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Abstract. Some text compression methods take advantage from using
more complex compression units than characters. The synchronization
between coder and decoder then can be done by transferring the unit
dictionary together with the compressed message. We propose to use a
dictionary compression method based on a proper ordering of nodes of
the tree-organized dictionary. This reordering allows achieving of bet-
ter compression ratio. The proposed dictionary compression method has
been tested to compress dictionaries for word- and syllable-based com-
pression methods. It seems to be effective for compressing dictionaries of
syllables, and promising for larger dictionaries of words.

1 Introduction

Dictionary is used in many applications. Sometimes the space occupied by a
dictionary is important and should be taken into account. Then it is reasonable to
consider storing the dictionary in a compressed form. We propose here a method
for the compression of dictionaries. We have focused on dictionaries used for text
compression – or even more precisely: on a compression of dictionaries used by
word- or syllable-based document compression methods. The comparisons with
other methods are therefore oriented to this topic.

The paper is structured as follows: At first (in part two) we describe the
dictionaries and give some formal definitions. Then, in part three, we remember
some existing methods used to store the dictionaries. Part four is dedicated to the
newly proposed methods. The comparisons of the tested methods are presented
in part five. Last part (sixth) is dedicated to the summary.

2 Dictionary

We suppose that a dictionary is a set of ordered pairs (string, number), where
the string is a string over an alphabet Σ and the number is an integer of the
range 1–n where n is the number of the ordered pairs in the dictionary.

It is sometimes useful to partition the set of all strings (dictionary items)
into several disjoint categories. It is possible that the join of the categories does
not cover the set of all possible strings over Σ. In this case it is necessary to
ensure that the input strings always fit in the given categories.
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For the text compression purposes this requirement can be met e.g. by a
proper input string selection (partition of the input message into properly formed
subparts). Words and syllables are special types of such strings.

3 Existing Methods for the Compression of a Dictionary

It is quite common for the papers on word- and syllable-based compression meth-
ods that their authors give no big importance to the compression of the dictio-
nary as the dictionary often makes only a small part of the resulting compressed
message. It is probably true for very large documents but for middle-sized doc-
uments the importance of a dictionary size grows as the dictionary takes larger
part of the compressed message.

The following two approaches are the most widely used: The first approach
is based on coding of a succession of strings (words or syllables) contained in it.
In the second approach the dictionary is compressed as a whole. All the strings
are concatenated using special separators. The resulting file is then compressed
using some general method.

3.1 Compression of Dictionary character-by-character – CD

There is described a method in [1] for the encoding of strings using a partitioning
of the strings into five categories, similarly to the method TD3 described below.
Every string is encoded as a succession of string type codes followed by encoded
string length and by the codes for individual symbols. String type is encoded
using binary phase coding (c1), string length is encoded by adaptive Huffman
code (c2), and individual symbols are coded also using adaptive Huffman code
(letters by c3, numbers by c4, and other characters by c5). Lower and upper
case letters use the same code value c3, they are distinguished by the syllable
type. All adaptive Huffman trees are initialized according language specification.
Examples are given in Fig. 1.

code("to") = c1(mixed), c2(2), c3(’t’), c3(’o’)

code("153") = c1(numeric), c2(3), c4(’1’), c4(’5’), c4(’3’)

code(". ") = c1(other), c2(2), c5(’.’), c5(’0’)

Fig. 1. An example of a coding a string by the CD method

It is not necessary to know the whole dictionary at the beginning. It is possible
to compress individual items on the fly. It is then possible to encode new items
whenever they are encountered. Other methods discussed in this paper need to
compress the whole dictionary at once.
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3.2 External Compression of a Dictionary

Let us have a separator being not part of the used alphabet. Let all the strings
forming the dictionary are concatenated to a single string using this separator.
The resulting string is then encoded using an arbitrary compression method.
In [2] the authors tried to encode the dictionary of word using gzip, PPM, and
bzip2 methods and recognized as best for this purpose bzip2. We tried to encode
the dictionary using bzip2 [3] (in the tables denoted as BzipD – bzip compressed
dictionary) and LZW [4] (denoted in the tables as LZWD – LZW compressed
dictionary).

