
Maintaining the ACL2 Theorem Proving SystemMatt Kaufmann and J Strother MooreUniversity of Texasfkaufmann,mooreg�s.utexas.eduAbstratThis talk will provide a view into the task of improving the ACL2 theorem proverto meet users' needs.1 IntrodutionThe goal of this talk is to provide a sense of some possible hallenges to making a the-orem proving system useful in pratie. Spei�ally, we will draw from our experienesmaintaining the ACL2 theorem proving system [KMM00b, KM04a℄. Although ACL2inorporates years of ongoing researh in automated reasoning, the fous of this talk ison the engineering required to make the system useful.Imagine you're at lunh, where two guys are blabbing to you about their work.Fortunately, this blabbing might be of some interest, sine they are talking about howthey make their theorem proving system easier to use. They de�nitely want you toask questions and share your own related experienes, though you may �nd it hard tointerrupt them after they get started.But even before we eat, they insist on providing some general bakground on theirsystem so that when they get going, at least they might make some sense. By the timedessert arrives, these two guys will be eager for questions and omments, if for no otherreason than that they an eat!Thus, this talk onsists of three parts.First, Before We Eat : While we're walking to lunh you'll get some general bak-ground on ACL2. Then while we're waiting for a table, we'll see a small example thatgives a sense of how ACL2 is used. After we're seated, we'll take a quik look at a listof features that we'll ome aross while we eat.Next, for the Main Course, we will fous on some seleted items taken from reentACL2 release notes (minimally edited in a few ases). These seleted items should givea sense of what an be involved in maintaining an empirially suessful automatedreasoning system.Finally, we will have a give-and-take during Dessert. With any luk, the ensuingquestions and omments will be stimulating and informative for all of us.We will use footnotes for material that we will make a point of skipping during thetalk, due to time onstraints.11A related talk in 1991 [Kau91℄ gives a large list of aspets of mehanized reasoning systems and
Empirically Successful Computerized Reasoning 1

2 Before We Eat | Some general bakground on ACL2\ACL2" stands for \A Computational Logi for Appliative Common Lisp." The ACL2system is the latest in the Boyer-Moore family of provers, and is joint work of Matt Kauf-mann and J Moore, with substantial early ontributions from Bob Boyer and ongoingontributions from many. The paper [KM04b℄ provides a reasonably self-ontained in-trodution to ACL2, inluding relevant bakground and how to use the system. Quotingfrom that paper:\ACL2" is the name of a funtional programming language (based on Com-mon Lisp), a �rst-order mathematial logi, and a mehanial theorem prover.ACL2, whih is sometimes alled an \industrial strength version of the Boyer-Moore system," is the produt of Kaufmann and Moore, with many earlydesign ontributions by Boyer. It has been used for a variety of importantformal methods projets of industrial and ommerial interest, inluding....A long but inomplete list of appliations is then given, inluding various algorithms,software, and hardware designs.ACL2 is freely available, distributed under the GPL [gpl℄. It an be obtained fromthe ACL2 home page [KM04a℄, whih also has links to many papers that desribe ACL2appliations, as well other useful links (mailing lists, tours, demos, doumentation,workshops, and installation instrutions).Here is some relevant data.� Some milestones:{ 1973: The Boyer/Moore \Edinburgh Pure Lisp Theorem Prover"{ 1979: Boyer and Moore, A Computational Logi [BM79℄{ 1986: Kaufmann joins Boyer/Moore projet{ 1988: Boyer and Moore, A Computational Logi Handbook (1997, 2nd ed.[BM97℄){ 1989: Boyer and Moore begin ACL2{ 1992: Final release of Boyer-Moore \Nqthm" prover{ 1993: Kaufmann formally added as a o-author of ACL2{ 2000: Kaufmann, Manolios, and Moore write a book on ACL2,Computer-Aided Reasoning: An Approah [KMM00b℄,and edit proeedings of the �rst ACL2 workshop,Computer-Aided Reasoning: ACL2 Case Studies [KMM00a℄omments on them. The fous here is narrower: What sorts of things must be done to make suh asystem useful? Our fous is atually still narrower, as for example the following are ritial but notaddressed diretly here: fundamental reasoning algorithms, exeution eÆieny, logial foundations,system arhiteture, and trust. Rather, we present here seletions from release notes that give a avorof the maintenane required on a partiular mature system, ACL2, in order to make it a system that(some) people want to use. That is, the point here is not to give an overview of what ACL2 provides,but to fous on maintenane.
2 Empirically Successful Computerized Reasoning

