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Abstract— This work presents a method founded in instance-
based learning for inductive (memory-based) reasoning on
ABoxes. The method, which exploits a semantic dissimilarity
measure between concepts and instances, can be employed both
to answer class membership queries and to predict new assertions
that may be not logically entailed by the knowledge base. In a
preliminary experimentation, we show that the method is sound
and it is actually able to induce new assertions that might be
acquired in the knowledge base.

I. INTRODUCTION

Most of the research on ontology reasoning has been
focusing on methods based on deductive reasoning. However,
important tasks that are likely to be provided by new genera-
tion knowledge-based systems, such as construction, revision,
population and evolution are likely to be supported also by
inductive methods. This has brought to an increasing interest
in machine learning and knowledge discovery methods applied
to ontological representations (see [1], [2] and, more recently,
[3], [4], [5], [6]).

We propose an algorithm which is based on a notion of
concept similarity for performing a form of lazy learning on
typical ontological representations. Namely, by combining an
instance-based (analogical) approach with a notion of semantic
dissimilarity, this paper intends to demonstrate the applicabil-
ity of inductive reasoning in this field which can be considered
another form of approximate reasoning (see discussion in
[7]). In particular, we have adapted the general instance-
based learning approach like the k-Nearest Neighbor [8] to
the specific multi-relational setting for ontology languages.
A couple of technical problems had to be solved for this
adaptation to ontology representations: 1) the Open World
Assumption (OWA) that is made in this context; 2) in this
multi-class problem setting disjunction cannot be assumed by
default.

The standard ontology languages are founded in Description
Logics (henceforth DLs) as they borrow the language con-
structors for expressing complex concept definitions. Instance-
based methods depend on a similarity measure defined on
the instance space. In this perspective, a variety of measures
for concept representations have been proposed (see [9] for
a survey). As pointed out in [10], most of these measures
focus on the similarity of atomic concepts within hierarchies or
simple ontologies, based on a few relations. Thus, it becomes
necessary to investigate similarity in more complex languages.

It has been observed that, adopting richer representations,
the structural properties have less and less impact in assessing
semantic similarity. Hence, the vision of similarity based only
on a structural (graph-based) approach, such as in [11], [12]
may fall short. We have proposed some dissimilarity measures
for non trivial DL languages, based on the semantics conveyed
by the ABox assertions, which are suitable for being used
in instance-based methods [13], [14]. These measures elicit
the underlying semantics by querying the knowledge base
for assessing the concept extensions, estimated through their
retrieval [15], as also hinted in [16]. Besides, the overall
similarity is also (partially) influenced by the concepts which
are related through role restrictions. Moreover, in many other
typical tasks (e.g. conceptual clustering or definition), it is
necessary to assess the similarity between concepts (resp.
individuals). By recurring to the notion of most specific
concept of an individual with respect to an ABox [15], as
representatives of the individuals at the concept level, the
measures for concepts can be extended to such cases.

This analogical reasoning procedure like this may be em-
ployed to answering class membership queries through analog-
ical rather than deductive reasoning which may be more robust
with respect to noise and is likely to suggest new knowledge
(which was not logically derivable). Specifically we developed
the method also for an application of semantic web service
discovery where services are annotated in DLs.

Another application might regard supporting various tasks
for the knowledge engineer, such as the acquisition of can-
didate assertions for enriching ontologies with partially pop-
ulated ABoxes: the outcomes given by the procedure can be
utilized as recommendations. Indeed, as we show in the ex-
perimentation, the newly induced assertions are quite accurate
(commission errors, i.e. predicting a concept erroneously, were
rarely observed). In turn, the outcomes of the procedure may
also trigger other related tasks such as induction (revision) of
(faulty) knowledge bases.

The paper is organized as follows. In the next section,
the representation language is briefly presented. Two concept
dissimilarity measures are recalled and exploited in a modified
version of the k-NN classification procedure. The results of a
preliminary experimental evaluation of the method using these
two measures are shown and, finally, possible developments
of the method are examined.



II. ALC KNOWLEDGE BASES

We recall the basics of ALC [17], a logic which adopts
constructors supported by the standard ontology languages
(see the DL handbook [15] for a thorough reference).

