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ABSTRACT 
This paper proposes an ontology mapping based framerowk 
that allows searching for web resources using multiple 
ontologies. The proposed solution uses a mapping ontology 
that is a part of a recent Semantic Web initiative called the 
Simple Knowledge Organization System (SKOS). On top 
of that, we propose the search algorithm that takes 
arguments from one ontology and generates queries 
compliant with other ontologies. We evaluated the solution 
on a web application that allows using a local ontology, 
which describes content of a web site, to search for web 
resources in remote digital libraries or object repositories 
based on more general content ontologies. 

Categories and Subject Descriptors 
H.3.3 Information Storage and Retrieval – Information 
Search and Retrieval 

General Terms 
Algorithms, Design  

Keywords 
Ontology, ontology mapping, search, interoperability 

1. INTRODUCTION 
In a past few years large collections of web resources 
became available either through the digital libraries (such as 
ACM Portal), community-based object repositories, or 
more importantly as widely dispersed web resources in 
many individual institutions. Several interoperability 
initiatives are trying to address the issue of searching across 
multiple object collections. However, the effectiveness of 
searching is hampered by the fact that individual web 
resources are typically not interconnected into the web and 
therefore lacking the context which makes the Google’s 
PageRank algorithm [7] so effective. The libraries and 
repositories are overcoming this lack of context by 
providing explicit semantic information in the form of 
subject categories, taxonomies, or ideally richer ontologies. 

However, one can hardly find two different object 
repositories relaying on the same classification. 
Furthermore, the previous research showed that community 
members have real difficulty of making annotations of their 
objects using subject taxonomies [11]. On the other hand, 
they are more comfortable using their own application 
domain space as well as with their local context than 
multiple ontologies used in remote repositories.  

In order to address this problem here we propose the use of 
ontology mappings to define relations between concepts 
from different ontologies [9, 16, 20]. On top of such 
mapping relations we developed a search algorithm that 
uses concept of one ontology (i.e. the source ontology) as 
query arguments, generates queries compliant with another 
ontologies (i.e. target ontologies), and finally gets ranked 
search results semantically relevant for the source ontology. 
To define mapping relations among ontologies we use 
another ontology – mapping ontology – that specifies a set 
of relations for relating concepts from different ontologies. 
Actually, we use the Mapping Vocabulary [17] of the 
Simple Knowledge Organization System (SKOS), a recent 
W3C RDF-based initiative [18]. We implemented the 
search algorithm using Jess [10] and OWLJessKB [15] as a 
component. The component can be used in different 
semantic web application such as a federated search engine 
of object repositories/digital libraries annotated with 
different classifications; or applications that allow using a 
local web application content ontology to get relevant 
results from remote digital libraries based upon another 
ontologies. 

2. METADATA, ONTOLOGIES, AND 
WEB RESOURCES 

Although the present semantic web research try to improve 
most of interoperability issues, some problems still exist. 

2.1 Web metadata and domain ontologies 
Web resource metadata and domain ontologies (i.e. 
taxonomies) are often defined at different ontological 
levels. In order to underpin this statement let us consider an 
example of combining Dublin Core (DC) metadata schema 
[4] and domain ontologies. Technically, the DC metadata of 
a web resource is an instance (i.e. RDF) of the DC RDF 
Schema. Additionally, the metadata is enriched with 
keywords defined in an domain ontology (e.g. for computer 
science domain based on the ACM Computing 
Classification System – CCS [2]). If we refer to keywords 
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that are defined as classes in an RDF Schema, we annotate 
the metadata (i.e. schema instances) with ontology classes 
(i.e. schema). Those keywords are listed in the subject 
element of the DC metadata schema. Since ontology 
languages do not have a strict separation between 
ontological levels [6] this approach is completely 
applicable. In fact, this problem of representing classes as 
properties values has already been recognized by W3C 
Semantic Web Best  Practices Working Group as classes as 
property values [19]. While OWL Full and RDF Schema do 
not put any restriction on using classes as property values, 
OWL DL and OWL Lite do not generally allow this use, 
and thus restrict the use of some Semantic Web reasoners. 
Apart from the solutions listed in the W3C note, we can use 
specialized ontologies for defining domain taxonomies with 
a rich set of properties for defining concept hierarchies such 
as SKOS [18]. 

