software [SOFTWARE ENGINEERING]: Design Tools
and Techniques—User Interfaces

General Terms
Design, Human Factors, Theory

1. INTRODUCTION
Metamodelling frameworks for diagrammatic languages def-
inition and management are particularly exploited to con-
struct environments for Domain Specific Visual Languages
(DSVLs), as they allow a rapid implementation of visual
environments based on some abstract notion of visual enti-
ties and of relations among them [3, 4]. These environments
must support interaction to create visual sentences in the de-
fined language and to manipulate the entities in them. The
different interaction techniques should be constrained to al-
low only transformations complying with the metamodel.
However, current approaches rely on standard forms of in-
teraction, typically recurring to mechanisms provided by the
implementation language, with little or no formal reference
to the metamodel. This imposes rigidities on the possible in-
teractions, or forces to explicitly programming the different
alternatives for activating the same transformation.

We propose here the integration of a metamodel for interac-
tion – I – with one for diagrammatic languages – D – thus
decoupling the definition of low-level user-generated events
from that of abstract high-level visual actions, to be served

∗Work supported in part by the EC’s Human Potential Pro-
gramme under contract HPRN-CT-2002-00275, SegraVis,
and the Spanish Ministry of Science and Education, projects
MD2 (TIC200303654) and MOSAIC (TSI2005-08225-C07-
06).

with reference to the constraints embodied in D. To this
end, we rely on previous work separately developed by the
authors aimed at defining metamodels for diagrammatic lan-
guages syntax and semantics [3] and integrating some level
of formality in the management of user interactions [5]. In
particular, we exploit the notion of family of diagrammatic
languages [2, 3] and put it to work in combination with
event-driven grammars [5], which were originally not related
to the management of spatial relations. This kind of graph
grammars supports a stratified view of interaction events
where patterns of user-generated events can be mapped to
more refined high-level ones, which can in turn produce cas-
cading effects. This allows a complete configurability of the
user interface, so that different styles of interaction can be
used to produce the same effect, or a same user-generated
event can produce different effects, according to the interface
modality. Relations between low- and high-level events can
be dynamically modified by substituting a grammar with
another, without having to reprogram the event listeners.

Paper organization. After presenting related work on for-
mal definition of user interaction in Section 2, we discuss the
integration of the I and D metamodels in Section 3. Section
4 presents event-driven graph grammars and discusses their
use to manage different levels of abstraction in event defini-
tion. Finally, Section 5 presents an application to the man-
agement of the containment relation between nested states
in a simple variant of Statecharts, while Section 6 draws
conclusions and points to directions for future work.

2. RELATED WORK
A formal model of interactive tasks and components must lie
at the basis of every proposal for their integration and man-
agement. We do not consider here task-related formalisms,
such as ConcurTaskTrees [6], and concentrate on models of
components and abstract interaction.

Models of interaction control are either centralized, with
some high-level machine driving legal interaction, (e.g. [9]),
or distributed, by associating with every interactive compo-
nent its own control mechanism. A formal approach to the
definition of centralized interaction control is proposed in
[1], leading to the definition of verifiable finite state systems
from a Visual Event Grammar. An important effort in the
direction of distributed control is the proposal of Interactive
Cooperative Objects (ICOs) [8], which encapsulate state and
behaviours, modelled through Petri nets, of Virtual Reality
objects with reference to the events that can have effect



on them and the way in which they react to these events
(business logic processes and rendering algorithms). ICOs
abstract from the specific devices through which events are
produced, by mapping generated events to services manag-
ing them.

The Abstract User Interaction (AUI) approach to graphi-
cal user interfaces [11] maps concrete user interactions, de-
pending on different devices and style choices, to abstract
ones. Realisations of concrete interaction techniques for an
abstract interaction are provided on request, in a lazy func-
tional style. The consequences of an interaction are mod-
elled through calls to external functions. AUI is mainly
aimed at device-independence, but still attaches computa-
tions to low-level events. In a similar way, [10] proposes an
abstract definition of interface components as composition
of platform independent widgets and views, to be mapped
to their concrete realisation on a platform dependent model.