In DLs, descriptions are inductively defined starting with a
set NC of primitive concept names and a set NR of primitive
roles. Complex descriptions are built using primitive concepts
and roles and the constructors showed in the following. The
semantics of the descriptions is defined by an interpretation
I = (∆I , ·I), where ∆I is a non-empty set, the domain of
the interpretation, and ·I is the interpretation function that
maps each A ∈ NC to a set AI ⊆ ∆I and each R ∈ NR to
RI ⊆ ∆I ×∆I .

The top concept > is interpreted as the whole domain of
objects ∆I , while the bottom concept ⊥ corresponds to ∅.
Complex descriptions can be built in ALC using the following
constructors. The language supports full negation: given any
description C, denoted ¬C, it amounts to ∆I \ CI . Concept
conjunction, denoted C1 uC2, yields the extension CI

1 ∩CI
2 ;

dually, concept disjunction, denoted C1tC2, yields the union
CI

1 ∪CI
2 . Finally, the existential restriction, denoted ∃R.C, is

interpreted as {x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)}
and the value restriction ∀R.C has as its extension the set
{x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}.

The main inference is subsumption between concepts based
on their semantics: given two descriptions C and D, C
subsumes D, denoted by C w D, iff for every interpretation
I it holds that CI ⊇ DI . When C w D and D w C then
they are equivalent, denoted with C ≡ D.

A knowledge base K = 〈T ,A〉 contains a TBox T and an
ABox A:

• T is the set of definitions C ≡ D, meaning that, for every
interpretation I, CI = DI , where C is the concept name
and D is its description constructed as above;

• A contains concept and role assertions about the world-
state, e.g. C(a) and R(a, b), meaning that, for every I,
aI ∈ CI and (aI , bI) ∈ RI .

A related inference used in the following is instance check-
ing, that is deciding whether an individual is an instance of a
concept [18], [15]. Conversely, it may be necessary to find the
concepts which an individual belongs to (realization problem),
especially the most specific one (see Def. 5).

Semantically equivalent (yet syntactically different) descrip-
tions can be given for the same concept. Nevertheless, equiv-
alent concepts can be reduced to a normal form by means of
rewriting rules that preserve their equivalence [19]:

A description D is in ALC normal form iff D ≡ ⊥ (then
D := ⊥) or if D ≡ > (then D := >) or if D = D1t· · ·tDn

(∀i = 1, . . . , n, Di 6≡ ⊥) with

Di =
l

A∈prim(Di)

A u
l

R∈NR

∀R.valR(Di) u
l

E∈exR(Di)

∃R.E


where:

• prim(Di) is the set of all (negated) primitive concepts
occurring at the top level of Di;

• valR(Di) is the conjunction Ci
1 u · · · u Ci

n in the value
restriction of role R, if any (otherwise valR(Di) = >);

• exR(Di) is the set of concepts in the existential restric-
tions of the role R.

For any R, every sub-description in exR(Di) and valR(Di) is
in normal form.

In the following, let L = ALC/≡ be the quotient set of
ALC descriptions in normal form.

III. DISSIMILARITY MEASURES IN DESCRIPTION LOGICS

We recall two definition of dissimilarity measures for ALC
descriptions expressed in normal form [13], [14]. These mea-
sures are based on both the structure and the semantics of the
concept descriptions.

A. Overlap Dissimilarity Measure

The first measure, is derived from a measure of the overlap
between concepts, that can be defined as follows:

Definition 1 (overlap function): Let I be the canonical in-
terpretation of the ABox A. The overlap function f is defined1:
f : L × L 7→ R+ defined for descriptions C,D ∈ L, with
C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj

disjunctive level:

f(C,D) := ft(C,D) =

 ∞ C ≡ D
0 C uD ≡ ⊥
maxi,jfu(Ci, Dj) otherwise

conjunctive level:

fu(Ci, Dj) := fP (prim(Ci), prim(Dj))+
+λ(f∀(Ci, Dj) + f∃(Ci, Dj))

with λ ∈ [0, 1].
primitive concepts:

fP (P1, P2) :=
|R(P1) ∪R(P2)|

|(R(P1) ∪R(P2)) \ (R(P1) ∩R(P2))|

where R(P ) =
⋂

A∈P AI and fP (P1, P2) = ∞ when
R(P1) = R(P2).

value restrictions:

f∀(Ci, Dj) :=
∑

R∈NR

ft(valR(Ci), valR(Dj))

existential restrictions:

f∃(Ci, Dj) :=
∑

R∈NR

N∑
k=1

max
p=1,...,M

ft(Ck
i , Dp

j )

where Ck
i ∈ exR(Ci) and Dp

j ∈ exR(Dj) and we suppose
w.l.o.g. that N = |exR(Ci)| ≥ |exR(Dj)| = M , otherwise the
indices N and M as well as Ci and Dj are to be exchanged
in the formula above.