{ 2006: Boyer, Kaufmann, and Moore win ACM Software System Award forBoyer-Moore family of provers� Version 3.0 soure �les size: 8.3M of Common Lisp (inluding soure ode, dou-mentation strings, and omments)� There are 229 release note items stritly after Version 2.8 (Marh, 2004) as follows(but we'll look at just a few of these):{ 63 in Version 2.9, Otober, 2004{ 19 in Version 2.9.1, Deember, 2004{ 30 in Version 2.9.2, April, 2005{ 31 in Version 2.9.3, August, 2005{ 53 in Version 2.9.4, February, 2006{ 33 in Version 3.0, June, 2006An interesting aspet of ACL2 is that it is written in its own formal language (withthe exeption of a small amount of Common Lisp ode mainly of a bootstrapping na-ture). This has fored us to make ACL2's formal programming language, whih is aarefully-rafted extension of an appliative subset of Common Lisp, a language thatis both eÆient and onvenient to use. As a result, ACL2 users often employ ACL2'sprogramming environment to write tools.2.1 The user's view of ACL2: A small exampleThe following example will provide a sense of ACL2. The �rst thing to notie is thatthe syntax is Lisp's pre�x syntax, so for example we write (+ 3 4) and (len x) ratherthan more traditional notation suh as 3+4 and len(x), respetively. The syntax isase-insensitive.Suppose that we want to prove that the length does not hange when we reverse alist. Lists and some list-proessing funtions, inluding reverse and len for reverse andlength of a list, are built into ACL2. So let us submit a theorem named len-reverse,stating that for any list x, the length of the reverse of x is equal to the length of x:2ACL2 !>(defthm len-reverse(implies (true-listp x)(equal (len (reverse x)) (len x))))ACL2 Warning [Non-re℄ in (DEFTHM LEN-REVERSE ...): A :REWRITE rulegenerated from LEN-REVERSE will be triggered only by terms ontainingthe non-reursive funtion symbol REVERSE. Unless this funtion isdisabled, this rule is unlikely ever to be used.2The warning below is not too important here. Think of it as a reminder that after the proof isomplete, we should disable the de�nition of reverse so that the equality an be used as a left-to-rightrewrite rule by ACL2's inside-out rewriter. If reverse were left enabled, the rewriter would �rst replaea term of the form (len (reverse x)) by expanding the de�nition of reverse, after whih that termwould no longer math (len (reverse x)).
Empirically Successful Computerized Reasoning 3

This simplifies, using the :definition REVERSE, toGoal'(IMPLIES (TRUE-LISTP X)(EQUAL (LEN (REVAPPEND X NIL))(LEN X))).Name the formula above *1.Perhaps we an prove *1 by indution. Three indution shemes aresuggested by this onjeture. Subsumption redues that number to two.These merge into one derived indution sheme.The proof ultimately fails. But sine Goal' above did not simplify, we will take alook at it in a moment. As an aside, notie that \using the :definition REVERSE"the prover has replaed the original all of reverse with a all of revappend, whihmakes sense if we use a \print event" utility:ACL2 !>:pe reverseV -477 (DEFUN REVERSE (X)"Doumentation available via :do"(DECLARE (XARGS :GUARD (OR (TRUE-LISTP X) (STRINGP X))))(COND ((STRINGP X)(COERCE (REVAPPEND (COERCE X 'LIST) NIL)'STRING))(T (REVAPPEND X NIL))))Of ourse, if reverse hadn't been built in, we ould have de�ned it exatly as shownabove, using the defun ommand.Looking again at Goal', we realize that a suitable rewrite rule ould simplify theterm (LEN (REVAPPEND X NIL)). First let us look at the de�nition of revappend, thistime using a \print formula" query.ACL2 !>:pf revappend(EQUAL (REVAPPEND X Y)(IF (CONSP X)(REVAPPEND (CDR X) (CONS (CAR X) Y))Y))ACL2 !>Thus, if we don't know it already, we now see that (revappend x y) pushes su-essive elements of x onto y. The following lemma, aptly named len-revappend, saysthat the length of a revappend all is the sum of the lengths of the arguments. ACL2proves this by indution automatially (in less than 1/100 seond).33The reader may notie that the lemma len-revappend is about (revappend x y) rather than theoriginal term, (revappend x nil). We have generalized by hand to produe a lemma whose proofseems amenable to indution. In this talk we do not onsider researh in performing suh generalizationsautomatially; in ACL2 as it is today, the user is responsible for suh generalization, though oasionallyACL2 makes useful generalizations on the y.
4 Empirically Successful Computerized Reasoning