While we capitalize on the distinction between concrete and
abstract events, we allow for a wider scope of supported in-
teractions, as we rely on a metamodel including the base
classes for the visual elements in a DSVL, for the spatial
relationships between these elements, and for the GUI ele-
ments with which the end user can interact, as well as classes
for the different kinds of events and actions. Having an
explicit representation of actions resembles the concept of
“action languages”, which are becoming popular to express
the semantics of metamodel-based languages [7]. However,
our approach adds flexibility in that modelling the seman-
tics of events by means of graph grammar rules allows the
expression of complex conditions on their management as
subgraphs in the left-hand side of a rule.

3. METAMODEL INTEGRATION
In a diagrammatic language, significant spatial relations ex-
ist among identifiable elements. The latter are recognizable
entities in the language, to which a semantic role can be
associated, each element being univocally materialized by
means of a complex graphic element. Each such element is
composed in turn of simpler graphic elements, each possess-
ing one or more attach zones, which define its availability
to participate in different spatial relations, such as contain-
ment or touching. The existence of a spatial relation with
semantic relevance between two elements is assessed via the
predicate isAttached() implemented by each realisation of
AttachZone. Figure 1 shows the metamodel D including
these concepts. For space constraints, an abridged version
is presented (for a complete presentation, see [2, 3]). In par-
ticular, we restrict our analysis to direct spatial relations,
which are here always regarded as binary, without consid-
ering emergent relations, such as those derived from closure
of direct ones. A visual environment also contains GUI ele-
ments, e.g. buttons. Typically, an automatically generated
environment would contain a button for creating each ele-
ment of the DSVL alphabet Σ, as well as buttons for per-
forming visual actions (e.g. selecting, moving or deleting).

In order to relate interaction concepts with those in D, we
introduce a notion of interaction support. Low-level events
generated on an interaction support are thus related to the
corresponding visual element. Their effects can extend to
other elements, for example by navigating spatial relations.

Figure 1: Metamodel for Diagrammatic Languages.

Figure 2 shows the metamodel I for interaction. Low-level
events are received by some interaction support. Let Σ be
the set of IdentifiableElement concrete subclasses. A
typical set of low-level events for Σ is Low = {click <
X, x, y, time > [mod](σ), drag < X, x, y, time > [mod](σ),
drop < X, x, y, time > [mod](σ)}, where [mod] indicates
some combination of key modifiers and X, x, y, and time
indicate a mouse button, a screen position and a time re-
spectively. Moreover, general scope events can occur on the
canvas on which visual entities are depicted or on the GUI
elements. The actual set of events depends on the charac-
teristics of the underlying event support system.

Figure 2: Metamodel for Interaction.

At a higher level, a set Act of visual actions defines the
types of significant interactive actions a user can perform,
again related to the identifiable elements to be manipu-
lated. Typically, Act is such that ∀σ ∈ Σ, Act ⊃ {create(σ),
swapSelect(σ), delete(σ), move(σ), resize(σ), query(σ)}, hav-
ing omitted action-specific parameters. Act can be recur-
sively enriched by letting designers define new types of ac-
tions, based on events in Low and Act.

We introduce a new type of high-level events for spatial rela-
tions, such that a (direct) spatial relation can be brought to
bear, or cease to exist, between two identifiable elements, as
an effect of such events, constituting a set RelAct. Let Θ be
the set of subtypes of SpatialRelation. We have that ∀θ ∈
Θ,∀σ1, σ2 ∈ Σ such that instances of θ relate pairs of type
(σ1, σ2), RelAct⊃ {install(θ, σ1, σ2), remove(θ, σ1, σ2)}. We
adopt here event-driven graph grammars both to describe
the mapping of user-generated events (in Low) to high-level
events (in Act ∪RelAct) and to specify their effects.

4. EVENT-DRIVEN GRAPH GRAMMARS



Event-driven graph grammars were proposed in [5] as a
means to handle user interaction in the editing phase. They
make the events that the visual elements can receive explicit,
and model the actions to be done upon event generation via
rules. An event-driven grammar is made of pre-rules and
post-rules to be applied before and after the event is actu-
ally executed, and complements the DSVL metamodel with
interaction dynamics.