1The name A of the ABox is omitted for simplicity.



The function f represents a measure of the overlap between
two descriptions expressed in ALC normal form. It measures
the similarity of the input concepts based on the similarity
between their extensions (approximated with the retrieval) and
also on the similarity of the concepts reached by the role
restrictions. Namely, It is defined recursively beginning from
the top level of the descriptions (a disjunctive level) up to
the bottom level represented by (conjunctions of) primitive
concepts.

Overlap at the disjunctive level is treated as the maximum
overlap between the disjunctive forms of the input concepts. At
conjunctive levels, instead of simply considering the similarity
like in Tversky’s measure [20] (as we do for prim’s), that
could turn out to be null in case of disjoint retrieval sets for
the input concepts, we distinguish the overlaps between the
prims and those between the concepts in the scope of the
various role restrictions2; the contribution of the overlap of
concepts reached through role restrictions can be penalized by
tweaking the parameter λ. The measure for primitive concepts
resembles Tversky’s measure and it represents a semantic
baseline since it depends on the semantics of the knowledge
base, as conveyed by the ABox assertions. This is in line with
to the ideas in [16], [10], where semantics is elicited as a
probability distribution over the domain of the interpretation.

As for the role restrictions overlap, for the universal restric-
tions we simply add the overlap measures varying the role,
while for the existential restrictions the measure is trickier:
borrowing the idea of the existential mappings we consider, per
role, all possible matches between the concepts in the scope
of existential restrictions, then we consider the maximal sum
of overlaps resulting from all the matches.

Now, it is possible to derive a dissimilarity measure based
on f as follows:

Definition 2 (overlap dissimilarity measure): The overlap
dissimilarity measure is a function d : L × L 7→ [0, 1] such
that, given two concept descriptions C,D ∈ L, C =

⊔n
i=1 Ci

and D =
⊔m

j=1 Dj :

d(C,D) :=


1 if f(C,D) = 0
0 if f(C,D) = ∞
1

f(C,D) otherwise
Function d simply measures the level of dissimilarity be-

tween two concepts as the inverse of the overlap function
f . Particularly, if f(C,D) = 0, i.e. there is no overlap
between the considered concepts, then d must indicate that
the two concepts are totally different, indeed d(C,D) = 1,
the maximum value of its range. If f(C,D) = ∞ this means
that the two concepts are totally overlapped and consequently
d(C,D) = 0 that means that the two concept are indistin-
guishable, indeed d assumes the minimum value of its range.
If the considered concepts have a partial overlap then their

2We tried also other solutions, such as considering minima or products of
the three overlap measures, yet experimentally this did not yield a better
performance whereas the computation time was increased. For practical
reasons, the maximal measure ∞ has been replaced with large numbers
depending on the cardinality of the set of individuals in the ABox: |Ind(A)|.

dissimilarity is inversely proportional to their overlap, since
in this case f(C,D) > 1 and consequently 0 < d(C,D) < 1.

B. A Dissimilarity Measure Based on Information Content

As discussed in [12], a measure of concept (dis)similarity
can be derived from the notion of Information Content (IC)
that, in turn, depends on the probability of an individual to
belong to a certain concept. Now, differently from other works,
which assume that a probability distribution for the concepts
in an ontology is known, we derive it from the knowledge
base, from the distribution that can be estimated therein [16],
[10].

