
Maintaining the ACL2 Theorem Proving SystemMatt Kaufmann and J Strother MooreUniversity of Texasfkaufmann,mooreg�
s.utexas.eduAbstra
tThis talk will provide a view into the task of improving the ACL2 theorem proverto meet users' needs.1 Introdu
tionThe goal of this talk is to provide a sense of some possible
hallenges to making a the-orem proving system useful in pra
ti
e. Spe
i�
ally, we will draw from our experien
esmaintaining the ACL2 theorem proving system [KMM00b, KM04a℄. Although ACL2in
orporates years of ongoing resear
h in automated reasoning, the fo
us of this talk ison the engineering required to make the system useful.Imagine you're at lun
h, where two guys are blabbing to you about their work.Fortunately, this blabbing might be of some interest, sin
e they are talking about howthey make their theorem proving system easier to use. They de�nitely want you toask questions and share your own related experien
es, though you may �nd it hard tointerrupt them after they get started.But even before we eat, they insist on providing some general ba
kground on theirsystem so that when they get going, at least they might make some sense. By the timedessert arrives, these two guys will be eager for questions and
omments, if for no otherreason than that they
an eat!Thus, this talk
onsists of three parts.First, Before We Eat : While we're walking to lun
h you'll get some general ba
k-ground on ACL2. Then while we're waiting for a table, we'll see a small example thatgives a sense of how ACL2 is used. After we're seated, we'll take a qui
k look at a listof features that we'll
ome a
ross while we eat.Next, for the Main Course, we will fo
us on some sele
ted items taken from re
entACL2 release notes (minimally edited in a few
ases). These sele
ted items should givea sense of what
an be involved in maintaining an empiri
ally su

essful automatedreasoning system.Finally, we will have a give-and-take during Dessert. With any lu
k, the ensuingquestions and
omments will be stimulating and informative for all of us.We will use footnotes for material that we will make a point of skipping during thetalk, due to time
onstraints.11A related talk in 1991 [Kau91℄ gives a large list of aspe
ts of me
hanized reasoning systems and
Empirically Successful Computerized Reasoning 1

2 Before We Eat | Some general ba
kground on ACL2\ACL2" stands for \A Computational Logi
 for Appli
ative Common Lisp." The ACL2system is the latest in the Boyer-Moore family of provers, and is joint work of Matt Kauf-mann and J Moore, with substantial early
ontributions from Bob Boyer and ongoing
ontributions from many. The paper [KM04b℄ provides a reasonably self-
ontained in-trodu
tion to ACL2, in
luding relevant ba
kground and how to use the system. Quotingfrom that paper:\ACL2" is the name of a fun
tional programming language (based on Com-mon Lisp), a �rst-order mathemati
al logi
, and a me
hani
al theorem prover.ACL2, whi
h is sometimes
alled an \industrial strength version of the Boyer-Moore system," is the produ
t of Kaufmann and Moore, with many earlydesign
ontributions by Boyer. It has been used for a variety of importantformal methods proje
ts of industrial and
ommer
ial interest, in
luding....A long but in
omplete list of appli
ations is then given, in
luding various algorithms,software, and hardware designs.ACL2 is freely available, distributed under the GPL [gpl℄. It
an be obtained fromthe ACL2 home page [KM04a℄, whi
h also has links to many papers that des
ribe ACL2appli
ations, as well other useful links (mailing lists, tours, demos, do
umentation,workshops, and installation instru
tions).Here is some relevant data.� Some milestones:{ 1973: The Boyer/Moore \Edinburgh Pure Lisp Theorem Prover"{ 1979: Boyer and Moore, A Computational Logi
 [BM79℄{ 1986: Kaufmann joins Boyer/Moore proje
t{ 1988: Boyer and Moore, A Computational Logi
 Handbook (1997, 2nd ed.[BM97℄){ 1989: Boyer and Moore begin ACL2{ 1992: Final release of Boyer-Moore \Nqthm" prover{ 1993: Kaufmann formally added as a
o-author of ACL2{ 2000: Kaufmann, Manolios, and Moore write a book on ACL2,Computer-Aided Reasoning: An Approa
h [KMM00b℄,and edit pro
eedings of the �rst ACL2 workshop,Computer-Aided Reasoning: ACL2 Case Studies [KMM00a℄
omments on them. The fo
us here is narrower: What sorts of things must be done to make su
h asystem useful? Our fo
us is a
tually still narrower, as for example the following are
riti
al but notaddressed dire
tly here: fundamental reasoning algorithms, exe
ution eÆ
ien
y, logi
al foundations,system ar
hite
ture, and trust. Rather, we present here sele
tions from release notes that give a
avorof the maintenan
e required on a parti
ular mature system, ACL2, in order to make it a system that(some) people want to use. That is, the point here is not to give an overview of what ACL2 provides,but to fo
us on maintenan
e.
2 Empirically Successful Computerized Reasoning