4 Trie-Based Compression of a Dictionary

When designing here introduced methods TD1, TD2, and TD3 we decided to
represent the dictionary by a data structure trie [5, Section 6.3: Digital Searching,
pp. 492–512]. Trie T is a tree of maximal degree n, where n is the size of the
alphabet of symbols Σ and satisfies following conditions: The root represents
an empty element. Let the string α be represented by the node A, the string
β represented by the node B. If the node A is father of the node B, then the
string β is created by concatenation of the string α by one symbol from Σ. For
all nodes A and B exists a node C, that represents common prefix of strings α
and β and this node is on both paths (including border points) from the root to
B and from the root to A.

The dictionary trie is created from the strings appearing in the text. Then
the trie is encoded. Duriung this encoding there is a unique number assigned to
each string using depth-first traversal of the trie.

4.1 Basic Version – TD1

Trie compression of a dictionary (TD) is based on coding structure of a trie
representing the dictionary. For each node in the trie we know the following:
whether the node represents a string (represents), the number of sons (count),
the array of sons (son), and the first symbol of an extension for each son (ex-
tension). Basic version of such encoding (TD1) is given by a recursive procedure
EncodeNode1 in Fig. 2 which traverse the trie by a depth first search (DFS)
method. For encoding the whole dictionary we call this procedure on the root of
the trie representing the dictionary.

In procedure EncodeNode1 we code only a number of sons and the distances
between the extensions of sons. For non-leaf nodes we must encode in one bit
whether that node represents a dictionary item (e.g. syllable or word) or not.
Leafs represent dictionary items always, it is not necessary to code it. Differences
between extensions of the sons are given as distances of binary values of the ex-
tending characters. For coding of a number of sons and the distances between
them we use gamma and delta Elias codes [6]. We have tested other Elias codes
too, but we achieved the best results for the gamma and delta codes. The num-
bers of sons and the distances between them can reach the value 0, but standard
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00 EncodeNode1(node) {

01 output->WriteGamma0(count + 1); /* We encode number of sons */

02 if (count = 0) return;

/* Mark whether the node represents a string*/

03 if (represents)

04 output->WriteBit(1);

05 else output->WriteBit(0);

06 previous = 0;

/* We iterate and encode all sons of this modes */

07 for(i = 0; i < count; i++) {

/* We count and encode distance between sons */

08 distance = son[i]->extension - previous;

09 output->WriteDelta0(distance + 1);

/* Recursive calling of procedure on the given son */

10 EncodeNode1(son[i]);

11 previous = son[i]->extension;

12 }

13 }

Fig. 2. Procedure EncodeNode1

versions of gamma and delta codes starts from 1 what means that these codings
do not support this value. We therefore use slight modifications of Elias gamma
and delta codes: gamma0(x) = gamma(x + 1) and delta0(x) = delta(x + 1).
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Fig. 3. Example of dictionary for TD1

An example is given in Fig. 3. The example dictionary contains the strings
".\n", "ACM", "AC", "to", and "the". Let us introduce the TD1 method by
coding the root of the trie representing our example dictionary:
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In the node we must first encode the number of its sons. Root has 3 sons,
hence we say that gamma0-code of the 3 (sons) is a string of bits ‘00001’ and
we write gamma0(3) = 00001.

Then we state that the already represented word (an empty string) is not
part of the dictionary by writing a bit 0.

Value of the the first son is encoded as a distance between its value and zero
by delta0(46− 0) = 0100101111.

Then the first subtrie is encoded by a recursive call of the encoding procedure
on the first son of the actual node.

When the first subtrie is fully encoded, we should specify what the second
son is. The difference between the first and the second son is 65− 46, hence we
write delta0(65− 46) = 000110011.

Then we encode the second subtrie and the third son and the subtrie rooted
in it. Now the whole node and all it subtries are encoded. As our example node
is the root, we have encoded the whole trie representing the dictionary.