2.2 Mapping among multiple domain 
ontologies  

Currently, there are many different domain ontologies 
developed for the use on the Web. Very often developers 
are not able to reuse existing ontologies, as they were built 
for different purposes. For instance, some sources (e.g. 
object repositories, digital libraries) where we look for 
some web resources are based on different classifications 
(e.g. the ACM CCS in the ACM Digital Library [3]). We 
often need to build application-specific ontologies. For 
example, in the e-learning domain we can build an ontology 
of a course curriculum (e.g Information Management 
course) [22] to organize web resources related to the 
course. However, the main issue is how to use an 
application-specific ontology to search for web resources 
annotated with another ontology. In order to overcome such 
diversities we have to introduce an additional level of 
interoperability among ontologies [13]. One solution is to 
employ ontology mappings to define how concepts from 
different ontologies relate each other. 

Here we describe only one way for defining mappings, 
although there are many practically used ontology mapping 
techniques [13]. It regards the use of a mapping ontology – 
an ontology containing classes and properties (i.e. 

primitives) that can express relations between ontology 
concepts and properties (see Figure 1). This principle is 
suitable for implementation since semantic web reasoning 
tools (e.g. FaCT, OWLJessKB) represent the mapping 
ontology in the same way (i.e. like facts) as both the source 
and target ontologies. Historically, this approach originates 
from the explicit representation of relationships between 
domain (i.e. source) and method (i.e. target) ontologies 
assembled in a specific knowledge application [21]. An 
example of such a mapping ontology was developed as a 
part of the project on reusable problem-solving components 
[9]. MAFRA (MApping FRAmework) is another solution 
for mapping distributed ontologies [16]. Apart from a very 
detailed mapping ontology called the semantic bridge 
ontology, MAFRA also defines two-dimensional process (5 
horizontal and 4 vertical modules) ontology mappings 
process. Note also that a mapping ontology is used in the 
PROMPT Tab, a plug-in of the Protégé ontology editor for 
merging and mapping ontologies, to save discovered 
mappings [20]. However, none of these mapping ontologies 
is standardized.  Furthermore, they do not posses a wide 
range of primitives for defining different levels of mappings 
(e.g. exact match), which can be useful in raking search 
results.  

3. REPRESENTATION OF ONTOLOGIES 
AND MAPPINGS 

In order to address two problems listed in previous section 
our solution uses the Simple Knowledge Organization 
System (SKOS) [18] for defining different types of 
ontologies (e.g. classifications, taxonomies, thesaurus) as 
well as mappings of concepts between different domain 
ontologies. The SKOS consists of the three RDF 
vocabularies that are still under the active development at 
the W3C: 
• SKOS Core – for expressing the basic structure and 

content of concept schemes (taxonomies, terminologies, 
etc); 

• SKOS Mapping – for describing mappings between 
concept schemes; 

• SKOS Extension – containing extensions to the SKOS 
Core useful for specialized applications. 
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Figure 1. A general purpose mapping ontology as a way to define mappings among multiple ontologies 
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SKOS Core provides a model for expressing the basic 
structure and content of concept schemes. Basically, the 
SKOS Core defines a set of both RDFS properties and 
RDFS classes that can be used to express the content and 
structure of a concept scheme (such as Concept, broader, 
narrower, related, subject, isSubjectOf). For example, the 
broader property is used to specify that a concept is 
broader than another one. In order to define 
subclass/superclass relations we can use the SKOS 
Extension vocabulary and its properties narrowerGeneric 
and broaderGeneric that are sub-properties of the narrower 
and broader properties, respectively. The narrowerGeneric 
property is semantically equivalent to the rdfs:subClassOf 
property, and thus has a slight different meaning from the 
narrower property. 

3.1 Ontology representation 
We use ACM CCS to illustrate the use of SKOS to define 
domain ontology. The ACM CCS is probably the most 
comprehensive classification in the domain of computer 
science [2]. An excerpt of the classification in the SKOS is 
shown in Figure 2a. Note that we use the SKOS Extension 
properties broaderGeneric and narrowerGeneric in order 
to have subclass/superclass relations between concepts. 