{ 2006: Boyer, Kaufmann, and Moore win ACM Software System Award forBoyer-Moore family of provers� Version 3.0 sour
e �les size: 8.3M of Common Lisp (in
luding sour
e
ode, do
u-mentation strings, and
omments)� There are 229 release note items stri
tly after Version 2.8 (Mar
h, 2004) as follows(but we'll look at just a few of these):{ 63 in Version 2.9, O
tober, 2004{ 19 in Version 2.9.1, De
ember, 2004{ 30 in Version 2.9.2, April, 2005{ 31 in Version 2.9.3, August, 2005{ 53 in Version 2.9.4, February, 2006{ 33 in Version 3.0, June, 2006An interesting aspe
t of ACL2 is that it is written in its own formal language (withthe ex
eption of a small amount of Common Lisp
ode mainly of a bootstrapping na-ture). This has for
ed us to make ACL2's formal programming language, whi
h is a
arefully-
rafted extension of an appli
ative subset of Common Lisp, a language thatis both eÆ
ient and
onvenient to use. As a result, ACL2 users often employ ACL2'sprogramming environment to write tools.2.1 The user's view of ACL2: A small exampleThe following example will provide a sense of ACL2. The �rst thing to noti
e is thatthe syntax is Lisp's pre�x syntax, so for example we write (+ 3 4) and (len x) ratherthan more traditional notation su
h as 3+4 and len(x), respe
tively. The syntax is
ase-insensitive.Suppose that we want to prove that the length does not
hange when we reverse alist. Lists and some list-pro
essing fun
tions, in
luding reverse and len for reverse andlength of a list, are built into ACL2. So let us submit a theorem named len-reverse,stating that for any list x, the length of the reverse of x is equal to the length of x:2ACL2 !>(defthm len-reverse(implies (true-listp x)(equal (len (reverse x)) (len x))))ACL2 Warning [Non-re
℄ in (DEFTHM LEN-REVERSE ...): A :REWRITE rulegenerated from LEN-REVERSE will be triggered only by terms
ontainingthe non-re
ursive fun
tion symbol REVERSE. Unless this fun
tion isdisabled, this rule is unlikely ever to be used.2The warning below is not too important here. Think of it as a reminder that after the proof is
omplete, we should disable the de�nition of reverse so that the equality
an be used as a left-to-rightrewrite rule by ACL2's inside-out rewriter. If reverse were left enabled, the rewriter would �rst repla
ea term of the form (len (reverse x)) by expanding the de�nition of reverse, after whi
h that termwould no longer mat
h (len (reverse x)).
Empirically Successful Computerized Reasoning 3

This simplifies, using the :definition REVERSE, toGoal'(IMPLIES (TRUE-LISTP X)(EQUAL (LEN (REVAPPEND X NIL))(LEN X))).Name the formula above *1.Perhaps we
an prove *1 by indu
tion. Three indu
tion s
hemes aresuggested by this
onje
ture. Subsumption redu
es that number to two.These merge into one derived indu
tion s
heme.The proof ultimately fails. But sin
e Goal' above did not simplify, we will take alook at it in a moment. As an aside, noti
e that \using the :definition REVERSE"the prover has repla
ed the original
all of reverse with a
all of revappend, whi
hmakes sense if we use a \print event" utility:ACL2 !>:pe reverseV -477 (DEFUN REVERSE (X)"Do
umentation available via :do
"(DECLARE (XARGS :GUARD (OR (TRUE-LISTP X) (STRINGP X))))(COND ((STRINGP X)(COERCE (REVAPPEND (COERCE X 'LIST) NIL)'STRING))(T (REVAPPEND X NIL))))Of
ourse, if reverse hadn't been built in, we
ould have de�ned it exa
tly as shownabove, using the defun
ommand.Looking again at Goal', we realize that a suitable rewrite rule
ould simplify theterm (LEN (REVAPPEND X NIL)). First let us look at the de�nition of revappend, thistime using a \print formula" query.ACL2 !>:pf revappend(EQUAL (REVAPPEND X Y)(IF (CONSP X)(REVAPPEND (CDR X) (CONS (CAR X) Y))Y))ACL2 !>Thus, if we don't know it already, we now see that (revappend x y) pushes su
-
essive elements of x onto y. The following lemma, aptly named len-revappend, saysthat the length of a revappend
all is the sum of the lengths of the arguments. ACL2proves this by indu
tion automati
ally (in less than 1/100 se
ond).33The reader may noti
e that the lemma len-revappend is about (revappend x y) rather than theoriginal term, (revappend x nil). We have generalized by hand to produ
e a lemma whose proofseems amenable to indu
tion. In this talk we do not
onsider resear
h in performing su
h generalizationsautomati
ally; in ACL2 as it is today, the user is responsible for su
h generalization, though o

asionallyACL2 makes useful generalizations on the
y.
4 Empirically Successful Computerized Reasoning