Event management occurs in five steps. First, the user gen-
erates an event on an interaction support, which is attached
to the associated element. Then, pre-rules are executed as
long as possible. They can modify model elements and pro-
duce and delete events. Hence, they can be thought of as
pre- conditions (failing which the event is deleted and not ex-
ecuted) and pre-actions for a given event. In the third step,
the existing event(s) are actually executed. At this point,
zero or more events may be associated to various model el-
ements. In the fourth step, the post-rules are executed as
long as possible. Finally, the events are deleted.

Event-driven rules may contain instances of abstract classes
in their left and right hand sides (LHS and RHS respec-
tively). Although no instance of abstract classes can be
present in the model, “abstract objects” in rules can be
matched to any concrete subclass instance. This feature
makes rules more compact and reusable. For example, rules
specifying the behaviour of Containers will be valid for any
language containing entities that inherit from this class.

Figure 3 shows a pre-rule that transforms a low-level event
into a visual, high-level action, modelling entity movement
in a drag and drop interaction modality. We use a compact
notation for the rules, in which LHS and RHS are presented
together. The elements to be added by the rule application
are shown in bold, and those to be removed in dashed lines.
For rules with negative application conditions (NACs), the
elements that should not be present are shown in a gray
area. Finally, if an attribute of an entity is modified, its
value appears as a tuple containing the values before and
after the rule application.

Figure 3 shows a pre-rule checking whether some identifiable
element has received a Drop low-level event in its interaction
support, while the “select” button in the user interface is
selected. In this case, it generates a Move high-level visual
action associated with the element. This rule uses “abstract
objects” and therefore is valid for any DSVL environment.

Figure 3: Movement in Drag and Drop Modality.

Event-driven rules can model other interaction modalities
(like point and click or grasp and stretch) rewriting patterns
of low-level events into high-level actions. Figure 4 shows a
set of rules modelling a point and click behaviour for moving

entities,. The user has already entered the MOVE modality
by selecting the corresponding button, which provokes the
deselection of any selected identifiable element in the canvas.
The first rule selects the clicked element and deletes the click
event. The second rule looks for a click event which is not
associated to the interaction support area of any element
(i.e. the click was on the canvas), and then generates a
Move visual action associated with the selected element.

Figure 4: Movement in Point and Click Modality.

When generating an environment, the DSVL designer can
choose between these interaction modalities. In addition,
the high-level actions can be interpreted in different ways
by different sets of rules, providing an additional degree of
customization, as shown in the next Section.

5. AN EXAMPLE: MANAGING CONTAIN-
MENT IN STATECHARTS

In this Section we show how to customize containment han-
dling in an environment for a simplified version of Hierarchi-
cal State Machines, defined by the metamodel of Figure 5.
The visual entities refine the relevant classes of containment-
and connection-based families of languages [3]. In particu-
lar, a State may act both as a container for other states, and
as source or target of a connection (the Transition). Class
Substate is introduced as a specialization of Contains, whose
instances relate pairs of instances of State.

Figure 5: Metamodel for Statecharts.

The DSVL designer can configure specific behaviours for
handling the different spatial relations (containment, align-
ment, adjacency, etc.) We present an example where we
model different behaviours that may occur when one ele-
ment is moved outside a container. In the first one, the
containee is disconnected from the container. In the second,
the container is resized to accommodate the new position of
the containee. In the third one, we forbid a containee to be
moved outside the container. The main idea is that the fact
of moving a containee outside a container will produce the
user-defined event “Take Out”. Hence, we make available
three rules interpreting the event in three different ways.

Figure 6 shows a pre-rule that generates the take-out user-
defined event when an element is moved outside its con-



tainer. As this is a pre-rule, the Move action has not been
performed yet. This rule has a NAC that forbids applying
the rule more than once in a row.

Figure 6: Generation of a User-Defined Action.

Figure 7 shows three different interpretations for the take-
out event. The Detach containee rule removes the event
and adds a Remove spatial action. The Resize container
rule replaces the event by a resize attached to the container,
with the appropriate coordinates for resizing. Finally, rule
Not allowed deletes both the take-out and the Move event
of the containee, thus preventing its movement.