3.2 Ontology mapping  
The SKOS Mapping vocabulary contains a set of properties 
for specifying mapping relations among concepts from 
different domain ontologies (broadMatch, narrowMatch, 

exactMatch, majorMatch, minorMatch). Such a rich set of 
semantic relations for expressing mapping is useful in 
ranking search results to reflect the weight of the mapping. 
Apart from the properties, the SKOS Mapping has the three 
classes for defining: intersection of concepts (the AND 
class), union of concepts (OR), and negation (NOT). 

In Figure 2b we show how we have used the SKOS 
Mapping to express the mapping between an e-learning 
relevant course curriculum ontology and the ACM CCS 
ontology. The curriculum ontology captures the 
Information Management course [1]. The course contains 
14 units (top level SKOS concepts), and each unit contain 
several topics (sub-concepts of top level concepts in 
SKOS). One can see different match levels between 
concepts (i.e. minorMatch, majorMatch, and exactMatch) 
in Figure 2b. We also show how one defines the mapping 
relation between a concept (e.g. IM1.6) and a union (e.g. 
OR1) of other concepts (e.g. H.3.3 and E.2.3). As mappings 
relations are not symmetric [17] we have to provide two 
mapping relations for each pair of concepts in case of two-
way mappings.  

4. ONTOLOGY MAPPING BASED 
SEARCH ALGORITHM 

The substance of having mappings among different 
ontology-based vocabularies is to enable the use of the 
ontology A to search web resources annotated with 
concepts from another ontology B. Accordingly, we 
dedicate this section to the search algorithm we developed. 

<rdf:RDF> 
 <skos:ConceptScheme rdf:ID="&acm-ccs;acm-ccs"> 
  <skos:hasTopConcept rdf:resource="&acm-ccs;A" /> 
  <!-- ... -->  
  <skos:hasTopConcept rdf:resource="&acm-ccs;K" /> 
 </skos:ConceptScheme> 
 <!-- ... -->  
 <skos:Concept rdf:ID="&acm-ccs;H.3"> 
  <skos:prefLabel xml:lang="en">Information Storage and   
  Retrieval</skos:prefLabel>  
  <skos:inScheme rdf:resource="&acm-ccs;acm-ccs" />  
  <skos:broaderGeneric rdf:resource="&acm-ccs;H" />  
  <skos:narrowerGeneric rdf:resource="&acm-ccs;H.3.1" /> 
  <!-- ... -->  
  <skos:narrowerGeneric rdf:resource="&acm-ccs;H.3.m" />  
 </skos:Concept> 
 <!-- ... -->  
 <skos:Concept rdf:ID="&acm-ccs;H.3.3"> 
  <skos:prefLabel xml:lang="en">Information Search and   
 Retrieval</skos:prefLabel>  
  <skos:inScheme rdf:resource="acm-ccs" />  
  <skos:broaderGeneric rdf:resource="&acm-ccs;H.3" />  
  <skos:narrowerGeneric rdf:resource="&acm-ccs;H.3.3.1" />  
  <!-- ... -->  
  <skos:narrowerGeneric rdf:resource="&acm-ccs;H.3.3.6" />  
 </skos:Concept> 
 <!-- ... -->  
 <skos:Concept rdf:ID="&acm-ccs;H.3.3.1"> 
  <skos:prefLabel xml:lang="en">Information 
    Filtering</skos:prefLabel>  
  <skos:inScheme rdf:resource="&acm-ccs;acm-ccs" />  
  <skos:broaderGeneric rdf:resource="&acm-ccs;H.3.3" />  
 </skos:Concept 
 <!-- ... -->  
</rdf:RDF> 

  
 
<!--IM1.1 - History and motivation for information systems  
   ->H.5.m - Miscellaneous --> 
 <skos:Concept rdf:about="&imc;IM1.1"> 
 <map:minorMatch> 
  <skos:Concept rdf:about= "&acm-ccs;H.5.m"/> 
 </map:minorMatch> 
 </skos:Concept> 
  