(defthm len-revappend(equal (len (revappend x y))(+ (len x) (len y))))Theorems are stored by default as (
onditional) rewrite rules; so now, any instan
eof (len (revappend x y)) en
ountered during a proof will be repla
ed by the
orre-sponding instan
e of (+ (len x) (len y)). Thus, our original theorem, len-reverse,is now proved automati
ally and immediately.To a �rst approximation, it's fair to say that ACL2 users work as illustrated above.That is, they prove
olle
tions of rewrite rules, dis
overing missing rules by looking atoutput from the prover. Our intention is that users
an make good progress with thesystem without having to understand automated reasoning stru
tures and
on
epts, asmight be ne
essary in order to program ta
ti
s in ta
ti
-based provers or set parametersin resolution-based provers.2.2 Summary of some useful ACL2 featuresAs we wait for our food, we'll take a very brief look at a smattering of ACL2 featuresthat we'll see while devouring the Main Course. O

asionally these features intera
t inunexpe
ted ways, leading to maintenan
e tasks. Many improvements in these and otherfeatures are the dire
t result of user requests, whi
h are very important to the evolutionof the system.There is no intention here to be
omplete. ACL2 is a large system not to be exploredthoroughly over the
ourse of a meal! Our goal is just to give a sense of the kind ofsupport provided for one empiri
ally su

essful automated reasoning system.4� Release Notes
onsist of brief notes alerting the experien
ed user to importantdi�eren
es between one release and the next. They make frequent
itations intothe do
umentation (below) and are not intended to be self-
ontained or to be readby the new user.� Do
umentation
onsists of over 1000 topi
s organized hierar
hi
ally. The do
u-mentation sour
e
onsists of strings in the ACL2 sour
e
ode that are liberallysprinkled with hyperlink annotations, whi
h is pro
essed to
reate HTML, Ema
sInfo, and (generally not used) printed views. The do
umentation is extensive;for example, the HTML version of the Version 3.0 do
umentation is about 3.3megabytes. Do
umentation for a new release is intended to be
omplete and a
-
urate for that release; for example, the HTML has grown about 300 kilobytessin
e Version 2.9, released less than two years ago. The do
umentation sometimestakes about as mu
h time to write as the
ode to implement a feature or
hange,but our impression from users is that it's worth the e�ort.� Error messages and warnings provide
riti
al feedba
k, often pointing to do
u-mentation topi
s. We put a lot of
are into these!4In order to save time, during the talk we'll run through these very qui
kly, just to give a sense ofwhat is
oming.
Empirically Successful Computerized Reasoning 5

� Ma
ros make it easy to extend the syntax, but they have limitations (addressedby a new feature, make-event).� A book is a
olle
tion of legal embedded event forms (events), in parti
ular def-initions (defun events) and theorems (defthm events), that have been admitted :syntax has been
he
ked, theorems have been proved, and termination has beenproved for re
ursive de�nitions.{ Certi�
ation of a book
reates a
erti�
ate witnessing the su

essful pro
ess-ing of the book.{ The
ommand (in
lude-book "foo") will load events from foo.lisp intothe
urrent session.{ However, lo
al events, e.g., (lo
al (defun foo ...)), are not exportedby in
lude-book. A logi
al story [KM01℄ involving
onservativity justi�esthe dropping of lo
al events.{ About 850 books in about 70 dire
tories, mostly
ontributed by users ratherthan the developers, are distributed with ACL2, with over 700 more in over200 dire
tories available from supporting materials for the �rst �ve ACL2workshops (not in
luding the one this year, 2006). Thus there are over 1500books in our regression suite. We rely heavily on that test suite to testpurported improvements to the prover's heuristi
s.� Like books, en
apsulate provides a modular stru
turing me
hanism. En
apsulateevents
an be used to provide partial de�nitions for fun
tions: that is, fun
tionsare total but may have in
omplete axiomatizations.� The defevaluatorma
ro generates events that de�ne an evaluator, against whi
hone
an provemeta-rules [BM81, HKK+05℄ that, in essen
e, augment the simpli�erwith formally veri�ed user-de�ned fun
tions.� Proof
ontrol in
ludes in-theory events and hints, whi
h disable (turn o�) orenable (turn on) spe
i�ed rules. Supported are not only in-theory hints but oth-ers, for example dire
ting indu
tion, fun
tion expansion, or the use of previously-proved theorems. These
an be atta
hed to spe
i�
 named goals or
an be gener-ated by
ode (\
omputed hints"), whi
h
an be spe
i�ed globally (\default hints").� Database
ontrol in
ludes undo and undo-the-undo (oops)
ommands.� An intera
tive proof-
he
ker loop is a goal manager that has the feel of ta
ti
-based prover interfa
es, allowing a range of
ommands, from individual rewritesto
alls of the full prover.� Proof debug is supported by the above-mentioned proof-
he
ker and also by autility for inspe
ting apparent rewriter loops, a break-rewrite debugger for therewriter, and proof-tree displays for navigating proof output.� A top-level read-eval-print loop allows for intera
tive testing of one's fun
tions.Su
h testing is typi
ally relatively slow unless one issues a
ompilation
ommand.
6 Empirically Successful Computerized Reasoning