4.2 Version with Translator – TD2

In TD1 version the distances between sons according binary values of the ex-
tending symbols are coded. These distances are encoded by Elias delta coding
representing smaller numbers by shorter codes and larger numbers by longer
codes. In version TD2 we reorder the symbols in the alphabet according the
types of the symbols and their frequencies typical for given language. In our
exmaple the symbols 0–27 are reserved for lower-case letters, 28–53 for upper-
case letters, 54–63 for digits and 64–255 for other symbols. There are some
examples in table 1.

Table 1. An example of new ordering of the symbols

symbol ’e’ ’t’ ’a’ ’I’ ’T’ ’A’ ’0’ ’1’ ’2’ ’ ’ ’,’ ’.’

ord(symbol) 0 1 2 28 29 30 54 55 56 64 65 66

Improving procedure TD1 by a replacement of the expression ”son[i] →
extension” by the expression ”ord(son[i]→ extension)” in the lines 08 and 11
we get procedure TD2 (Fig. 4).

Let us demonstrate this method on an example (Fig. 5). The example dic-
tionary contains again the strings ".\n", "ACM", "AC", "to" and "the". We will
describe the work of the coding procedure EncodeNode2 on the node labelled
by ’t’.

In a node we must first encode the number of its sons. Our node has two
sons, hence we write gamma0(2) = 011.

Then we state that the already represented word (the string ”t”) is not part
of the dictionary by writing a bit 0.
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00 EncodeNode2(node) {

01 output->WriteGamma0(count + 1); /* We encode number of sons */

02 if (count = 0) return;

/* Mark whether the node represents a string*/

03 if (represents)

04 output->WriteBit(1);

05 else output->WriteBit(0);

06 previous = 0;

/* We iterate and encode all sons of this modes */

07 for(i = 0; i < count; i++) {

/* We count and encode distance between sons */

08 distance = ord(son[i]->extension) - previous;

09 output->WriteDelta0(distance + 1);

/* Recursive calling of procedure on the given son */

10 EncodeNode2(son[i]);

11 previous = ord(son[i]->extension);

12 }

13 }

Fig. 4. Procedure EncodeNode2

Value of the the first son of ’t’ is encoded as a distance between its value 3
and zero by delta0(3− 0) = 01100.

Then the first subtrie of node ’t’ is encoded by a recursive call of the en-
coding procedure on the first son of the actual node.

When the subtrie of node ’t’ is fully encoded, we should specify what the
second son of the root is. The difference between first and second son is 6 − 3,
hence we write delta0(6− 3) = 01100.

Then we encode second subtrie. Now the whole node and all it subtries are
encoded.

4.3 Version Using Types of Strings – TD3

Words and syllables are special types of strings. We recognize these five types of
words (and syllables): lower-words (from lower-case letters), upper-words (from
upper-case letters), mixed-words (having the first letter upper-case and the fol-
lowing letters lower-case), numeric-words (from digits) a other-words (from spe-
cial characters). We know the type of a coded string for some nodes in the trie
(in Fig. 6 IsKnownTypeOfSons) and we can use this information.

If a string begins with a lower-case letter (lower-word or lower-syllable), the
following letters must be lower-case too. In a trie each son of a lower-case letter
can be only a lower-case letter too. Similar situation is for other-words and
numeric-words. If a string begins with an upper-case letter, we must look at
the second symbol to recognize the type of the string (mixed or upper). In our
example (Fig. 5) we know for the nodes ’t’, ’o’, ’h’ and ’e’ that all their
sons are lower-case letters.



Compression of a Dictionary 17

λ

o 3

e 0

?

h 6

?

t 1

M 33

?

C 34

?

A 30

?

\n 76

?

. 66

������)

PPPPPPq

������)

Fig. 5. Example of a dictionary for TD2 and TD3

In the new ordering described in version TD2 it is given for each symbol type
some interval of the new orders. Function first returns for each type of symbols
the lowest orders available for given symbol type. Function first is described in
Tab. 2.