(defthm len-revappend(equal (len (revappend x y))(+ (len x) (len y))))Theorems are stored by default as (onditional) rewrite rules; so now, any instaneof (len (revappend x y)) enountered during a proof will be replaed by the orre-sponding instane of (+ (len x) (len y)). Thus, our original theorem, len-reverse,is now proved automatially and immediately.To a �rst approximation, it's fair to say that ACL2 users work as illustrated above.That is, they prove olletions of rewrite rules, disovering missing rules by looking atoutput from the prover. Our intention is that users an make good progress with thesystem without having to understand automated reasoning strutures and onepts, asmight be neessary in order to program tatis in tati-based provers or set parametersin resolution-based provers.2.2 Summary of some useful ACL2 featuresAs we wait for our food, we'll take a very brief look at a smattering of ACL2 featuresthat we'll see while devouring the Main Course. Oasionally these features interat inunexpeted ways, leading to maintenane tasks. Many improvements in these and otherfeatures are the diret result of user requests, whih are very important to the evolutionof the system.There is no intention here to be omplete. ACL2 is a large system not to be exploredthoroughly over the ourse of a meal! Our goal is just to give a sense of the kind ofsupport provided for one empirially suessful automated reasoning system.4� Release Notes onsist of brief notes alerting the experiened user to importantdi�erenes between one release and the next. They make frequent itations intothe doumentation (below) and are not intended to be self-ontained or to be readby the new user.� Doumentation onsists of over 1000 topis organized hierarhially. The dou-mentation soure onsists of strings in the ACL2 soure ode that are liberallysprinkled with hyperlink annotations, whih is proessed to reate HTML, EmasInfo, and (generally not used) printed views. The doumentation is extensive;for example, the HTML version of the Version 3.0 doumentation is about 3.3megabytes. Doumentation for a new release is intended to be omplete and a-urate for that release; for example, the HTML has grown about 300 kilobytessine Version 2.9, released less than two years ago. The doumentation sometimestakes about as muh time to write as the ode to implement a feature or hange,but our impression from users is that it's worth the e�ort.� Error messages and warnings provide ritial feedbak, often pointing to dou-mentation topis. We put a lot of are into these!4In order to save time, during the talk we'll run through these very quikly, just to give a sense ofwhat is oming.
Empirically Successful Computerized Reasoning 5

� Maros make it easy to extend the syntax, but they have limitations (addressedby a new feature, make-event).� A book is a olletion of legal embedded event forms (events), in partiular def-initions (defun events) and theorems (defthm events), that have been admitted :syntax has been heked, theorems have been proved, and termination has beenproved for reursive de�nitions.{ Certi�ation of a book reates a erti�ate witnessing the suessful proess-ing of the book.{ The ommand (inlude-book "foo") will load events from foo.lisp intothe urrent session.{ However, loal events, e.g., (loal (defun foo ...)), are not exportedby inlude-book. A logial story [KM01℄ involving onservativity justi�esthe dropping of loal events.{ About 850 books in about 70 diretories, mostly ontributed by users ratherthan the developers, are distributed with ACL2, with over 700 more in over200 diretories available from supporting materials for the �rst �ve ACL2workshops (not inluding the one this year, 2006). Thus there are over 1500books in our regression suite. We rely heavily on that test suite to testpurported improvements to the prover's heuristis.� Like books, enapsulate provides a modular struturing mehanism. Enapsulateevents an be used to provide partial de�nitions for funtions: that is, funtionsare total but may have inomplete axiomatizations.� The defevaluatormaro generates events that de�ne an evaluator, against whihone an provemeta-rules [BM81, HKK+05℄ that, in essene, augment the simpli�erwith formally veri�ed user-de�ned funtions.� Proof ontrol inludes in-theory events and hints, whih disable (turn o�) orenable (turn on) spei�ed rules. Supported are not only in-theory hints but oth-ers, for example direting indution, funtion expansion, or the use of previously-proved theorems. These an be attahed to spei� named goals or an be gener-ated by ode (\omputed hints"), whih an be spei�ed globally (\default hints").� Database ontrol inludes undo and undo-the-undo (oops) ommands.� An interative proof-heker loop is a goal manager that has the feel of tati-based prover interfaes, allowing a range of ommands, from individual rewritesto alls of the full prover.� Proof debug is supported by the above-mentioned proof-heker and also by autility for inspeting apparent rewriter loops, a break-rewrite debugger for therewriter, and proof-tree displays for navigating proof output.� A top-level read-eval-print loop allows for interative testing of one's funtions.Suh testing is typially relatively slow unless one issues a ompilation ommand.
6 Empirically Successful Computerized Reasoning