� EÆ
ient exe
ution is supported for ground terms not only in the top-level loop,but also during proofs. EÆ
ient exe
ution also relies on single-threaded obje
ts[BM02℄, or stobjs, in
luding the ACL2 state obje
ts.� Guards provide a powerful,
exible analogue of types, and help support eÆ
ientexe
ution by way of a
onne
tion to the underlying Common Lisp. The mbe (\mustbe equal") feature allows one to atta
h eÆ
ient
ode to logi
ally elegant fun
tions[GKM+℄.� Lisp pa
kages provide namespa
es.� While the main proof te
hnique is
onditional rewriting, there are
ertainly others(for example, integrated de
ision pro
edures for ground equality and linear arith-meti
). And, rewriting is a
tually
ongruen
e-based, i.e.,
an be used to repla
e aterm with one that is suitably equivalent even if not a
tually equal.� A fun
tional instantiation utility [BGKM91, KM01℄ allows deriving a theorem'(g) from a
orresponding theorem '(f) provided the fun
tion g satis�es all
on-straints on the fun
tion f .3 Main Course | A sele
tion of re
ent enhan
ements toACL2We now present a sele
tion of items from re
ent ACL2 release notes, annotated withexplanations and dis
ussion about impli
ations for system maintenan
e. We introdu
eea
h item very brie
y, then display the Ema
s Info version of the relevant release note,and �nally explain the issues if ne
essary.3.1 Subgoal
ountingThis item illustrates the e�ort we put into prover output. Here, \:fun
tional-instan
e"refers to ACL2's fun
tional instantiation utility, mentioned above; but the main pointhere is about output format, not fun
tional instantiation...Fixed a bug that was
ausing proof output on behalf of:fun
tional-instan
e to be
onfusing, be
ause it failed to mention thatthe number of
onstraints may be different from the number of subgoalsgenerated. Thanks to Robert Krug for pointing out this
onfusingoutput. The fix also
auses the reporting of rules used when silentlysimplifying the
onstraints to
reate the subgoals...Here is output from a proof attempt using ACL2 Version 2.9.3 that illustrates theproblem. Noti
e that \six
onstraints" doesn't mat
h up with the subgoal numbering,whi
h
ounts down from 5 to 1. (We
ount down to give the user a real-time sense ofhow mu
h work remains as the output s
rolls by.) The old output was
onfusing, andthus potentially undermined the user's
on�den
e in his understanding of what ACL2is doing and in his belief in ACL2's
orre
tness.
Empirically Successful Computerized Reasoning 7

We now augment the goal above by adding the hypothesis indi
ated bythe :USE hint. This produ
es a propositional tautology. The hypothesis
an be derived from AC-FN-LIST-REV via fun
tional instantiation, providedwe
an establish the six
onstraints generated.Subgoal 5(EQUAL (TIMES-LIST X)(IF (ATOM X)1 (* (CAR X) (TIMES-LIST (CDR X))))).But simplifi
ation redu
es this to T, using the :definitions ATOM andTIMES-LIST and primitive type reasoning.Subgoal 4....Here is the
orresponding output (suitably elided) from ACL2 3.0.We now augment providedwe
an establish the six
onstraints generated. By the simple :rewriterules ASSOCIATIVITY-OF-* and UNICITY-OF-1 we redu
e the six
onstraintsto five subgoals.[. . . and so on, as before℄3.2 A rough edge in theory
ontrolACL2 uses evaluation as part of its proof strategy, but it allows the user to disableevaluation of
alls of a fun
tion f by disabling the so-
alled exe
utable-
ounterpart rulefor f. For a parti
ular type of
onditional rule, a forward-
haining rule, evaluationof ground hypotheses had taken pla
e without regard to whi
h exe
utable-
ounterpartrules are disabled, thus severely impa
ting eÆ
ien
y in at least one user's experien
e...Fixed a long-standing bug in forward-
haining, where variable-freehypotheses were being evaluated even if the exe
utable-
ounterparts oftheir fun
tion symbols had been disabled. Thanks to Eri
 Smith forbringing this bug to our attention by sending a simple example thatexhibited the problem...3.3 Prover heuristi
 tweaksSometimes we �nd improvements to ACL2's prover heuristi
s. All three items belowdes
ribe
hanges that were
arefully made in response to user feedba
k, and tested withour regression suite to gain
on�den
e that our heuristi

hanges would not severelyimpa
t users. These
hanges are only ne
essary be
ause ACL2 attempts to providesigni�
ant automation...We fixed an infinite loop that
ould o