In order to approximate this probability for a certain concept
C, we recur to its extension w.r.t. the considered ABox in a
fixed interpretation. Namely, we chose the canonical interpre-
tation IA, which is the one adopting the set of individuals
mentioned in the ABox as its domain and the identity as
its interpretation function [15]. Now, given a concept C its
probability is estimated by:

pr(C) = |CIA |/|∆IA |

Finally, we can compute the information content of a concept,
employing this probability:

IC(C) = − log pr(C)

A measure of the concept dissimilarity is now formally
defined [14]:

Definition 3 (IC dissimilarity): Let A be an ABox with
canonical interpretation I. The information content dissimilar-
ity measure is a function g : L×L 7→ R+ defined recursively
for any two normal form concept descriptions C,D ∈ L, with
C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj

disjunctive level:

g(C,D) := gt(C,D) =


0 if C ≡ D
∞ if C uD = ⊥

min gu(Ci, Dj)
1 ≤ i ≤ n
1 ≤ j ≤ m

otherwise

conjunctive level:

gu(Ci, Dj) := gP (prim(Ci), prim(Dj))+
+λ(g∀(Ci, Dj) + g∃(Ci, Dj))

with λ ∈ [0, 1].
primitive concepts:

gP (Pi, Pj) :=


∞ if Pi u Pj ≡ ⊥

IC(PiuPj)+1
IC(LCS(Pi,Pj))+1 otherwise

value restrictions:

g∀(Ci, Dj) :=
∑

R∈NR

gt(valR(Ci), valR(Dj))

existential restrictions:

g∃(Ci, Dj) :=
∑

R∈NR

N∑
k=1

min
p=1,...,M

gt(Ck
i , Dp

j )



where Ck
i ∈ exR(Ci) and Dp

j ∈ exR(Dj) and we suppose
w.l.o.g. that N = |exR(Ci)| ≥ |exR(Dj)| = M , otherwise the
indices N and M are to be exchanged in the formula above.

The function g represents a measure of the dissimilarity
between two descriptions expressed in ALC normal form.
It is defined recursively beginning from the top level of
the descriptions (a disjunctive level) up to the bottom level
represented by (conjunctions of) primitive concepts.

Now g has values in [0,∞]. It may be useful to derive a
normalized dissimilarity measure as shown in the following.

Definition 4 (normalized IC dissimilarity): Let A be an
ABox with canonical interpretation I. The normalized in-
formation content dissimilarity measure is the function d :
L × L 7→ [0, 1], such that given the concept descriptions in
ALC normal form C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj , let

d(C,D) :=


0 if g(C,D) = 0
1 if g(C,D) = ∞
1− 1

g(C,D) otherwise

C. Measuring the Dissimilarity between Individuals

The notion of Most Specific Concept is commonly exploited
for lifting individuals to the concept level.

Definition 5 (most specific concept): Given an ABox A
and an individual a, the most specific concept of a w.r.t. A is
the concept C, denoted MSCA(a), such that A |= C(a) and
for any other concept D such that A |= D(a), it holds that
C v D.

In case of cyclic ABoxes expressed in a DL with existen-
tial restrictions the MSC may not be expressed by a finite
description [15], yet it may be often approximated.

On performing experiments related to another similarity
measure exclusively based on concept extensions [21], we
noticed that, recurring to the MSC for lifting individuals to
the concept level, just falls short: indeed the MSCs may be
too specific and unable to include other (similar) individuals
in their extensions. By comparing descriptions reduced to the
normal form we have given a more structural definition of
dissimilarity. However, since MSCs are computed from the
same ABox assertions, reflecting the current knowledge state,
this guarantees that structurally similar representations will be
obtained for semantically similar concepts.

Let us recall that, given the ABox, it is possible to calculate
the most specific concept of an individual a w.r.t. the ABox,
MSC(a) or at least its approximation MSCk(a) up to a
certain description depth k. In some cases these are equivalent
concepts but in general we have that MSCk(a) w MSC(a).

Given two individuals a and b in the ABox, we consider
MSCk(a) and MSCk(b) (supposed in normal form). Now, in
order to assess the dissimilarity between the individuals, d
measure can be applied to these descriptions:

d(a, b) := d(MSCk(a), MSCk(b))

This may turn out to be handy in several tasks, namely both
in inductive reasoning (construction, repairing of knowledge
bases) and in information retrieval.

D. Discussion

We proved in [13], [14] that these measures are really
dissimilarity measures according to the formal definition [22],
considering that their input (what is actually compared) is
equivalence classes in L, i.e. ALC concept descriptions with
the same normal form.