� EÆient exeution is supported for ground terms not only in the top-level loop,but also during proofs. EÆient exeution also relies on single-threaded objets[BM02℄, or stobjs, inluding the ACL2 state objets.� Guards provide a powerful, exible analogue of types, and help support eÆientexeution by way of a onnetion to the underlying Common Lisp. The mbe (\mustbe equal") feature allows one to attah eÆient ode to logially elegant funtions[GKM+℄.� Lisp pakages provide namespaes.� While the main proof tehnique is onditional rewriting, there are ertainly others(for example, integrated deision proedures for ground equality and linear arith-meti). And, rewriting is atually ongruene-based, i.e., an be used to replae aterm with one that is suitably equivalent even if not atually equal.� A funtional instantiation utility [BGKM91, KM01℄ allows deriving a theorem'(g) from a orresponding theorem '(f) provided the funtion g satis�es all on-straints on the funtion f .3 Main Course | A seletion of reent enhanements toACL2We now present a seletion of items from reent ACL2 release notes, annotated withexplanations and disussion about impliations for system maintenane. We introdueeah item very briey, then display the Emas Info version of the relevant release note,and �nally explain the issues if neessary.3.1 Subgoal ountingThis item illustrates the e�ort we put into prover output. Here, \:funtional-instane"refers to ACL2's funtional instantiation utility, mentioned above; but the main pointhere is about output format, not funtional instantiation...Fixed a bug that was ausing proof output on behalf of:funtional-instane to be onfusing, beause it failed to mention thatthe number of onstraints may be different from the number of subgoalsgenerated. Thanks to Robert Krug for pointing out this onfusingoutput. The fix also auses the reporting of rules used when silentlysimplifying the onstraints to reate the subgoals...Here is output from a proof attempt using ACL2 Version 2.9.3 that illustrates theproblem. Notie that \six onstraints" doesn't math up with the subgoal numbering,whih ounts down from 5 to 1. (We ount down to give the user a real-time sense ofhow muh work remains as the output srolls by.) The old output was onfusing, andthus potentially undermined the user's on�dene in his understanding of what ACL2is doing and in his belief in ACL2's orretness.
Empirically Successful Computerized Reasoning 7

We now augment the goal above by adding the hypothesis indiated bythe :USE hint. This produes a propositional tautology. The hypothesisan be derived from AC-FN-LIST-REV via funtional instantiation, providedwe an establish the six onstraints generated.Subgoal 5(EQUAL (TIMES-LIST X)(IF (ATOM X)1 (* (CAR X) (TIMES-LIST (CDR X))))).But simplifiation redues this to T, using the :definitions ATOM andTIMES-LIST and primitive type reasoning.Subgoal 4....Here is the orresponding output (suitably elided) from ACL2 3.0.We now augment providedwe an establish the six onstraints generated. By the simple :rewriterules ASSOCIATIVITY-OF-* and UNICITY-OF-1 we redue the six onstraintsto five subgoals.[. . . and so on, as before℄3.2 A rough edge in theory ontrolACL2 uses evaluation as part of its proof strategy, but it allows the user to disableevaluation of alls of a funtion f by disabling the so-alled exeutable-ounterpart rulefor f. For a partiular type of onditional rule, a forward-haining rule, evaluationof ground hypotheses had taken plae without regard to whih exeutable-ounterpartrules are disabled, thus severely impating eÆieny in at least one user's experiene...Fixed a long-standing bug in forward-haining, where variable-freehypotheses were being evaluated even if the exeutable-ounterparts oftheir funtion symbols had been disabled. Thanks to Eri Smith forbringing this bug to our attention by sending a simple example thatexhibited the problem...3.3 Prover heuristi tweaksSometimes we �nd improvements to ACL2's prover heuristis. All three items belowdesribe hanges that were arefully made in response to user feedbak, and tested withour regression suite to gain on�dene that our heuristi hanges would not severelyimpat users. These hanges are only neessary beause ACL2 attempts to providesigni�ant automation...We fixed an infinite loop that ould our during destrutor elimination
8 Empirically Successful Computerized Reasoning