ur during destru
tor elimination
8 Empirically Successful Computerized Reasoning

(see *Note ELIM::). Thanks to Sol Swords for bringing this to ourattention and sending a ni
e example, and to Doug Harper for sending ase
ond example that we also found useful...The simplifier has been
hanged slightly in order to avoid usingforward-
haining fa
ts derived from a literal (essentially, a top-levelhypothesis or
on
lusion) that has been rewritten. As a pra
ti
almatter, this may mean that the user should not expe
t forward-
hainingto take pla
e on a term that
an be rewritten for any reason (generallyfun
tion expansion or appli
ation of rewrite rules). Formerly, therestri
tion was less severe: forward-
haining fa
ts from a hypothesis
ould be used as long as the hypothesis was not rewritten to t. Thanksto Art Flatau for providing an example that led us to make this
hange;see the
omments in sour
e fun
tion rewrite-
lause for details...We modified the rewriter to avoid
ertain infinite loops
aused by anintera
tion of the opening of re
ursive fun
tions with equalityreasoning. (This
hange is do
umented in detail in the sour
e
ode, inparti
ular fun
tions rewrite-fn
all and fnsta
k-term-member.) Thanks toFares Fraij for sending us an example that led us to make this
hange...There are over 36,000 lines of
omments in the sour
e
ode, some of whi
h survivedmultiple translations from the earliest version of the Boyer-Moore system. The
om-ments are largely intended to be a re
ord, for the implementors, of why things are theway they are. This is important in a software proje
t of 35 years duration. Sometimesthe
omments show how we used to do something and why and when we
hanged it. The
omments also sometimes
ontain interesting examples and
ounterexamples illustratingsupposed properties of the
ode. Despite the original intention of the implementors touse
omments as a way of re
ording the design de
isions and history, many ACL2 usersread the sour
e
ode. Sin
e ACL2 is written in ACL2, this is straightforward and sortof represents a se
ond, more detailed, level of do
umentation.3.4 A library improvement using MBEThe following release note item illustrates one maintenan
e aspe
t: we update the dis-tributed books (libraries of de�nitions and proved theorems), often in
onsultation withusers...Several interesting new definitions and lemmas have been added to thertl library developed at AMD, and in
orporated into books/rtl/rel4/lib/.Other book
hanges in
lude a
hange to lemma trun
ate-rem-elim inbooks/ihs/quotient-remainder-lemmas.lisp, as suggested by Jared Davis...But buried in this item is a
hange that we �nd parti
ularly interesting.We mentioned guards earlier as a
exible analogue of types, and we mentioned mbeas a way to atta
h exe
utable
ounterparts eÆ
iently.
Empirically Successful Computerized Reasoning 9

At AMD, we found a need for more eÆ
ient exe
ution of bit-ve
tor operations.Through Version 2.9.1, the rtl library, books/rtl/rel4/lib/,
ontained the followingde�nition of the bit-sli
e operation that returns bits i down to j of a natural number x.(Here, defund is a de�ne-then-disable
ommand, implemented in response to a user'srequest.)(defund bits (x i j)(de
lare (xargs :guard (rationalp x)))(if (or (not (integerp i))(not (integerp j)))0(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j)))))However, we found this de�nition in terms of
oor, modulo, and exponentiationoperations painfully slow to exe
ute. We really wanted a de�nition that uses bitwise-and and shift operations instead:(defund bits (x i j)(if (< i j)0(logand (ash x (- j)) (1- (ash 1 (1+ (- i j)))))))Fortunately, we were able to
hange the de�nition of bits for purposes of exe
utionwithout
hanging its logi
al de�nition, whi
h saved us from having to rework our proofsof any lemmas! The mbe (\must be equal")
all below says to use the form after :logi
as the body, with a proof obligation that the :guard (that x, i, and j are naturalnumbers) implies the equality of the :logi
 and :exe
 forms. The :guard must alsoimply
ertain formulas generated for the
alls in the :exe
 form; for example the
all(ash x (- j))
arries a guard-related obligation that x and (- j) be integers, whi
his trivial from the guard assumptions that x and j are natural numbers. Then
alls ofbits on natural numbers will be exe
uted dire
tly in Common Lisp using the :exe
form as the de�nition.(defund bits (x i j)(de
lare (xargs :guard (and (natp x)(natp i)(natp j))))(mbe :logi
 (if (or (not (integerp i))(not (integerp j)))0(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j)))):exe
 (if (< i j)0(logand (ash x (- j)) (1- (ash 1 (1+ (- i j))))))))3.5 Some
onvenien
e featuresThe following three items all make life easier for the user, as we explain below ea
h one.
10 Empirically Successful Computerized Reasoning

..Improved
w-gsta
k to allow a :frames argument to spe
ify a range of oneor more frames to be printed. See *Note CW-GSTACK::...ACL2 makes very few restri
tions on how users introdu
e rewrite rules to programthe rewriter. This freedom, however, makes it possible to introdu
e in�nite loops. Whenthat o