 <!-- IM1.2 - Information storage and retrieval (IS&R) -> 
 H.3 - Information storage and retrieval--> 
 <skos:Concept rdf:about="&imc;IM1.2"> 
 <map:exactMatch> 
  <skos:Concept rdf:about= "&acm-ccs;H.3"/> 
 </map:exactMatch> 
 </skos:Concept> 
 
<!--IM1.6 - Search, retrieval, linking, navigation ->  
 Union of H.3.3 - Information Search and Retrieval 
  E.2.3 - Linked representations --> 
 <skos:Concept rdf:about="&imc;IM1.6"> 
 <map:majorMatch> 
  <map:OR about="#OR1"/> 
 </map:majorMatch> 
 </skos:Concept> 
 <map:OR ID="OR1"> 
 <map:memberList rdf:parseType="Collection"> 
  <skos:Concept rdf:about="&acm-ccs;H.3.3"/> 
  <skos:Concept rdf:about="&acm-ccs;E.2.3"/> 
 </map:memberList> 
 </map:OR> 

a) b)  
Figure 2. The use of SKOS: a) An excerpt of the ACM CCS in the XML/RDF format of the SKOS. The classification 

comprises the 11 top level concepts marked with letters from A to K. Most of the top level concepts are further subdivided 
into three more levels with numbers being added to their identifiers; b) an excerpt of the mappings between the ACM CCS 

and another ontology (an Information Management course curriculum ontology) defined in the SKOS Mappings 
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4.1 Starting presumptions 
The algorithm is based on the following presumptions: 
� Input arguments of the search algorithm are concepts of 

the source ontology; 
� Results of the search algorithm are concepts of the target 

ontology; 
� Mapping relations among concepts from both source and 

target ontologies are defined using the SKOS Mappings; 
� For each input argument the search algorithm looks for 

target ontology concepts that have defined mappings. We 
call those target ontology concepts – matched concepts. 

� The search algorithm also looks for child concepts of 
matched concepts.  

� When ranking search results, different kinds of the SKOS 
Mappings relations should be taken into account. 

4.2 Initial algorithm 
The input argument of the initial algorithm is a concept 
from the source ontology. The algorithm searches for 
matched concepts in the target ontology based on all types 
of SKOS mappings relation types. Next, the algorithm 
looks for child concepts of the matched concepts, but only a 
predefined number of levels (dmax) below the matched 
concept in the target ontology (see Figure 3a). 

The algorithm creates 5 different lists of matched concepts 
called clusters (one for each mapping relation type) as well 
as 5 clusters of child concepts (dmax levels below) of the 
matched concepts. Finally, the algorithm merges all clusters 
respecting the order of clusters listed in the cluster-names 

variable in Figure 4 (NB Figure 4 does not illustrate this 
algorithm version, but the next one). In fact, the merging is 
performed by connecting clusters using the union operator. 

Although the algorithm in a rather simple way searches for 
the matched concepts in the target ontology as well as ranks 
the resulting set of matched concepts, it still has some open 
issues: the resulting concept list is completely discrete 
structure due to the simple merging; the ranking procedure 
treats all children of the matched concepts within the same 
cluster in the same way, so concepts within a cluster are 
randomly ordered; and searching for child concepts a 
predefined number (dmax) levels below the matched node 
can take out of consideration some relevant child concepts.  

4.3 Improved algorithm 
First, the improved algorithm uses all the children of 
matched concepts in the target ontology regardless their 
depth level (see Figure 3b). Second, it uses the weight 
factor to determine ranks of both matched concepts and 
their children in the resulting list of concepts. The algorithm 
calculates the weight factor of a matched concept according 
to the type of the mapping relation connecting it with the 
source ontology concepts. The weight factor for each type 
of mapping relation is predefined (i.e. a constant number) 
and is subject to change depending on the tree structure of 
the target ontology (i.e. it can be fine tuned). Note also that 
referent weight factor is the exactMatch relation, while 
others (i.e. major, minor, and broad) are calculated 
relatively to it. That is the reason way that value is also an 
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Figure 3. The search algorithm based on ontology mappings: a) only those child nodes dmax levels below the 

matched node are used; b) all child nodes of the matched node in the target ontology are used 
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input argument of the search algorithm (WFEM). The weight 
factor for every matched concept child depends on (see 
Figure 3b): the maximal depth level of the matched (parent) 
concept; the distance of the child concept from its parent; 
the weight factor of its parent. Accordingly, the weight 
factor of the child concept is calculated using the following 
formula: 

WFch = WFp – (WFp / (1 + dlmax)) * dch                (1) 
where: 
• WFch – weight factor of the child concept; 
• WFp – weight factor of the matched (parent) concept; 
• dlmax – maximal depth level of the matched (parent) 

concept; 
• dch –  distance of the child concept from the matched 

(parent) concept. 