(see *Note ELIM::). Thanks to Sol Swords for bringing this to ourattention and sending a nie example, and to Doug Harper for sending aseond example that we also found useful...The simplifier has been hanged slightly in order to avoid usingforward-haining fats derived from a literal (essentially, a top-levelhypothesis or onlusion) that has been rewritten. As a pratialmatter, this may mean that the user should not expet forward-hainingto take plae on a term that an be rewritten for any reason (generallyfuntion expansion or appliation of rewrite rules). Formerly, therestrition was less severe: forward-haining fats from a hypothesisould be used as long as the hypothesis was not rewritten to t. Thanksto Art Flatau for providing an example that led us to make this hange;see the omments in soure funtion rewrite-lause for details...We modified the rewriter to avoid ertain infinite loops aused by aninteration of the opening of reursive funtions with equalityreasoning. (This hange is doumented in detail in the soure ode, inpartiular funtions rewrite-fnall and fnstak-term-member.) Thanks toFares Fraij for sending us an example that led us to make this hange...There are over 36,000 lines of omments in the soure ode, some of whih survivedmultiple translations from the earliest version of the Boyer-Moore system. The om-ments are largely intended to be a reord, for the implementors, of why things are theway they are. This is important in a software projet of 35 years duration. Sometimesthe omments show how we used to do something and why and when we hanged it. Theomments also sometimes ontain interesting examples and ounterexamples illustratingsupposed properties of the ode. Despite the original intention of the implementors touse omments as a way of reording the design deisions and history, many ACL2 usersread the soure ode. Sine ACL2 is written in ACL2, this is straightforward and sortof represents a seond, more detailed, level of doumentation.3.4 A library improvement using MBEThe following release note item illustrates one maintenane aspet: we update the dis-tributed books (libraries of de�nitions and proved theorems), often in onsultation withusers...Several interesting new definitions and lemmas have been added to thertl library developed at AMD, and inorporated into books/rtl/rel4/lib/.Other book hanges inlude a hange to lemma trunate-rem-elim inbooks/ihs/quotient-remainder-lemmas.lisp, as suggested by Jared Davis...But buried in this item is a hange that we �nd partiularly interesting.We mentioned guards earlier as a exible analogue of types, and we mentioned mbeas a way to attah exeutable ounterparts eÆiently.
Empirically Successful Computerized Reasoning 9

At AMD, we found a need for more eÆient exeution of bit-vetor operations.Through Version 2.9.1, the rtl library, books/rtl/rel4/lib/, ontained the followingde�nition of the bit-slie operation that returns bits i down to j of a natural number x.(Here, defund is a de�ne-then-disable ommand, implemented in response to a user'srequest.)(defund bits (x i j)(delare (xargs :guard (rationalp x)))(if (or (not (integerp i))(not (integerp j)))0(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j)))))However, we found this de�nition in terms of oor, modulo, and exponentiationoperations painfully slow to exeute. We really wanted a de�nition that uses bitwise-and and shift operations instead:(defund bits (x i j)(if (< i j)0(logand (ash x (- j)) (1- (ash 1 (1+ (- i j)))))))Fortunately, we were able to hange the de�nition of bits for purposes of exeutionwithout hanging its logial de�nition, whih saved us from having to rework our proofsof any lemmas! The mbe (\must be equal") all below says to use the form after :logias the body, with a proof obligation that the :guard (that x, i, and j are naturalnumbers) implies the equality of the :logi and :exe forms. The :guard must alsoimply ertain formulas generated for the alls in the :exe form; for example the all(ash x (- j)) arries a guard-related obligation that x and (- j) be integers, whihis trivial from the guard assumptions that x and j are natural numbers. Then alls ofbits on natural numbers will be exeuted diretly in Common Lisp using the :exeform as the de�nition.(defund bits (x i j)(delare (xargs :guard (and (natp x)(natp i)(natp j))))(mbe :logi (if (or (not (integerp i))(not (integerp j)))0(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j)))):exe (if (< i j)0(logand (ash x (- j)) (1- (ash 1 (1+ (- i j))))))))3.5 Some onveniene featuresThe following three items all make life easier for the user, as we explain below eah one.
10 Empirically Successful Computerized Reasoning