urs, ACL2 aborts
leanly (a major advan
e starting with Version 2.8 | previ-ously it sometimes seg faulted!) and suggests use of the tool
w-gsta
k, whi
h showsthe rewrite sta
k. Unfortunately, the entire rewrite sta
k is large, so there was interestin being able to limit the number of frames printed...A new event, set-enfor
e-redundan
y, enfor
es a restri
tion that alldefthms, defuns, and most other events are redundant. See *NoteSET-ENFORCE-REDUNDANCY::...AMD's rtl library (mentioned above) employed a methodology in whi
h the proofwork was restri
ted to books in an auxiliary dire
tory. It seemed desirable to enfor
ethis methodology, so that the main dire
tory was kept
lean and the auxiliary dire
tory
ould be modi�ed as desired. Here is how that works.Suppose we have a �le top.lisp that we want to
ertify as a book.(lo
al (in
lude-book "work/book-1"))(defthm result-1 ...)...Here, imagine that result-1 is proved in �le work/book-1.lisp. The lo
al anno-tation guarantees that additional theorems proved in work/book-1.lisp will ultimatelydisappear, ex
ept for result-1, whi
h (as seen above) we have made expli
it. When weare
ertifying the present book, we expe
t that result-1 will be redundant be
ause italready appears in work/book-1.lisp. But suppose we a

identally delete result-1 inwork/book-1.lisp. ACL2 would then try to prove result-1, but we may prefer thatACL2 instead fail immediately with a
lear
omplaint that it didn't �nd that result-1has already been proved.The item above provides a solution. We simply start top.lisp with the form(set-enfor
e-redundan
y t).One thing we've found is that nothing is ever simple! So for example,
ertainkinds of events
alled deflabel events are not allowed to be redundant. So even withset-enfor
e-redundan
y, we need to allow non-redundant deflabel events...The fun
tion disabledp
an now be given a ma
ro name that has a
orresponding fun
tion; see *Note MACRO-ALIASES-TABLE::. Also,disabledp now has a guard of t but
auses a hard error on aninappropriate argument...
Empirically Successful Computerized Reasoning 11

For example, in ACL2 append is a ma
ro, be
ause fun
tions must take a �xednumber of arguments but we want to be able to apply append to an arbitrary number ofarguments. We
an see how this works by using ACL2's :trans1
ommand to performa single-step ma
roexpansion.ACL2 !>:trans1 (append x y z)(BINARY-APPEND X (BINARY-APPEND Y Z))ACL2 !>ACL2, however, is kind enough to print terms using append rather than using the
orresponding fun
tion, binary-append. Thus, novi
e users might not even realize thatappend is not a fun
tion.ACL2 has a notion of table events that allows maintenan
e of information of interest,and on
e su
h table asso
iates append with binary-append. The user then may referto append in
ontexts where a fun
tion symbol is expe
ted, for example when disablinga de�nition, for example:(in-theory (disable append))..The ma
ro
omp is now an event, so it may be pla
ed in books...The above item simply allows a
ompilation dire
tive to be pla
ed in books. It's asimple thing to provide and we wish we had done it sooner in order to save users someannoyan
e!3.6 Common Lisp
ompatibility: Pa
kagesNamespa
e
ontrol is provided by Common Lisp pa
kages. Ea
h symbol is in essen
e apair of strings: a pa
kage name and a symbol name. But getting this exa
tly right isquite tri
ky. A rather elaborate �x was made in Version 2.8, not shown here, to dealwith an unsoundness that
ould result from a subtle use,
arefully employing lo
al, oftwo di�erent pa
kages with the same name. (See ACL2's do
umentation topi
 \hidden-death-pa
kage" if you want to learn more about this issue. And it points to a veryelaborate
omment in the sour
e
ode that gives even more of an idea of how nasty thisissue really is.)Below are three pa
kage issues solved more re
ently than that one, and not nearlyas
omplex. They show how we sometimes need to work hard to ensure
ompatibilitywith the host Common Lisp...We fixed a soundness hole due to the fa
t that the "LISP" pa
kage doesnot exist in OpenMCL. We now expli
itly disallow this pa
kage name asan argument to defpkg. Thanks to Bob Boyer and Warren Hunt for bringingan issue to our attention that led to this fix...ACL2 now requires all pa
kage names to
onsist of standard
hara
ters(see *Note STANDARD-CHAR-P::, none of whi
h is lower
ase. The reason
12 Empirically Successful Computerized Reasoning

is that we have seen at least one lisp implementation that does nothandle lower
ase pa
kage names
orre
tly. Consider for example thefollowing raw lisp log (some newlines omitted).>(make-pa
kage "foo")#<"foo" pa
kage>>(pa
kage-name (symbol-pa
kage 'FOO::A))"foo">(pa
kage-name (symbol-pa
kage '|FOO|::A))"foo">..(GCL only) A bug in symbol-pa
kage-name has been fixed that
ould beexploited to prove nil, and hen
e is a soundness bug. Thanks to DaveGreve for sending us an example of a problem with def
ong (see below)that led us to this dis
overy...3.7 Portability, and help from othersACL2
an be built on most (all?) stable Common Lisp implementations, in
ludingGCL, OpenMCL, Allegro CL, SBCL, CMUCL, CLISP, and Lispworks. The most re
entaddition is SBCL. There are at least two reasons for porting to all of these Lisps, inspite of a
ertain amount of low-level Lisp-spe
i�

ode we need to write and maintain.One is that we sometimes �nd bugs in our
ode that are in some sense \forgiven" bymost, but not all, Lisps. The other is that we want users to be able to build on whateverLisp platform they happen to have. Perhaps a third reason is to support ea
h Lisp'sdevelopment by providing a non-trivial test suite...Added SBCL support. Thanks to Juho Snellman for signifi
ant assistan
ewith the port. Thanks to Bob Boyer for suggesting the use of feature:a
l2-mv-as-values with SBCL, whi
h
an allow thread-level parallelismin the underlying lisp; we have done so when feature :sb-thread ispresent...3.8 User-level debug supportACL2 has a break-rewrite utility that allows the user to put a breakpoint upon the ap-pli
ation of a spe
i�ed rewrite rule, optionally under spe
i�ed
onditions. The situationbe
omes
ompli
ated when there are so-
alled free variables in hypotheses. For example,
onsider the
onditional rewrite rule saying that if predi
ate p2 holds of x and y, andpredi
ate p3 holds of y, then predi
ate p1 holds of x:(implies (and (p2 x y)(p3 y))(equal (p1 x) t))
Empirically Successful Computerized Reasoning 13

Now suppose the rewriter en
ounters the term (p1 (foo a)). So, x is bound to (foo a)when we apply the above rule. But how
an we rewrite the �rst hypothesis (to true) ifwe do not have a binding for the free variable y?In this
ase, ACL2 simply looks in its
urrent
ontext for some term � for whi
h(p1 (foo a) �) is known to be true. When it �nds su
h an � then it binds y to �and goes on to the next hypothesis. So it will now be \thinking about" (p3 �). If therewriter
annot prove this is true, it will ba
ktra
k and look for another value of y inpla
e of � for the �rst hypothesis.The above information
an be
riti
al to a user who is trying to understand whya rule is failing to be applied, espe
ially when there is a
omplex set of available rulesoperating on the hypotheses. The following item des
ribes an improvement that provides
onvenient display of su
h information...Improved reporting by the break-rewrite utility upon failure to relievehypotheses in the presen
e of free variables, so that information isshown about the attempting bindings. See *NoteFREE-VARIABLES-EXAMPLES-REWRITE::. Thanks to Eri
 Smith for requestingthis improvement. Also improved the break-rewrite loop so that terms,in parti
ular from unifying substitutions, are printed without hidingsubterms by default. The user
an
ontrol su
h hiding ("evis
eration");see *Note SET-BRR-TERM-EVISC-TUPLE::...The ACL2 do
umentation topi
 \free-variables-examples-rewrite" des
ribeshow all this works. We'll just show a pie
e of that do
umentation here in order to givea visual
ue of what we provide.(1 Breaking (:REWRITE LEMMA-1) on (PROP U0):1 ACL2 >:eval1x (:REWRITE LEMMA-1) failed be
ause :HYP 1
ontains free variables.The following display summarizes the attempts to relieve hypothesesby binding free variables; see :DOC free-variables and see :DOC set-brr-term-evis
-tuple.[1℄ X : X1Failed be
ause :HYP 3
ontains free variables Y and Z, for whi
h nosuitable bindings were found.[1℄ X : X2Failed be
ause :HYP 2 rewrote to (BAD X2).[1℄ X : X3[3℄ Z : Z1Y : Y1Failed be
ause :HYP 6 rewrote to (FOO X3 Y1).[3℄ Z : Z1Y : Y3Failed be
ause :HYP 6 rewrote to (POO X3 Y3).1 ACL2 >
14 Empirically Successful Computerized Reasoning

3.9 Some other release note items of interest� Several bugs have been �xed that are related to lo
al. It seems somewhat diÆ
ultto anti
ipate all intera
tions of other aspe
ts of the system and logi
 with lo
al.� Two very di�erent kinds of hints for defthm events are generally in
ompatible::hints to dire
t the automati
 prover, and :instru
tions to dire
t the replayof
ommands saved during a session with the proof-
he
ker, an intera
tive goal-dire
ted proof management tool. We quite sensibly
aused an error if both :hintsand :instru
tions were present for the same defthm event. But we addeda notion of default hints without noti
ing that we needed to allow them with:instru
tions, in whi
h
ase the default hints should apply to any individualinstru
tion that
alls the full prover. (This has been �xed.)� Users
an undo events and they
an even undo the undo. But some heavy usersare hitting memory limitations, so we now provide the option of trading the \undothe undo"
apability with the re
lamation of spa
e.� A feature new to Version 3.0, of ex
itement to some experien
ed ACL2 users, isa
apability, make-event, that is similar to ma
ros but whi
h is sensitive to theenvironment (e.g., the ACL2 state obje
t). The main idea is that expansionsthat might otherwise depend on the environment, whi
h is illegal for ma
ros,5 aresaved in the book's
erti�
ate. But there were lots of
ompli
ations to solve (forexample, what if the make-event is submitted intera
tively before
erti�
ation isbegun).� Users
an spe
ify a limit on ba
k
haining through rewrite rules, and they
anspe
ify synta
ti

he
ks to
ontrol the appli
ation of a rewrite rule [HKK+05℄.But until a user requested it, these features were not available with
onditionalmeta-rules.� ACL2 supports rewriting with
ongruen
es, where the original and rewritten termare equivalent but not ne
essarily equal. ACL2 also
a
hes rewrite results, foreÆ
ien
y. There are o