As previously mentioned, we have also attempted slightly
different measure definitions (e.g. considering minima or prod-
ucts at the conjunctive level that sound more intuitive) which
experimentally did not prove more effective than the simple
(additive) definition given above.

The computational complexity of the measures depends
on the complexity of the required reasoning services for
computing the concepts retrieval. Namely both subsumption
and instance-checking are P-space for the ALC logic[18], yet
such inference can be computed once and preliminarily, before
the measures are computed for the method we will present in
the following.

Obviously when computing the dissimilarity measures for
cases involving individuals, the extra cost of computing MSCs
(or their approximations) has to be added.

Nevertheless, in practical applications, these computations
may be efficiently carried out exploiting the statistics that
are maintained by the DBMSs query optimizers. Besides, the
counts that are necessary for computing the concept extensions
could be estimated by means of the probability distribution
over the domain.

IV. A NEAREST NEIGHBOR CLASSIFICATION PROCEDURE
IN DESCRIPTION LOGICS

We briefly review the basics of the k-Nearest Neighbor
method (k-NN) and propose how to exploit the classification
procedure for inductive reasoning. In this lazy approach to
learning, a notion of distance (or dissimilarity) measure for
the instance space is employed to classify a new instance.

Let xq be the instance that requires a classification. Using
a dissimilarity measure, the set of k nearest pre-classified
instances is selected. The objective is to learn a discrete-valued
target function h : IS 7→ V from a space of instances IS to
a set of values V = {v1, . . . , vs}. In its simplest setting, the
k-NN algorithm approximates h for new instances xq on the
ground of the value that h assumes in the neighborhood of
xq, i.e. the k closest instances to the new instance in terms
of a dissimilarity measure. Precisely, it is assigned according
to the value which is voted by the majority of instances in
the neighborhood. The the classification function ĥ can be
formally defined as follows:

ĥ(xq) := argmax
v∈V

k∑
i=1

δ(v, h(xi))

where δ is a function that returns 1 in case of matching argu-
ments and 0 otherwise. Note that the hypothesized function ĥ
is defined only extensionally, that is the k-NN method does not
return an intensional classification model (e.g. a function or a



concept definition), it merely gives an answer for new query
instances to be classified, employing the procedure above.

This simple formulation does not take into account the sim-
ilarity among instances, except when selecting the instances to
be included in the neighborhood. Therefore a modified setting
is generally adopted, weighting the vote on the grounds of the
similarity of the instance:

ĥ(xq) := argmax
v∈V

k∑
i=1

wiδ(v, h(xi)) (1)

where, usually, wi = 1/d(xi, xq) or wi = 1/d(xi, xq)2.
Usually this method is employed to classify vectors of

features in some n-dimensional instance space (e.g. often
IS = Rn). Let us now turn to adapt the method to the more
complex context of DLs descriptions. Preliminarily, it should
be observed that a strong assumption of this setting is that it
can be employed to assign a value (e.g. a class) to a query
instance among a set of values which can be regarded as a set
of pairwise disjoint concepts/classes. This is an assumption
that cannot be always valid. In this case, indeed, an individual
could be an instance of more than one concept.

Let us consider a new value set V = {C1, . . . , Cs} of
concepts Cj that may be assigned to a query instance xq.
If they were to be considered as disjoint (like in the standard
machine learning setting), the decision procedure would adopt
the hypothesis function defined in Eq. (1), with the query
instance assigned the single concept voted by the weighted
majority of instances in the neighborhood.

In the general case considered in this paper, when the
disjointness of the classes cannot be assumed (unless explicitly
stated in the TBox), one can adopt another answering proce-
dure, decomposing the multi-class problem into smaller binary
classification problems (one per concept). Therefore, a simple
binary value set (V = {−1,+1}) is to be employed. Then,
for each single concept (say Cj), a hypothesis ĥj is computed
on the fly during the classification phase:

ĥj(xq) := argmax
v∈V

k∑
i=1

δ(v, hj(xi))
d(xq, xi)2

∀j ∈ {1, . . . , s} (2)

where each function hj , simply indicates the occurrence (+1)
or absence (−1) of the corresponding assertion in the ABox for
the k training instances xi: Cj(xi) ∈ A. Alternately3, hj may
return +1 when Cj(xi) is logically entailed by the knowledge
base K, and −1 otherwise.