Relaying on the aforementioned facts we revise the 
algorithm. In Figure 4 we show a high level description of 
the search function (i.e. search-concept) in an informal 
pseudo-code.  The first part of the algorithm is similar to 
the previous version. The difference is that the clusters are 
not merged like in the first algorithm, but they are stored to 
be members of a hash map – a memory structure keeping 
the track about all clusters. Once all clusters are created, the 
algorithm puts the concepts from each cluster in the 
resulting list (result) using the put-in-sorted-list 
procedure. Concepts in the resulting list are sorted 
according to their weight factors. Since the same concept 

can be in more then one cluster (e.g. 
broadMatchChildren and majorMatchChildren), the 
procedure prevents the repetition of the same concept in the 
resulting list by using its best weight factor.  

Although this variant of the algorithm solves the most the 
problems we have mentioned for the first one, the algorithm 
still has some limitations that are referred in detail in the 
next subsection. 

4.4 Final algorithm 
The search algorithm presented in the previous section does 
not solve the case when mapping is not defined between the 
query argument and the target ontology (see Figure 5). 
Although the previous search algorithm variants look for 
children of matched concepts in the target ontology, it does 
not expand the query arguments that are parts of the source 
ontology. In fact, the solution works properly if mapping is 
defined between the query argument and one or more 
concepts from the target ontology. However, if there are no 
mappings defined for the query argument then the query 
will return an empty resulting list.  

To overcome this issue, we additionally improved the 
search algorithm. The algorithm looks for both child and 
parent concepts in the source ontology that have defined 
mappings with concepts of the target ontology when the 
query argument has no defined mappings. In order to 
calculate weight factors of result concepts, the algorithm 
takes into account the fact that the distance between the 

function search-concept (input-concept, WFEM) 
cluster-names := {“exactMatch”, “broadMatch”, “exactMatchChildren”, 

“broadMatchChildren” , “narrowMatch”, “narrowMatchChildren” “majorMatch”, 
“majorMatchChildren”, “minorMatch”, “minorMatchChildren”}; 

clusters := create-hash-map(); 
result := {}; 
 

for-each name in cluster-names 
 matched-concepts := get-matched-concepts(name, input-concept); 
 clusters[name] := matched-concepts; 

 end-for-each 

for-each name in cluster-names 
 for-each concept in clusters[name] 

put-in-sorted-list(result, concept, calculate-WF(concept, name)); 
 end-for-each 

 end-for-each 

 return result; 

end-function  
Figure 4. The search algorithm – considers all child concepts of the matched concept in the target ontology. It ranks the 
resulting list of concepts relying on the weight factor of the mapping relation type of the matched concept as well as the 

distance of child concepts from the matched (parent) concepts 
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Figure 5. The case when mapping is not defined between the query argument and concepts of the target ontology 
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query arguments and all its child and parent concepts with 
defined matching relations is not the same. Relaying on that 
fact we calculate the value of the weight factor (WFi) for 
exact match (see the previous subsection) for each parent 
and child concept of the query argument in the source 
ontology using the following formula: 

WFi = WFEM – abs(dlsc – dli) * step   (2) 
where: 
• WFEM – weight factor of the exact match relation 

predefined for the case when there is a mapping relation 
between the query argument and the target ontology; 

• dlsc – depth level of the query argument; 
• dli – depth level of a parent/child concept of the query 

argument that has a mapping relation with the target 
ontology; 

• step – predefined value that specifies the impact of the 
distance between the query argument and its child/parent 
concept i. 