..Improved w-gstak to allow a :frames argument to speify a range of oneor more frames to be printed. See *Note CW-GSTACK::...ACL2 makes very few restritions on how users introdue rewrite rules to programthe rewriter. This freedom, however, makes it possible to introdue in�nite loops. Whenthat ours, ACL2 aborts leanly (a major advane starting with Version 2.8 | previ-ously it sometimes seg faulted!) and suggests use of the tool w-gstak, whih showsthe rewrite stak. Unfortunately, the entire rewrite stak is large, so there was interestin being able to limit the number of frames printed...A new event, set-enfore-redundany, enfores a restrition that alldefthms, defuns, and most other events are redundant. See *NoteSET-ENFORCE-REDUNDANCY::...AMD's rtl library (mentioned above) employed a methodology in whih the proofwork was restrited to books in an auxiliary diretory. It seemed desirable to enforethis methodology, so that the main diretory was kept lean and the auxiliary diretoryould be modi�ed as desired. Here is how that works.Suppose we have a �le top.lisp that we want to ertify as a book.(loal (inlude-book "work/book-1"))(defthm result-1 ...)...Here, imagine that result-1 is proved in �le work/book-1.lisp. The loal anno-tation guarantees that additional theorems proved in work/book-1.lisp will ultimatelydisappear, exept for result-1, whih (as seen above) we have made expliit. When weare ertifying the present book, we expet that result-1 will be redundant beause italready appears in work/book-1.lisp. But suppose we aidentally delete result-1 inwork/book-1.lisp. ACL2 would then try to prove result-1, but we may prefer thatACL2 instead fail immediately with a lear omplaint that it didn't �nd that result-1has already been proved.The item above provides a solution. We simply start top.lisp with the form(set-enfore-redundany t).One thing we've found is that nothing is ever simple! So for example, ertainkinds of events alled deflabel events are not allowed to be redundant. So even withset-enfore-redundany, we need to allow non-redundant deflabel events...The funtion disabledp an now be given a maro name that has aorresponding funtion; see *Note MACRO-ALIASES-TABLE::. Also,disabledp now has a guard of t but auses a hard error on aninappropriate argument...
Empirically Successful Computerized Reasoning 11

For example, in ACL2 append is a maro, beause funtions must take a �xednumber of arguments but we want to be able to apply append to an arbitrary number ofarguments. We an see how this works by using ACL2's :trans1 ommand to performa single-step maroexpansion.ACL2 !>:trans1 (append x y z)(BINARY-APPEND X (BINARY-APPEND Y Z))ACL2 !>ACL2, however, is kind enough to print terms using append rather than using theorresponding funtion, binary-append. Thus, novie users might not even realize thatappend is not a funtion.ACL2 has a notion of table events that allows maintenane of information of interest,and one suh table assoiates append with binary-append. The user then may referto append in ontexts where a funtion symbol is expeted, for example when disablinga de�nition, for example:(in-theory (disable append))..The maro omp is now an event, so it may be plaed in books...The above item simply allows a ompilation diretive to be plaed in books. It's asimple thing to provide and we wish we had done it sooner in order to save users someannoyane!3.6 Common Lisp ompatibility: PakagesNamespae ontrol is provided by Common Lisp pakages. Eah symbol is in essene apair of strings: a pakage name and a symbol name. But getting this exatly right isquite triky. A rather elaborate �x was made in Version 2.8, not shown here, to dealwith an unsoundness that ould result from a subtle use, arefully employing loal, oftwo di�erent pakages with the same name. (See ACL2's doumentation topi \hidden-death-pakage" if you want to learn more about this issue. And it points to a veryelaborate omment in the soure ode that gives even more of an idea of how nasty thisissue really is.)Below are three pakage issues solved more reently than that one, and not nearlyas omplex. They show how we sometimes need to work hard to ensure ompatibilitywith the host Common Lisp...We fixed a soundness hole due to the fat that the "LISP" pakage doesnot exist in OpenMCL. We now expliitly disallow this pakage name asan argument to defpkg. Thanks to Bob Boyer and Warren Hunt for bringingan issue to our attention that led to this fix...ACL2 now requires all pakage names to onsist of standard haraters(see *Note STANDARD-CHAR-P::, none of whih is lower ase. The reason
12 Empirically Successful Computerized Reasoning

is that we have seen at least one lisp implementation that does nothandle lower ase pakage names orretly. Consider for example thefollowing raw lisp log (some newlines omitted).>(make-pakage "foo")#<"foo" pakage>>(pakage-name (symbol-pakage 'FOO::A))"foo">(pakage-name (symbol-pakage '|FOO|::A))"foo">..(GCL only) A bug in symbol-pakage-name has been fixed that ould beexploited to prove nil, and hene is a soundness bug. Thanks to DaveGreve for sending us an example of a problem with defong (see below)that led us to this disovery...3.7 Portability, and help from othersACL2 an be built on most (all?) stable Common Lisp implementations, inludingGCL, OpenMCL, Allegro CL, SBCL, CMUCL, CLISP, and Lispworks. The most reentaddition is SBCL. There are at least two reasons for porting to all of these Lisps, inspite of a ertain amount of low-level Lisp-spei� ode we need to write and maintain.One is that we sometimes �nd bugs in our ode that are in some sense \forgiven" bymost, but not all, Lisps. The other is that we want users to be able to build on whateverLisp platform they happen to have. Perhaps a third reason is to support eah Lisp'sdevelopment by providing a non-trivial test suite...Added SBCL support. Thanks to Juho Snellman for signifiant assistanewith the port. Thanks to Bob Boyer for suggesting the use of feature:al2-mv-as-values with SBCL, whih an allow thread-level parallelismin the underlying lisp; we have done so when feature :sb-thread ispresent...3.8 User-level debug supportACL2 has a break-rewrite utility that allows the user to put a breakpoint upon the ap-pliation of a spei�ed rewrite rule, optionally under spei�ed onditions. The situationbeomes ompliated when there are so-alled free variables in hypotheses. For example,onsider the onditional rewrite rule saying that if prediate p2 holds of x and y, andprediate p3 holds of y, then prediate p1 holds of x:(implies (and (p2 x y)(p3 y))(equal (p1 x) t))
Empirically Successful Computerized Reasoning 13