The problem with non-explicitly disjoint concepts is also
related to the Closed World Assumption usually made in the
context of Information Retrieval and Machine Learning. That
is the reason for adapting the standard setting to cope both with
the case of non-disjoint concepts and with the OWA which is
commonly made in the Semantic Web context. To deal with
the OWA, the absence of information on whether a certain
instance x belongs to the extension of concept Cj should not

3For the sake of simplicity and efficiency, this case will not be considered
in the following.

be interpreted negatively; rather, it should count as neutral
information. Thus, one can still adopt the decision procedure
in Eq. (2), however another value set has to be adopted for
the hj’s, namely V = {−1, 0,+1}, where the three values
denote, respectively, positive occurrence, absence and negative
occurrence (positive for the concept negation). Formally:

hj(x) =

 +1 Cj(x) ∈ A
0 Cj(x) 6∈ A ∧ ¬Cj(x) 6∈ A

−1 ¬Cj(x) ∈ A

Again, a more complex procedure may be devised by simply
substituting the notion of occurrence (absence) of assertions in
(from) the ABox with one based on logic entailment (denoted
with `) from the knowledge base, i.e. K ` Cj(x), K 6` Cj(x)
nor K 6` ¬Cj(x) and K ` ¬Cj(x), respectively. Although this
may help reaching the precision of deductive reasoning, it is
also much more computationally expensive, since the simple
lookup in the ABox must be replaced with instance checking.

From a computational viewpoint this procedure could be
implemented to provide an answer even more efficiently than
with a standard deductive reasoner. Indeed, once the re-
trieval of the primitive concepts is computed, the dissimilarity
measures can be easily computed by means of a dynamic
programming algorithm. Besides, the various measures could
be maintained in an ad hoc data structure which would allow
for an efficient retrieval of the nearest neighbors, such as the
kD-trees or ball trees [23]

V. EXPERIMENTS

A. Experimental Setting

In order to assess the validity of the presented method
with the dissimilarity measures proposed in Sect. III, we have
applied it to the instance classification problem, with four
different ontologies represented in OWL: FSM, SURFACE-
WATER-MODEL from the Protégé library4, the FINANCIAL
ontology5 employed as a testbed for the PELLET reasoner and
a small FAMILY ontology written in our lab. Although they
are represented in languages that are different from ALC, we
simply discarded these details when constructing the MSC
approximations to be able to apply the presented measures.

FAMILY is an ALCF ontology describing kinship rela-
tionships. It is made up of 14 concepts (both primitive
and defined), some of them are declared to be disjoint, 5
object properties, 39 distinct individual names. Most of the
individuals are asserted to be instances of more than one
concept, and are involved in more than one role assertions.
This ontology has been written to have a small yet more
complex case with respect to the following ones. Indeed,
while the other ontologies are more regular, i.e. only some
concepts are employed in the assertions (the others are defined
only intensionally), in the FAMILY ontology every concept

4See the webpage:
http://protege.stanford.edu/plugins/owl/owl-library

5See the webpage: http://www.cs.put.poznan.pl/
alawrynowicz/financial.owl



has at least one instance asserted. The same happens for the
assertions on roles; particularly, there are some cases where
role assertions constitute a chain from an individual to another
one, by means of other intermediate assertions.

The FSM ontology describes the domain of finite state
machines using the SOF(D) language. It is made up of
20 (both primitive and defined) concepts (some of them are
explicitly declared to be disjoint), 10 object properties, 7
datatype properties, 37 distinct individual names. About half
of the individuals are asserted as instances of a single concept
and are not involved in any role (object property).

SURFACE-WATER-MODEL is an ALCOF(D) ontology de-
scribing the domain of the surface water and the water quality
models. It is based on the Surface-water Models Information
Clearinghouse (SMIC) of the USGS. Namely, it is an ontology
of numerical models for surface water flow and water quality
simulation. The application domain of these models comprises
lakes, oceans, estuaries etc.. These models are classified based
on their availability, application domain, dimensions, partial
differential equation solver, and characteristics types. It is
made up of 19 concepts (both primitive and defined) without
any specification about disjointness, 9 object properties, 115
distinct individual names; each of them is an instance of a
single class and only some of them are involved in object
properties.