Once we calculate the weight factor for the exact match 
relation, the weight factors of other mapping relations can 
be calculated as we have already explained in the previous 
subsection. In Figure 6 we show the final version of the 
search algorithm capturing the explanation given in this 
subsection and employing the search algorithm shown in 
Figure 4. 

4.5 A Jess-based implementation of the 
proposed search algorithm 

We implemented the algorithm using OWLJessKB [15], a 
Semantic Web reasoning tool, and Jess, a Java-
implemented rule-based inference engine [10]. The use of 
the implemented algorithm regards invoking the 
corresponding Jess function whose input parameters are: a 
concept from the source ontology; and the weight factor for 
the exact match mapping relation. The function returns a 
ranked list of matched concepts as well as their child 
concepts. 

5. EVALUATION 
In order to evaluate the search algorithm we developed a 
web-based application in the domain of e-learning for an 

information management course. The course is based on the 
ACM/IEEE computer science curriculum recommendation 
[1]. The application has a typical organization – the left 
pane contains the course structure and the right pane holds 
the content of the one particular unit. In fact, the course 
structure is represented as a SKOS ontology. The bottom 
part of the right pane contains the context sensitive search 
for two different collections of web resources: the ACM 
Digital Library (DL) [3] and Merlot learning object 
repository (http://www.merlot.org). The ACM DL relays on 
the ACM CCS ontology while Merlot has its own 
classification. We encoded both classifications in SKOS. 
The students can search both collections of web resources 
by providing search keywords. However, the search action 
collects annotation of the current page in the course 
ontology (embedded in the web page in the RDF form) and 
applies the ontology mapping based algorithm to the 
annotation. Finally, the application sends an expanded 
query along with the keywords to chosen collection of web 
resources. The results received from collections of web are 
related to the current web page within the course.  

Figure 7 contains the diagram comparing the search results 
we obtain when searching the ACM DL by using keywords 
and the combination of keywords and ACM CCS class 
identifiers. Note that the “full number” for each query 
means the overall number of objects that contain any of 
searched keywords in the keyword and ACM CSS 
classification fields of their metadata (see [3] for details). It 
is obvious that the combination of the keywords and ACM 
CCS class identifiers reduces the number of found objects, 
and hopefully helps find more relevant web resources. 
However, we noticed several peculiarities due to the use of 
a specific search engine (i.e. the ACM DL Advanced 
Search): 
� The number of results is decreased when increasing the 

number of classifiers in a query. It was completely 
opposite to expectations as those query arguments are 
connected with the OR logical operator. The reason for 
such a behavior is that the ACM DL Advanced Search 
uses the Verity indexing engine (http://www.verity.com), 

function search-concept-no-direct-match (input-concept, WFEM) 
result := search concept(input-concept, WFEM); 

if result == {} then  
 children := get-subconcepts-with-mapping(input-concept); 
 parents := get-superconcepts-with-mapping(input-concept); 

for-each c in children 
 WF := calculate-WF(c, input-concept); 
 put-in-ordered-list(result, search-concept(input-concept, WF)); 

  end-for-each 
for-each c in parents 
 WF := calculate-WF(c, input-concept); 
 put-in-ordered-list(result, search-concept(input-concept, WF)); 

  end-for-each 
 end-if 

 return result; 

end-function  
Figure 6. The final version of the search algorithm that captures the case exemplified in Figure 5 when none of mapping 

relations is defined among the query argument and concepts of the target ontology  
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which selects only those objects whose weight factors 
pass over a specific threshold. Since their weight factors 
depend on the number of classification parameters, the 
less number of found objects can pass over the threshold 

� The last level of classification is omitted from the queries 
in the web application. Due to a high number of 
classification concepts used in queries, the ACM DL 
Advanced Search can return an empty list of found 
concepts. The effect is especially stressed when using top 
level concepts as query arguments. The ACM DL search 
engine selects only those objects whose weight factors 
pass over a specific threshold. Increasing the number of 
classification parameters also increases the threshold and 
therefore eliminating some of the objects. However, this 
does not affect the best matching results. 