Figure 7: Three Interpretations of “Take Out”.

A movement of a state that concludes by placing it within a
different container leads to the installation of a new spatial
relation between the moved state and the destination one.
In this case a new user-defined event, named “Place In”,
would be generated in a pre-rule analogous to Figure 6.

6. CONCLUSIONS AND FUTURE WORK
We have presented a novel approach to the definition of
interaction modalities for DSVL environments based on a
metamodel. Low-level events and high-level actions are taken
into account, together with spatial relations and DSVL con-
cepts. Different behaviours can be customized by means of
rules. The definition of complex interaction patterns is sup-
ported by separating the processing of events from a man-
agement policy for all their envisaged consequences.

The advantages of such an approach are manifold. First,
using graph grammars enables a formal approach to inter-
action definition which is also visual and declarative, thus
favoring reuse of rules and reasoning on them. Moreover, as
rules are defined at an abstract level, they are independent
of the concrete user interface. This decoupling of device-
originated events from low-level abstract events, and from
the management of high-level actions, facilitates the defi-
nition of configurable and adaptive environments. Event-
driven graph grammars provide a visual, formal semantics
to an action language for DSVL environments. The integra-
tion of different GUI elements (such as buttons) into D and

their inclusion in the elements manageable through event-
driven grammars is a further step towards a complete formal
definition of the user interactions.

The approach is being integrated into the ATOM3 architec-
ture. Future work will study other interaction phenomena.
For example, the issue of grouping elements and defining
actions which simultaneously affect all of them can be tack-
led by viewing all the elements as contained in a temporary
dummy container. Other challenges include global phenom-
ena, such as context switch or complex layout redefinition.

7. REFERENCES
[1] J. Berstel, S. Crespi-Reghizzi, G. Roussel, and P. San

Pietro. A scalable formal method for design and
automatic checking of user interfaces. ACM
Transaction on Software Engineering and
Methodology, 14(2):124–167, 2005.

[2] P. Bottoni and G. Costagliola. On the definition of
visual languages and their editors. In Diagrams, pages
305–319, 2002.

[3] P. Bottoni and A. Grau. A Suite of Metamodels as a
Basis for a Classification of Visual Languages. In Proc.
of 2004 IEEE VL/HCC, pages 83–90. IEEE CS, 2004.

[4] J. de Lara and H. Vangheluwe. AToM3: A Tool for
Multi-Formalism Modelling and Meta-Modelling. In
Proc. of FASE’2002, volume 2306 of LNCS, pages
174–188. Springer, 2002.

[5] E. Guerra and J. de Lara. Event-Driven Grammars:
Towards the Integration of Meta-Modelling and Graph
Transformation. In Proc. of ICGT’2004, volume 3256
of LNCS, pages 54–69. Springer, 2004.

[6] G. Mori, F. Paternò, and C. Santoro. CTTE: Support
for Developing and Analyzing Task Models for
Interactive System Design. IEEE Trans. Software
Eng., 28(8):797–813, 2002.

[7] P. Muller, P. Studer, F. Fondement, and J. Bezivin.
Platform independent web application modeling and
development with netsilon. Software and System
Modeling, 4(4):424–442, 2005.

[8] D. Navarre, P. A. Palanque, R. Bastide, A. Schyn,
M. Winckler, L. P. Nedel, and C. M. D. S. Freitas. A
formal description of multimodal interaction
techniques for immersive virtual reality applications.
In INTERACT, volume 3585 of LNCS, pages 170–183.
Springer, 2005.

[9] G. D. Penna, B. Intrigila, and S. Orefice. An
environment for the design and implementation of
visual applications. J. Vis. Lang. Comput.,
15(6):439–461, 2004.

[10] T. Schattkowsky and M. Lohmann. Towards
Employing UML Model Mappings for Platform
Independent User Interface Design. In MDDAUI,
volume 159 of CEUR Workshop Procs., 2005.

[11] K. A. Schneider and J. R. Cordy. Abstract user
interfaces: A model and notation to support plasticity
in interactive systems. In C. Johnson, editor, DSV-IS,
volume 2220 of LNCS, pages 28–48. Springer, 2001.