Table 2. Values of function first

type of symbols lower-case letter upper-case letter digit other

first(type) 0 28 54 64

We are counting (Fig. 6, line 10) and coding (Fig. 6, line 11) the distances
between the sons. For the first sons of some nodes of a known type, we can use
function first and decrease the value of the distance and shorten the code. We
modify version TD2 by a modifying of the line 06 and inserting the lines 07 and
08 getting version TD3.

Let us show the differences between TD3 and TD2 on our example (Fig. 5).
Let us go directly to the node ’t’. Here we must first encode the number of

the sons of this node (2), we write gamma0(2) = 011.
Then we state that the already represented word (string "t") is not part of

the dictionary by writing a bit 0.
Value of the the first son of our node is encoded as a distance between its

value (3) and and zero (it is the first son) decreased by value of function first for
a lower-case letter (0). Encoded value is delta0(3−0−0) = 01100. It is possible to
restrict the shift interval by first of the encoded character type as we know this
type – in a subtrie of the node ’t’ occur only lower-case letters. The encoded
value is the same as in TD2 but there is a diference is in the calculation.

Other codings are made accordingly.
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00 EncodeNode2(node) {

01 output->WriteGamma0(count + 1); /* We encode number of sons */

02 if (count = 0) return;

/* Mark whether the node represents a string*/

03 if (represents)

04 output->WriteBit(1);

05 else output->WriteBit(0);

/* Using knowledge of type of node (improvent of method TD3) */

06 if (IsKnownTypeOfSons)

07 previous = first(TypeOfSymbol(This->Symbol))

08 else previous = 0;

/* We iterate and encode all sons of this node */

09 for(i = 0; i < count; i++) {

/* We count and encode distances between sons */

10 distance = ord(son[i]->extension) - previous;

11 output->WriteDelta0(distance + 1);

/* Recursive calling of the procedure on the given son */

12 EncodeNode2(son[i]);

13 previous = ord(son[i]->extension);

14 }

15 }

Fig. 6. Procedure EncodeNode3

5 Results

We have tested three versions of the method compressing the dictionary using
the trie data structure (TD – variants TD1, TD2, TD3), one method compressing
the dictionary character-by-character (CD), and two methods using an external
compressing tool for the concatenated directory items (LZWD, BzipD).

We have tested the dictionaries of words and syllables for variously sized
documents written in following three languages: English (EN), German (GE),
and Czech (CZ).

The best for the dictionaries of syllables it appears to be the method TD3 that
outperfomed all other tested methods on all tested document sizes. For example,
when compressing a 10KB document, TD3-compressed dictionary takes about
770 bytes whereas the second best method (CD) takes about 1450 bytes. In the
case of the compression of dictionaries of words the best-performing method has
been for small documents (up to 10kB) CD, for middle-sized documents BzipD,
and for large documents TD3. The boundary between ‘middle-sized’ and ‘large’
documents is in this case dependent on the used language: for Czech it was about
50kB, for English about 200kB and for German about 2MB.

It seems that the success of the TD methods (TD3 inclusive) grows with the
average arity of the trie nodes. The syllables are short and the trie representing a
dictionary of syllables is typically dense, hence the TD3 method has been always
the best.
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Table 3. Dictionary of syllables: Compression ratio (Compared with the size of a whole
file) in bits per character

— File size 100 B 1 kB 10 kB 50 kB 200 kB 500 kB 2 MB
Lang. Method 1 kB 10 kB 50 kB 200 kB 500 kB 2MB 5 MB

CZ LZWD 5.359 3.233 1.423 0.562 0.343 0.204 —–
CZ CD 3.741 2.432 1.130 0.461 0.284 0.169 —–
CZ BzipD 5.285 2.952 1.227 0.468 0.285 0.168 —–
CZ TD1 4.124 2.232 0.870 0.315 0.185 0.115 —–
CZ TD2 2.944 1.594 0.638 0.240 0.143 0.093 —–
CZ TD3 2.801 1.532 0.612 0.226 0.134 0.081 —–