Now suppose the rewriter enounters the term (p1 (foo a)). So, x is bound to (foo a)when we apply the above rule. But how an we rewrite the �rst hypothesis (to true) ifwe do not have a binding for the free variable y?In this ase, ACL2 simply looks in its urrent ontext for some term � for whih(p1 (foo a) �) is known to be true. When it �nds suh an � then it binds y to �and goes on to the next hypothesis. So it will now be \thinking about" (p3 �). If therewriter annot prove this is true, it will baktrak and look for another value of y inplae of � for the �rst hypothesis.The above information an be ritial to a user who is trying to understand whya rule is failing to be applied, espeially when there is a omplex set of available rulesoperating on the hypotheses. The following item desribes an improvement that providesonvenient display of suh information...Improved reporting by the break-rewrite utility upon failure to relievehypotheses in the presene of free variables, so that information isshown about the attempting bindings. See *NoteFREE-VARIABLES-EXAMPLES-REWRITE::. Thanks to Eri Smith for requestingthis improvement. Also improved the break-rewrite loop so that terms,in partiular from unifying substitutions, are printed without hidingsubterms by default. The user an ontrol suh hiding ("eviseration");see *Note SET-BRR-TERM-EVISC-TUPLE::...The ACL2 doumentation topi \free-variables-examples-rewrite" desribeshow all this works. We'll just show a piee of that doumentation here in order to givea visual ue of what we provide.(1 Breaking (:REWRITE LEMMA-1) on (PROP U0):1 ACL2 >:eval1x (:REWRITE LEMMA-1) failed beause :HYP 1 ontains free variables.The following display summarizes the attempts to relieve hypothesesby binding free variables; see :DOC free-variables and see :DOC set-brr-term-evis-tuple.[1℄ X : X1Failed beause :HYP 3 ontains free variables Y and Z, for whih nosuitable bindings were found.[1℄ X : X2Failed beause :HYP 2 rewrote to (BAD X2).[1℄ X : X3[3℄ Z : Z1Y : Y1Failed beause :HYP 6 rewrote to (FOO X3 Y1).[3℄ Z : Z1Y : Y3Failed beause :HYP 6 rewrote to (POO X3 Y3).1 ACL2 >
14 Empirically Successful Computerized Reasoning

3.9 Some other release note items of interest� Several bugs have been �xed that are related to loal. It seems somewhat diÆultto antiipate all interations of other aspets of the system and logi with loal.� Two very di�erent kinds of hints for defthm events are generally inompatible::hints to diret the automati prover, and :instrutions to diret the replayof ommands saved during a session with the proof-heker, an interative goal-direted proof management tool. We quite sensibly aused an error if both :hintsand :instrutions were present for the same defthm event. But we addeda notion of default hints without notiing that we needed to allow them with:instrutions, in whih ase the default hints should apply to any individualinstrution that alls the full prover. (This has been �xed.)� Users an undo events and they an even undo the undo. But some heavy usersare hitting memory limitations, so we now provide the option of trading the \undothe undo" apability with the relamation of spae.� A feature new to Version 3.0, of exitement to some experiened ACL2 users, isa apability, make-event, that is similar to maros but whih is sensitive to theenvironment (e.g., the ACL2 state objet). The main idea is that expansionsthat might otherwise depend on the environment, whih is illegal for maros,5 aresaved in the book's erti�ate. But there were lots of ompliations to solve (forexample, what if the make-event is submitted interatively before erti�ation isbegun).� Users an speify a limit on bakhaining through rewrite rules, and they anspeify syntati heks to ontrol the appliation of a rewrite rule [HKK+05℄.But until a user requested it, these features were not available with onditionalmeta-rules.� ACL2 supports rewriting with ongruenes, where the original and rewritten termare equivalent but not neessarily equal. ACL2 also ahes rewrite results, foreÆieny. There are oasions when the ahed result is from an equality rewrite,but we need to rewrite with an equivalene, whih ould produe a stronger result.If we always ignore the ahe in suh ases, eÆieny beomes a problem. Butafter reeiving a user request, we instituted a ompromise where we give speialhandling in some ases when the equivalene relation is Boolean equivalene. Morereently [KM06℄, we have provided the user a means to handle this situation forother equivalene relations, together with warnings that bring this situation to theuser's attention.5It would take us too far a�eld to explain in detail why it is illegal for maros to depend on theurrent state. But it's not hard to imagine that otherwise, a maro might expand to give one de�nitionof a funtion as a book is erti�ed, but a di�erent de�nition of the same funtion when the book is laterinluded. Besides, ACL2 ompiles its books, and the Common Lisp spei�ation disallows dependeneof maros on the state.
Empirically Successful Computerized Reasoning 15