FINANCIAL is an ALCIF ontology that describes the
domain of eBanking. It is made up of 60 (both primitive and
defined) concepts (some of them are declared to be disjoint),
17 object properties, and no datatype property. It contains
17941 distinct individual names. From the original ABox, we
randomly extracted assertions for 652 individuals.

The classification method was applied to all the individuals
in each ontology; namely, the individuals were checked to
assess if they were instances of the concepts in the ontology
through the analogical method. The performance was evalu-
ated comparing its responses to those returned by a standard
reasoner6 as a baseline.

Specifically, for each individual in the ontology the MSC
is computed and enlisted in the set of training (or test)
examples. Each example is classified applying the adapted k-
NN method presented in the previous section. As a value of k
we chose

√
|Ind(A)|, as advised in the instance-based learning

literature.
The experiment has been repeated twice adopting a leave-

one-out cross validation procedure with both the dissimilarity
measures defined in Section III.

For each concept in the ontology, we measured the follow-
ing parameters for the evaluation:

• match rate: number of cases of individuals that got
exactly the same classification by both classifiers with
respect to the overall number of individuals;

• omission error rate: amount of unlabeled individuals (our
method could not determine whether it was an instance

6We employed PELLET: http://pellet.owldl.com

TABLE I
AVERAGE RESULTS OF THE EXPERIMENTS WITH THE METHOD

EMPLOYING THE MEASURE BASED ON OVERLAP.

Match Commission Omission Induction
Rate Rate Rate Rate

FAMILY .654±.174 .000±.000 .231±.173 .115±.107
FSM .974±.044 .026±.044 .000±.000 .000±.000

S.-W.-M. .820±.241 .000±.000 .064±.111 .116±.246
FINANCIAL .807±.091 .024±.076 .000±.001 .169±.076

or not) while it was to be classified as an instance of that
concept;

• commission error rate: amount of individuals (analog-
ically) labeled as instances of a concept, while they
(logically) belong to that concept or vice-versa

• induction rate: amount of individuals that were found to
belong to a concept or its negation, while this information
is not logically derivable from the knowledge base

We report the average rates obtained over all the concepts in
each ontology and also their standard deviation.

B. Experiments Employing the Overlap Measure

By looking at Tab. I reporting the experimental outcomes
with the dissimilarity measure based on the overlap (see Def.
2), preliminarily it is important to note that, for every ontology,
the commission error was quite low. This means that the
classifier did not make critical mistakes i.e. cases when an
individual is deemed as an instance of a concept while it really
is an instance of another disjoint concept.

In particular, by looking at the outcomes related to the
FAMILY ontology, it can be observed that the match rate
is the lowest while the highest rate of omission errors was
reported. This may be due to two facts: 1) very few individuals
were available w.r.t. the number of concepts7; 2) sparse data
situation: instances are irregularly spread over the concepts,
that is they might be instances of different concepts, which
are sometimes disjoint. Hence the MSC approximations that
were computed also resulted very different one from another,
which reduces the possibility of significantly matching similar
MSCs. This is a known drawback of the Nearest-Neighbor
methods. Nevertheless, as mentioned above, it is important to
note that the algorithm did not make any commission error
and it is able to infer new knowledge (11%).

As regards the FSM ontology, we have observed the maxi-
mum match rate with respect to the classification given by the
logic reasoner. Moreover, differently from the other ontologies,
both the omission error rate and induction rate were null. A
very limited percentage of incorrect classification cases was
observed. These outcomes were probably due to the fact that
individuals in this ontology are quite regularly divided by the
assertions on concepts and roles, so computing their MSCs,
these are all very similar to each other and so the amount

7Instance-based methods make an intensive use of the information about
the individuals and improve their performance with the increase of the number
of instances considered.



TABLE II
AVERAGE RESULTS OF THE EXPERIMENTS WITH THE METHOD

EMPLOYING THE MEASURE BASED ON INFORMATION CONTENT.

Match Commission Omission Induction
Rate Rate Rate Rate

FAMILY .608±.230 .000±.000 .330±.216 .062±.217
FSM .899±.178 .096±.179 .000±.000 .005±.024

S.-W.-M. .820±.241 .000±.000 .064±.111 .116±.246
FINANCIAL .807±.091 .024±.076 .000±.001 .169±.046

of information they convey is very low. A choice of a lower
number k of neighbors could probably help committing those
residual errors.