EN LZWD 4.580 1.715 0.732 0.426 0.269 0.152 0.059
EN CD 2.983 1.287 0.583 0.360 0.234 0.133 0.052
EN BzipD 4.390 1.523 0.626 0.353 0.222 0.124 0.047
EN TD1 3.792 1.276 0.506 0.272 0.158 0.086 0.033
EN TD2 2.871 0.954 0.384 0.212 0.124 0.069 0.028
EN TD3 2.666 0.890 0.354 0.195 0.116 0.063 0.024

GE LZWD 4.259 2.995 1.139 0.580 0.345 0.202 0.104
GE CD 3.068 2.360 0.997 0.530 0.315 0.185 0.091
GE BzipD 4.127 2.689 0.949 0.479 0.285 0.166 0.087
GE TD1 3.952 2.539 0.832 0.377 0.207 0.122 0.045
GE TD2 3.020 1.914 0.627 0.284 0.157 0.097 0.035
GE TD3 2.730 1.805 0.599 0.275 0.150 0.086 0.033

German language has a lot of different and long word forms, the trie repre-
senting such dictionary is quite sparse and therefore the TD3 method outper-
formed other methods only for dictionary of very large documents.

English typically uses less word forms than Czech and German. These word
forms are often shorter than the ones used in Czech and German. The trie is
then for smaller documents quite sparse and therefore our compression method
outperforms the other ones only for larger documents.

In Czech the documents are typically made form lots of middle-sized word
forms and the dictionary tries are therefore quite dense. It is the reason why the
method has been so successful for the dictionaries of Czech documents.

6 Conclusion

We have proposed three methods for compression of dictionaries based on the
representation of the dictionary by a trie data structure. One of them (TD3) has
compressed the dictionary of syllables for given files better than all other tested
methods have. It has been also the most successful method for compression of
dictionaries of words of large documents.

Such dictionaries are used by many word- and syllable-based compression
algorithms. Improving compression ratio of the dictionary improves (although
with smaller impact) the overall compression ratio of these methods.
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Table 4. Dictionary of words: Compression ratio (Compared with the size of a whole
file) in bits per character

— File size 100 B 1 kB 10 kB 50 kB 200 kB 500 kB 2 MB
Lang. Method 1 kB 10 kB 50 kB 200 kB 500 kB 2MB 5 MB

CZ LZWD 5.984 4.549 3.076 1.934 1.557 1.161 —–
CZ CD 4.378 3.830 2.948 1.968 1.648 1.260 —–
CZ BzipD 5.784 4.045 2.559 1.582 1.255 0.921 —–
CZ TD1 8.443 6.520 4.146 2.250 1.713 1.178 —–
CZ TD2 5.935 4.531 2.874 1.550 1.176 0.814 —–
CZ TD3 5.781 4.462 2.844 1.534 1.167 0.800 —–

EN LZWD 4.699 2.195 1.203 0.872 0.687 0.443 0.189
EN CD 3.100 1.776 1.095 0.847 0.695 0.454 0.197
EN BzipD 4.508 1.915 1.002 0.714 0.563 0.361 0.154
EN TD1 6.320 3.144 1.698 1.108 0.813 0.498 0.191
EN TD2 4.526 2.142 1.144 0.753 0.554 0.341 0.132
EN TD3 4.219 2.062 1.110 0.734 0.544 0.333 0.128

GE LZWD 4.712 3.634 1.819 1.227 0.996 0.706 0.716
GE CD 3.582 3.091 1.787 1.293 1.096 0.799 0.789
GE BzipD 4.409 3.216 1.506 1.001 0.797 0.558 0.565
GE TD1 7.187 5.748 2.585 1.700 1.383 0.945 0.844
GE TD2 4.985 3.885 1.691 1.094 0.875 0.601 0.534
GE TD3 4.699 3.776 1.660 1.085 0.867 0.591 0.532
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