4 DessertI intend to leave time for audiene members to share related observations from theirown experienes, and to ask further questions.AknowledgmentsWe thank Robert Krug and Sandip Ray for useful omments on a draft of this pa-per. This material is based upon work supported by DARPA and the National SieneFoundation under Grant No. CNS-0429591.Referenes[BGKM91℄ R.S. Boyer, D.M. Goldshlag, M. Kaufmann, and J S. Moore. Funtionalinstantiation in �rst-order logi. In V. Lifshitz, editor, Arti�ial Intelli-gene and Mathematial Theory of Computation: Papers in Honor of JohnMCarthy, pages 7{26. Aademi Press, 1991.[BM79℄ R. S. Boyer and J S. Moore. A Computational Logi. Aademi Press, NewYork, 1979.[BM81℄ R. S. Boyer and J S. Moore. Metafuntions: Proving them orret and usingthem eÆiently as new proof proedures. In The Corretness Problem inComputer Siene. Aademi Press, London, 1981.[BM97℄ R. S. Boyer and J S. Moore. A Computational Logi Handbook, SeondEdition. Aademi Press, New York, 1997.[BM02℄ R. S. Boyer and J S. Moore. Single-threaded objets in ACL2. In S. Krish-namurthi and C. R. Ramakrishnan, editors, PADL 2002, LNCS 2257, pages9{27, 2002.[GKM+℄ D. A. Greve, M. Kaufmann, P. Manolios, J S. Moore, S. Ray, J. L. Ruiz-Reina, R. Sumners, D. Vroon, and M. Wilding. EÆient exeution in anautomated reasoning environment. Submitted.[gpl℄ http://www.gnu.org/opyleft/gpl.html.[HKK+05℄ W. A. Hunt, Jr, M. Kaufmann, R. B. Krug, J S. Moore, and E. W. Smith.Meta reasoning in ACL2. In Joe Hurd and TomMelham, editors, 18th Inter-national Conferene on Theorem Proving in Higher Order Logis: TPHOLs2005, volume 3603 of Leture Notes in Computer Siene. Springer, August2005.[Kau91℄ M. Kaufmann. An informal disussion of issues in mehanially-assistedreasoning. In M. Arher, J. J. Joye, K. N. Levitt, and P. H. Windley,editors, Proeedings of the 1991 International Workshop on the HOL The-orem Proving System and its Appliations, pages 318{337, Los Alamitos,CA, 1991. IEEE Computer Soiety Press.
16 Empirically Successful Computerized Reasoning

[KM01℄ M. Kaufmann and J S. Moore. Strutured theory development for a meh-anized logi. Journal of Automated Reasoning, 26(2):161{203, 2001.[KM04a℄ M. Kaufmann and J S. Moore. The ACL2 home page. In http: // www.s. utexas.edu/ users/moore/al2/ . Dept. of Computer Sienes, Uni-versity of Texas at Austin, 2004.[KM04b℄ M. Kaufmann and J S. Moore. How to prove theorems for-mally. In http:// www.s. utexas.edu/ users/moore/publiations/how-to-prove-thms/ . Department of Computer Sienes, University ofTexas at Austin, 2004.[KM06℄ M. Kaufmann and J S. Moore. Double rewriting for equivalential reasoningin ACL2. In Proeedings of ACL2 Workshop 2006, August 2006.[KMM00a℄ M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Rea-soning: ACL2 Case Studies. Kluwer Aademi Press, Boston, MA., 2000.[KMM00b℄ M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:An Approah. Kluwer Aademi Press, Boston, MA., 2000.

Empirically Successful Computerized Reasoning 17