For the same reasons, also for the SURFACE-WATER-
MODEL ontology quite a high rate of matching classifications
was reported (yet less then with the previous ontology);
moreover, some cases of omission error (6%) were observed.
The induction rate was about 12% which means that for
this ontology our classifier always assigned individuals to
the correct concepts but, in some cases, it could also induce
new assertions. Since this rate represents assertions that were
not logically deducible from the ontology and yet they were
inferred inductively by the analogical classifier, these figures
would be a positive outcome (provided this knowledge were
deemed as correct by an expert). Particularly, in this case the
increase of the induction rate has been due to the presence of
assertions of mutual disjointness for some of the concepts.

Results are no different also for the case of the experiments
with FINANCIAL ontology that largely exceeds the others
in terms of number of concepts and individuals. Namely,
the observed match rate is again above the 80% and the
rest of the cases are comprised in the induction rate (17%),
leaving a limited margin to residual errors. This corroborates
a fact about the NN learners, that is their reaching better
and better performance in the limit, as long as new training
instances become available. Actually, performing a 10-fold
cross validation we obtained almost the same results.

C. Experiments with the Information Content Measure

The average results obtained by adopting the procedure with
the measure based on information content (see Def. 4) are
reported in Table II.

By analyzing this table it is possible to note that no sensible
variation was observed in the classifications performed using
the first dissimilarity measure. Particularly, with both measures
the method correctly classified all the individuals, without
commission errors. The reason is that, in most of the cases,
the individuals of these ontologies are instances of one concept
only and they are involved in a few roles (object properties).
Some of the figures are slightly lower than those observed in
the other experiment: this is confirmed by a higher variability.

Surprisingly, the results on the larger ontologies (S.-W.-M.
and FINANCIAL) perfectly match those obtained with the other
measure which is probably due to the fact that we used a leave-
one-out cross-validation mode which yielded a high value for
the number k of training instances for the neighborhood and

it is well known that the NN procedure becomes more and
more precise as more instances can be considered. The price
to be paid was a longer computation time.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have coupled with a method for inductive
inference on ABoxes with two composite concept similar-
ity measures. The method is based on the classification in
analogy with the majority of neighbor training individuals.
It can be naturally exploited for predicting/suggesting missing
information about individuals thus enabling a sort of inductive
retrieval. For example, it may be employed a query to the
KB may be issued. Specifically we are targeting also the task
of service discovery when for semantically annotated web
service. Even more so the outcomes of our method may be
decisive for enabling a series of other inductive tasks such as
clustering, case-based reasoning, , etc..

The proposed method is able to induce new assertions, in
addition to the knowledge already derivable by means of a
reasoner. Then it seems to be able to enhance the standard
instance-based classification. Particularly, an increase in accu-
racy was observed when the instances increase in number and
are homogeneously spread.

The presented measure can be refined tweaking the weight-
ing factor λ for decreasing the impact of the dissimilarity
between nested sub-concepts in the descriptions on the de-
termination of the overall value.

Lately, we have defined another measure for ALN [24].
Hence a natural extension may concern the definition of
dissimilarity measures in more expressive DLs languages. For
example, a normal form for ALCN can be obtained based on
those for ALN and ALCN . Then, by exploiting the notion of
existential mappings [25], the measure presented in this paper
may be extended to more expressive DLs. We are currently
developing other kind of semantic similarities based on the
idea of the hypothesis-driven distance.

Besides, as mentioned, this method could be extended
with different (yet still computationally tractable) answering
procedures grounded on statistical inference (non-parametric
tests based on ranked distances), in order to accept answers
as correct with a high degree of confidence. Furthermore,
the k-NN method in its classical form is particularly suitable
for the automated induction of missing values for (scalar or
numeric) datatype properties of an individual as an estimate
derived from the values of the datatypes for the surrounding
individuals.

Kernels are another means to express a notion of similarity
is some unknown feature space. We are working at the
definition of kernel functions on DLs representations [26], thus
allowing the exploitation of kernel methods efficiency (e.g. the
support vector machines) in a multi-relational setting.
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