Table 1 contains results obtained by applying the algorithm 
to search the Merlot learning object repository using the 
combination of the course ontology concepts and keywords. 
Unlike the ACM DL, in this case search results are in 
accordance with expectations, the greater number of 
classification tags in the query, the greater number of the 
found objects. Note also that the number of Merlot 
classification tags is not so high comparing to the 
experiment with ACM DL, since mapping relations 
between two ontologies are defined for the bottom level 
concepts of the Merlot classification. We found that most of 

concept from the course ontology did not have direct 
mapping relations with the target ontology, but they just 
inherited mapping relation from their parents.  

Finally, say that we could not rank search results according 
to our ranking algorithm in either experiment, since we used 
two different digital libraries where we did not have any 
control in ranking of the found resources. In order to 
evaluate our ranking algorithm we are developing screen-
scraping functions of both ACM DL and Merlot web pages 
showing search results. 

6. CONCLUSIONS 
The paper presented a way to achieve semantic 
interoperability when searching for web resources in web 
sources annotated by different domain ontologies. That 
way, users can get semantically relevant search results using 
classifications they are familiar with. The presented method 
exploited the idea of having one separated mapping 
ontology as it was already shown in [9, 16, 20]. Relations 
among different ontologies are not encoded into their 
structures, but they are represented separately. Accordingly, 
reusability of related ontologies is not decreased. 
Additionally, the evaluation examples showed benefit to 
have a combined keyword search with ontology annotated 
content to in order to provide more relevant web resources. 
Although we discussed the case of mapping between two 
ontologies, the described approach scales up to support 
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Figure 7. Comparison of the search results obtain from the ACM Digital Library by using text-based keywords and the 

combination of the text-based keywords and ACM CCS class identifiers 

Table 1. Evaluation of the ontology mapping based algorithm to search Merlot learning object repository, which is based on 
its own classification, using a course curriculum ontology 

Concept IM1 IM.1 IM1.2 IM1.3 IM1.4 IM1.5 IM1.6 IM1.7 IM1.8 IM2 IM2.1 … 
Keyword-based search 9814 10782 9760 2094 9769 9578 114 9760 9542 540 10797 … 
Ontology-based search 55 59 85 22 53 80 1 9 52 25 35 … 
Percent 0.56 0.55 0.87 1.05 0.54 0.84 0.88 0.09 0.54 4.63 0.32 … 
Num. of classification tags 1 1 3 2 1 1 1 1 1 2 2 … 
Defined match or not Y Y Y Y Y Y N Y N Y N … 

             

Concept … IM2.2 IM2.3 IM2.4 IM2.5 IM3.2 IM3.3 IM3.4 IM4 IM4.1 IM4.2 IM4.3 
Keyword-based … 9449 1321 9638 12782 9614 418 1140 72 12788 9544 9563 
Ontology-based … 36 26 35 38 85 14 40 6 38 31 31 
Percent … 0.38 1.97 0.36 0.30 0.88 3.35 3.51 8.33 0.30 0.32 0.32 
Num. of classification tags … 2 2 2 2 3 3 3 2 2 2 2 
Defined mapping or not … N N N N N N N Y N N N 
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multiple ontologies, provided we defined mapping between 
the source ontology and any number of target ontologies. 

Comparing the search algorithm with other solutions we can 
find similarities with the Intelligent Product Information 
Search that employs ontology mapping to search for 
products using web services of several sellers based on 
different product ontologies [14]. However, this method has 
mappings defined in a table, while search procedure just 
considers direct mapping without consideration of child 
concepts. It further uses run-time discovery of mapping 
relations based upon lexical similarities defined in 
WordNet. Another similar approach tries to enable the use 
of user personalized ontologies to annotate web pages in 
order to compose web services [5]. The mapping rules 
between ontologies are defined in F-Logic. To the best of 
our knowledge, the approach just uses simple matching 
between related concepts from different concepts, without 
consideration of their child concepts. 

In the future we plan to integrate the developed search 
algorithm into the eduSource Communication Layer (ECL) 
being developed in our research laboratory as a part of its 
federated search engine [12]. We also plan to research how 
we can automatically generate ontology mapping relations 
the search algorithm relays on. The idea is to apply the 
concept of semantic signatures as well as content of web 
resources to discover relation among ontology concepts [8]. 
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