asions when the
a
hed result is from an equality rewrite,but we need to rewrite with an equivalen
e, whi
h
ould produ
e a stronger result.If we always ignore the
a
he in su
h
ases, eÆ
ien
y be
omes a problem. Butafter re
eiving a user request, we instituted a
ompromise where we give spe
ialhandling in some
ases when the equivalen
e relation is Boolean equivalen
e. Morere
ently [KM06℄, we have provided the user a means to handle this situation forother equivalen
e relations, together with warnings that bring this situation to theuser's attention.5It would take us too far a�eld to explain in detail why it is illegal for ma
ros to depend on the
urrent state. But it's not hard to imagine that otherwise, a ma
ro might expand to give one de�nitionof a fun
tion as a book is
erti�ed, but a di�erent de�nition of the same fun
tion when the book is laterin
luded. Besides, ACL2
ompiles its books, and the Common Lisp spe
i�
ation disallows dependen
eof ma
ros on the state.
Empirically Successful Computerized Reasoning 15

4 DessertI intend to leave time for audien
e members to share related observations from theirown experien
es, and to ask further questions.A
knowledgmentsWe thank Robert Krug and Sandip Ray for useful
omments on a draft of this pa-per. This material is based upon work supported by DARPA and the National S
ien
eFoundation under Grant No. CNS-0429591.Referen
es[BGKM91℄ R.S. Boyer, D.M. Golds
hlag, M. Kaufmann, and J S. Moore. Fun
tionalinstantiation in �rst-order logi
. In V. Lifs
hitz, editor, Arti�
ial Intelli-gen
e and Mathemati
al Theory of Computation: Papers in Honor of JohnM
Carthy, pages 7{26. A
ademi
 Press, 1991.[BM79℄ R. S. Boyer and J S. Moore. A Computational Logi
. A
ademi
 Press, NewYork, 1979.[BM81℄ R. S. Boyer and J S. Moore. Metafun
tions: Proving them
orre
t and usingthem eÆ
iently as new proof pro
edures. In The Corre
tness Problem inComputer S
ien
e. A
ademi
 Press, London, 1981.[BM97℄ R. S. Boyer and J S. Moore. A Computational Logi
 Handbook, Se
ondEdition. A
ademi
 Press, New York, 1997.[BM02℄ R. S. Boyer and J S. Moore. Single-threaded obje
ts in ACL2. In S. Krish-namurthi and C. R. Ramakrishnan, editors, PADL 2002, LNCS 2257, pages9{27, 2002.[GKM+℄ D. A. Greve, M. Kaufmann, P. Manolios, J S. Moore, S. Ray, J. L. Ruiz-Reina, R. Sumners, D. Vroon, and M. Wilding. EÆ
ient exe
ution in anautomated reasoning environment. Submitted.[gpl℄ http://www.gnu.org/
opyleft/gpl.html.[HKK+05℄ W. A. Hunt, Jr, M. Kaufmann, R. B. Krug, J S. Moore, and E. W. Smith.Meta reasoning in ACL2. In Joe Hurd and TomMelham, editors, 18th Inter-national Conferen
e on Theorem Proving in Higher Order Logi
s: TPHOLs2005, volume 3603 of Le
ture Notes in Computer S
ien
e. Springer, August2005.[Kau91℄ M. Kaufmann. An informal dis
ussion of issues in me
hani
ally-assistedreasoning. In M. Ar
her, J. J. Joy
e, K. N. Levitt, and P. H. Windley,editors, Pro
eedings of the 1991 International Workshop on the HOL The-orem Proving System and its Appli
ations, pages 318{337, Los Alamitos,CA, 1991. IEEE Computer So
iety Press.
16 Empirically Successful Computerized Reasoning

[KM01℄ M. Kaufmann and J S. Moore. Stru
tured theory development for a me
h-anized logi
. Journal of Automated Reasoning, 26(2):161{203, 2001.[KM04a℄ M. Kaufmann and J S. Moore. The ACL2 home page. In http: // www.
s. utexas.edu/ users/moore/a
l2/ . Dept. of Computer S
ien
es, Uni-versity of Texas at Austin, 2004.[KM04b℄ M. Kaufmann and J S. Moore. How to prove theorems for-mally. In http:// www.
s. utexas.edu/ users/moore/publi
ations/how-to-prove-thms/ . Department of Computer S
ien
es, University ofTexas at Austin, 2004.[KM06℄ M. Kaufmann and J S. Moore. Double rewriting for equivalential reasoningin ACL2. In Pro
eedings of ACL2 Workshop 2006, August 2006.[KMM00a℄ M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Rea-soning: ACL2 Case Studies. Kluwer A
ademi
 Press, Boston, MA., 2000.[KMM00b℄ M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:An Approa
h. Kluwer A
ademi
 Press, Boston, MA., 2000.

Empirically Successful Computerized Reasoning 17

